1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Omega Relations Multiset SetoidList.
(** This file is deprecated, use [Permutation.v] instead.
Indeed, this file defines a notion of permutation based on
multisets (there exists a permutation between two lists iff every
elements have the same multiplicity in the two lists) which
requires a more complex apparatus (the equipment of the domain
with a decidable equality) than [Permutation] in [Permutation.v].
The relation between the two relations are in lemma
[permutation_Permutation].
File [Permutation] concerns Leibniz equality : it shows in particular
that [List.Permutation] and [permutation] are equivalent in this context.
*)
Set Implicit Arguments.
Local Notation "[ ]" := nil.
Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..).
Section Permut.
(** * From lists to multisets *)
Variable A : Type.
Variable eqA : relation A.
Hypothesis eqA_equiv : Equivalence eqA.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.
(** contents of a list *)
Fixpoint list_contents (l:list A) : multiset A :=
match l with
| [] => emptyBag
| a :: l => munion (singletonBag a) (list_contents l)
end.
Lemma list_contents_app :
forall l m:list A,
meq (list_contents (l ++ m)) (munion (list_contents l) (list_contents m)).
Proof.
simple induction l; simpl; auto with datatypes.
intros.
apply meq_trans with
(munion (singletonBag a) (munion (list_contents l0) (list_contents m)));
auto with datatypes.
Qed.
(** * [permutation]: definition and basic properties *)
Definition permutation (l m:list A) := meq (list_contents l) (list_contents m).
Lemma permut_refl : forall l:list A, permutation l l.
Proof.
unfold permutation; auto with datatypes.
Qed.
Lemma permut_sym :
forall l1 l2 : list A, permutation l1 l2 -> permutation l2 l1.
Proof.
unfold permutation, meq; intros; symmetry; trivial.
Qed.
Lemma permut_trans :
forall l m n:list A, permutation l m -> permutation m n -> permutation l n.
Proof.
unfold permutation; intros.
apply meq_trans with (list_contents m); auto with datatypes.
Qed.
Lemma permut_cons_eq :
forall l m:list A,
permutation l m -> forall a a', eqA a a' -> permutation (a :: l) (a' :: m).
Proof.
unfold permutation; simpl; intros.
apply meq_trans with (munion (singletonBag a') (list_contents l)).
apply meq_left, meq_singleton; auto.
auto with datatypes.
Qed.
Lemma permut_cons :
forall l m:list A,
permutation l m -> forall a:A, permutation (a :: l) (a :: m).
Proof.
unfold permutation; simpl; auto with datatypes.
Qed.
Lemma permut_app :
forall l l' m m':list A,
permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m').
Proof.
unfold permutation; intros.
apply meq_trans with (munion (list_contents l) (list_contents m));
auto using permut_cons, list_contents_app with datatypes.
apply meq_trans with (munion (list_contents l') (list_contents m'));
auto using permut_cons, list_contents_app with datatypes.
apply meq_trans with (munion (list_contents l') (list_contents m));
auto using permut_cons, list_contents_app with datatypes.
Qed.
Lemma permut_add_inside_eq :
forall a a' l1 l2 l3 l4, eqA a a' ->
permutation (l1 ++ l2) (l3 ++ l4) ->
permutation (l1 ++ a :: l2) (l3 ++ a' :: l4).
Proof.
unfold permutation, meq in *; intros.
specialize H0 with a0.
repeat rewrite list_contents_app in *; simpl in *.
destruct (eqA_dec a a0) as [Ha|Ha]; rewrite H in Ha;
decide (eqA_dec a' a0) with Ha; simpl; auto with arith.
do 2 rewrite <- plus_n_Sm; f_equal; auto.
Qed.
Lemma permut_add_inside :
forall a l1 l2 l3 l4,
permutation (l1 ++ l2) (l3 ++ l4) ->
permutation (l1 ++ a :: l2) (l3 ++ a :: l4).
Proof.
unfold permutation, meq in *; intros.
generalize (H a0); clear H.
do 4 rewrite list_contents_app.
simpl.
destruct (eqA_dec a a0); simpl; auto with arith.
do 2 rewrite <- plus_n_Sm; f_equal; auto.
Qed.
Lemma permut_add_cons_inside_eq :
forall a a' l l1 l2, eqA a a' ->
permutation l (l1 ++ l2) ->
permutation (a :: l) (l1 ++ a' :: l2).
Proof.
intros;
replace (a :: l) with ([] ++ a :: l); trivial;
apply permut_add_inside_eq; trivial.
Qed.
Lemma permut_add_cons_inside :
forall a l l1 l2,
permutation l (l1 ++ l2) ->
permutation (a :: l) (l1 ++ a :: l2).
Proof.
intros;
replace (a :: l) with ([] ++ a :: l); trivial;
apply permut_add_inside; trivial.
Qed.
Lemma permut_middle :
forall (l m:list A) (a:A), permutation (a :: l ++ m) (l ++ a :: m).
Proof.
intros; apply permut_add_cons_inside; auto using permut_sym, permut_refl.
Qed.
Lemma permut_sym_app :
forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1).
Proof.
intros l1 l2;
unfold permutation, meq;
intro a; do 2 rewrite list_contents_app; simpl;
auto with arith.
Qed.
Lemma permut_rev :
forall l, permutation l (rev l).
Proof.
induction l.
simpl; trivial using permut_refl.
simpl.
apply permut_add_cons_inside.
rewrite app_nil_r. trivial.
Qed.
(** * Some inversion results. *)
Lemma permut_conv_inv :
forall e l1 l2, permutation (e :: l1) (e :: l2) -> permutation l1 l2.
Proof.
intros e l1 l2; unfold permutation, meq; simpl; intros H a;
generalize (H a); apply plus_reg_l.
Qed.
Lemma permut_app_inv1 :
forall l l1 l2, permutation (l1 ++ l) (l2 ++ l) -> permutation l1 l2.
Proof.
intros l l1 l2; unfold permutation, meq; simpl;
intros H a; generalize (H a); clear H.
do 2 rewrite list_contents_app.
simpl.
intros; apply plus_reg_l with (multiplicity (list_contents l) a).
rewrite plus_comm; rewrite H; rewrite plus_comm.
trivial.
Qed.
(** we can use [multiplicity] to define [InA] and [NoDupA]. *)
Fact if_eqA_then : forall a a' (B:Type)(b b':B),
eqA a a' -> (if eqA_dec a a' then b else b') = b.
Proof.
intros. destruct eqA_dec as [_|NEQ]; auto.
contradict NEQ; auto.
Qed.
Lemma permut_app_inv2 :
forall l l1 l2, permutation (l ++ l1) (l ++ l2) -> permutation l1 l2.
Proof.
intros l l1 l2; unfold permutation, meq; simpl;
intros H a; generalize (H a); clear H.
do 2 rewrite list_contents_app.
simpl.
intros; apply plus_reg_l with (multiplicity (list_contents l) a).
trivial.
Qed.
Lemma permut_remove_hd_eq :
forall l l1 l2 a b, eqA a b ->
permutation (a :: l) (l1 ++ b :: l2) -> permutation l (l1 ++ l2).
Proof.
unfold permutation, meq; simpl; intros l l1 l2 a b Heq H a0.
specialize H with a0.
rewrite list_contents_app in *; simpl in *.
apply plus_reg_l with (if eqA_dec a a0 then 1 else 0).
rewrite H; clear H.
symmetry; rewrite plus_comm, <- ! plus_assoc; f_equal.
rewrite plus_comm.
destruct (eqA_dec a a0) as [Ha|Ha]; rewrite Heq in Ha;
decide (eqA_dec b a0) with Ha; reflexivity.
Qed.
Lemma permut_remove_hd :
forall l l1 l2 a,
permutation (a :: l) (l1 ++ a :: l2) -> permutation l (l1 ++ l2).
Proof.
eauto using permut_remove_hd_eq, Equivalence_Reflexive.
Qed.
Fact if_eqA_else : forall a a' (B:Type)(b b':B),
~eqA a a' -> (if eqA_dec a a' then b else b') = b'.
Proof.
intros. decide (eqA_dec a a') with H; auto.
Qed.
Fact if_eqA_refl : forall a (B:Type)(b b':B),
(if eqA_dec a a then b else b') = b.
Proof.
intros; apply (decide_left (eqA_dec a a)); auto with *.
Qed.
(** PL: Inutilisable dans un rewrite sans un change prealable. *)
Global Instance if_eqA (B:Type)(b b':B) :
Proper (eqA==>eqA==>@eq _) (fun x y => if eqA_dec x y then b else b').
Proof.
intros x x' Hxx' y y' Hyy'.
intros; destruct (eqA_dec x y) as [H|H];
destruct (eqA_dec x' y') as [H'|H']; auto.
contradict H'; transitivity x; auto with *; transitivity y; auto with *.
contradict H; transitivity x'; auto with *; transitivity y'; auto with *.
Qed.
Fact if_eqA_rewrite_l : forall a1 a1' a2 (B:Type)(b b':B),
eqA a1 a1' -> (if eqA_dec a1 a2 then b else b') =
(if eqA_dec a1' a2 then b else b').
Proof.
intros; destruct (eqA_dec a1 a2) as [A1|A1];
destruct (eqA_dec a1' a2) as [A1'|A1']; auto.
contradict A1'; transitivity a1; eauto with *.
contradict A1; transitivity a1'; eauto with *.
Qed.
Fact if_eqA_rewrite_r : forall a1 a2 a2' (B:Type)(b b':B),
eqA a2 a2' -> (if eqA_dec a1 a2 then b else b') =
(if eqA_dec a1 a2' then b else b').
Proof.
intros; destruct (eqA_dec a1 a2) as [A2|A2];
destruct (eqA_dec a1 a2') as [A2'|A2']; auto.
contradict A2'; transitivity a2; eauto with *.
contradict A2; transitivity a2'; eauto with *.
Qed.
Global Instance multiplicity_eqA (l:list A) :
Proper (eqA==>@eq _) (multiplicity (list_contents l)).
Proof.
intros x x' Hxx'.
induction l as [|y l Hl]; simpl; auto.
rewrite (@if_eqA_rewrite_r y x x'); auto.
Qed.
Lemma multiplicity_InA :
forall l a, InA eqA a l <-> 0 < multiplicity (list_contents l) a.
Proof.
induction l.
simpl.
split; inversion 1.
simpl.
intros a'; split; intros H. inversion_clear H.
apply (decide_left (eqA_dec a a')); auto with *.
destruct (eqA_dec a a'); auto with *. simpl; rewrite <- IHl; auto.
destruct (eqA_dec a a'); auto with *. right. rewrite IHl; auto.
Qed.
Lemma multiplicity_InA_O :
forall l a, ~ InA eqA a l -> multiplicity (list_contents l) a = 0.
Proof.
intros l a; rewrite multiplicity_InA;
destruct (multiplicity (list_contents l) a); auto with arith.
destruct 1; auto with arith.
Qed.
Lemma multiplicity_InA_S :
forall l a, InA eqA a l -> multiplicity (list_contents l) a >= 1.
Proof.
intros l a; rewrite multiplicity_InA; auto with arith.
Qed.
Lemma multiplicity_NoDupA : forall l,
NoDupA eqA l <-> (forall a, multiplicity (list_contents l) a <= 1).
Proof.
induction l.
simpl.
split; auto with arith.
split; simpl.
inversion_clear 1.
rewrite IHl in H1.
intros; destruct (eqA_dec a a0) as [EQ|NEQ]; simpl; auto with *.
rewrite <- EQ.
rewrite multiplicity_InA_O; auto.
intros; constructor.
rewrite multiplicity_InA.
specialize (H a).
rewrite if_eqA_refl in H.
clear IHl; omega.
rewrite IHl; intros.
specialize (H a0). omega.
Qed.
(** Permutation is compatible with InA. *)
Lemma permut_InA_InA :
forall l1 l2 e, permutation l1 l2 -> InA eqA e l1 -> InA eqA e l2.
Proof.
intros l1 l2 e.
do 2 rewrite multiplicity_InA.
unfold permutation, meq.
intros H;rewrite H; auto.
Qed.
Lemma permut_cons_InA :
forall l1 l2 e, permutation (e :: l1) l2 -> InA eqA e l2.
Proof.
intros; apply (permut_InA_InA (e:=e) H); auto with *.
Qed.
(** Permutation of an empty list. *)
Lemma permut_nil :
forall l, permutation l [] -> l = [].
Proof.
intro l; destruct l as [ | e l ]; trivial.
assert (InA eqA e (e::l)) by (auto with *).
intro Abs; generalize (permut_InA_InA Abs H).
inversion 1.
Qed.
(** Permutation for short lists. *)
Lemma permut_length_1:
forall a b, permutation [a] [b] -> eqA a b.
Proof.
intros a b; unfold permutation, meq.
intro P; specialize (P b); simpl in *.
rewrite if_eqA_refl in *.
destruct (eqA_dec a b); simpl; auto; discriminate.
Qed.
Lemma permut_length_2 :
forall a1 b1 a2 b2, permutation [a1; b1] [a2; b2] ->
(eqA a1 a2) /\ (eqA b1 b2) \/ (eqA a1 b2) /\ (eqA a2 b1).
Proof.
intros a1 b1 a2 b2 P.
assert (H:=permut_cons_InA P).
inversion_clear H.
left; split; auto.
apply permut_length_1.
red; red; intros.
specialize (P a). simpl in *.
rewrite (@if_eqA_rewrite_l a1 a2 a) in P by auto. omega.
right.
inversion_clear H0; [|inversion H].
split; auto.
apply permut_length_1.
red; red; intros.
specialize (P a); simpl in *.
rewrite (@if_eqA_rewrite_l a1 b2 a) in P by auto. omega.
Qed.
(** Permutation is compatible with length. *)
Lemma permut_length :
forall l1 l2, permutation l1 l2 -> length l1 = length l2.
Proof.
induction l1; intros l2 H.
rewrite (permut_nil (permut_sym H)); auto.
assert (H0:=permut_cons_InA H).
destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
subst l2.
rewrite app_length.
simpl; rewrite <- plus_n_Sm; f_equal.
rewrite <- app_length.
apply IHl1.
apply permut_remove_hd with b.
apply permut_trans with (a::l1); auto.
revert H1; unfold permutation, meq; simpl.
intros; f_equal; auto.
rewrite (@if_eqA_rewrite_l a b a0); auto.
Qed.
Lemma NoDupA_equivlistA_permut :
forall l l', NoDupA eqA l -> NoDupA eqA l' ->
equivlistA eqA l l' -> permutation l l'.
Proof.
intros.
red; unfold meq; intros.
rewrite multiplicity_NoDupA in H, H0.
generalize (H a) (H0 a) (H1 a); clear H H0 H1.
do 2 rewrite multiplicity_InA.
destruct 3; omega.
Qed.
End Permut.
Section Permut_map.
Variables A B : Type.
Variable eqA : relation A.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Hypothesis eqA_equiv : Equivalence eqA.
Variable eqB : B->B->Prop.
Hypothesis eqB_dec : forall x y:B, { eqB x y }+{ ~eqB x y }.
Hypothesis eqB_trans : Transitive eqB.
(** Permutation is compatible with map. *)
Lemma permut_map :
forall f,
(Proper (eqA==>eqB) f) ->
forall l1 l2, permutation _ eqA_dec l1 l2 ->
permutation _ eqB_dec (map f l1) (map f l2).
Proof.
intros f; induction l1.
intros l2 P; rewrite (permut_nil eqA_equiv (permut_sym P)); apply permut_refl.
intros l2 P.
simpl.
assert (H0:=permut_cons_InA eqA_equiv P).
destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
subst l2.
rewrite map_app.
simpl.
apply permut_trans with (f b :: map f l1).
revert H1; unfold permutation, meq; simpl.
intros; f_equal; auto.
destruct (eqB_dec (f b) a0) as [H2|H2];
destruct (eqB_dec (f a) a0) as [H3|H3]; auto.
destruct H3; transitivity (f b); auto with *.
destruct H2; transitivity (f a); auto with *.
apply permut_add_cons_inside.
rewrite <- map_app.
apply IHl1; auto.
apply permut_remove_hd with b; trivial.
apply permut_trans with (a::l1); auto.
revert H1; unfold permutation, meq; simpl.
intros; f_equal; auto.
rewrite (@if_eqA_rewrite_l _ _ eqA_equiv eqA_dec a b a0); auto.
Qed.
End Permut_map.
Require Import Permutation.
Section Permut_permut.
Variable A : Type.
Variable eqA : relation A.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Hypothesis eqA_equiv : Equivalence eqA.
Lemma Permutation_impl_permutation : forall l l',
Permutation l l' -> permutation _ eqA_dec l l'.
Proof.
induction 1.
apply permut_refl.
apply permut_cons; auto using Equivalence_Reflexive.
change (x :: y :: l) with ([x] ++ y :: l);
apply permut_add_cons_inside; simpl;
apply permut_cons_eq; auto using Equivalence_Reflexive, permut_refl.
apply permut_trans with l'; trivial.
Qed.
Lemma permut_eqA : forall l l', Forall2 eqA l l' -> permutation _ eqA_dec l l'.
Proof.
induction 1.
apply permut_refl.
apply permut_cons_eq; trivial.
Qed.
Lemma permutation_Permutation : forall l l',
permutation _ eqA_dec l l' <->
exists l'', Permutation l l'' /\ Forall2 eqA l'' l'.
Proof.
split; intro H.
(* -> *)
induction l in l', H |- *.
exists []; apply permut_sym, permut_nil in H as ->; auto using Forall2.
pose proof H as H'.
apply permut_cons_InA, InA_split in H
as (l1 & y & l2 & Heq & ->); trivial.
apply permut_remove_hd_eq, IHl in H'
as (l'' & IHP & IHA); clear IHl; trivial.
apply Forall2_app_inv_r in IHA as (l1'' & l2'' & Hl1 & Hl2 & ->).
exists (l1'' ++ a :: l2''); split.
apply Permutation_cons_app; trivial.
apply Forall2_app, Forall2_cons; trivial.
(* <- *)
destruct H as (l'' & H & Heq).
apply permut_trans with l''.
apply Permutation_impl_permutation; trivial.
apply permut_eqA; trivial.
Qed.
End Permut_permut.
(* begin hide *)
(** For compatibilty *)
Notation permut_right := permut_cons (only parsing).
Notation permut_tran := permut_trans (only parsing).
(* end hide *)
|