aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Sets/Powerset_Classical_facts.v
blob: 09fc209480c75b27de6065f8d49c324b28581786 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(****************************************************************************)
(*                                                                          *)
(*                         Naive Set Theory in Coq                          *)
(*                                                                          *)
(*                     INRIA                        INRIA                   *)
(*              Rocquencourt                        Sophia-Antipolis        *)
(*                                                                          *)
(*                                 Coq V6.1                                 *)
(*									    *)
(*			         Gilles Kahn 				    *)
(*				 Gerard Huet				    *)
(*									    *)
(*									    *)
(*                                                                          *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks  *)
(* to the Newton Institute for providing an exceptional work environment    *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration.  *)
(****************************************************************************)

Require Export Ensembles.
Require Export Constructive_sets.
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Partial_Order.
Require Export Cpo.
Require Export Powerset.
Require Export Powerset_facts.
Require Export Classical_Type.
Require Export Classical_sets.

Section Sets_as_an_algebra.

  Variable U : Type.

  Lemma sincl_add_x :
    forall (A B:Ensemble U) (x:U),
      ~ In U A x ->
      Strict_Included U (Add U A x) (Add U B x) -> Strict_Included U A B.
  Proof.
    intros A B x H' H'0; red in |- *.
    lapply (Strict_Included_inv U (Add U A x) (Add U B x)); auto with sets.
    clear H'0; intro H'0; split.
    apply incl_add_x with (x := x); tauto.
    elim H'0; intros H'1 H'2; elim H'2; clear H'0 H'2.
    intros x0 H'0.
    red in |- *; intro H'2.
    elim H'0; clear H'0.
    rewrite <- H'2; auto with sets.
  Qed.

  Lemma incl_soustr_in :
    forall (X:Ensemble U) (x:U), In U X x -> Included U (Subtract U X x) X.
  Proof.
    intros X x H'; red in |- *.
    intros x0 H'0; elim H'0; auto with sets.
  Qed.

  Lemma incl_soustr :
    forall (X Y:Ensemble U) (x:U),
      Included U X Y -> Included U (Subtract U X x) (Subtract U Y x).
  Proof.
    intros X Y x H'; red in |- *.
    intros x0 H'0; elim H'0.
    intros H'1 H'2.
    apply Subtract_intro; auto with sets.
  Qed.

  Lemma incl_soustr_add_l :
    forall (X:Ensemble U) (x:U), Included U (Subtract U (Add U X x) x) X.
  Proof.
    intros X x; red in |- *.
    intros x0 H'; elim H'; auto with sets.
    intro H'0; elim H'0; auto with sets.
    intros t H'1 H'2; elim H'2; auto with sets.
  Qed.

  Lemma incl_soustr_add_r :
    forall (X:Ensemble U) (x:U),
      ~ In U X x -> Included U X (Subtract U (Add U X x) x).
  Proof.
    intros X x H'; red in |- *.
    intros x0 H'0; try assumption.
    apply Subtract_intro; auto with sets.
    red in |- *; intro H'1; apply H'; rewrite H'1; auto with sets.
  Qed.
  Hint Resolve incl_soustr_add_r: sets v62.

  Lemma add_soustr_2 :
    forall (X:Ensemble U) (x:U),
      In U X x -> Included U X (Add U (Subtract U X x) x).
  Proof.
    intros X x H'; red in |- *.
    intros x0 H'0; try assumption.
    elim (classic (x = x0)); intro K; auto with sets.
    elim K; auto with sets.
  Qed.

  Lemma add_soustr_1 :
    forall (X:Ensemble U) (x:U),
      In U X x -> Included U (Add U (Subtract U X x) x) X.
  Proof.
    intros X x H'; red in |- *.
    intros x0 H'0; elim H'0; auto with sets.
    intros y H'1; elim H'1; auto with sets.
    intros t H'1; try assumption.
    rewrite <- (Singleton_inv U x t); auto with sets.
  Qed.

  Lemma add_soustr_xy :
    forall (X:Ensemble U) (x y:U),
      x <> y -> Subtract U (Add U X x) y = Add U (Subtract U X y) x.
  Proof.
    intros X x y H'; apply Extensionality_Ensembles.
    split; red in |- *.
    intros x0 H'0; elim H'0; auto with sets.
    intro H'1; elim H'1.
    intros u H'2 H'3; try assumption.
    apply Add_intro1.
    apply Subtract_intro; auto with sets.
    intros t H'2 H'3; try assumption.
    elim (Singleton_inv U x t); auto with sets.
    intros u H'2; try assumption.
    elim (Add_inv U (Subtract U X y) x u); auto with sets.
    intro H'0; elim H'0; auto with sets.
    intro H'0; rewrite <- H'0; auto with sets.
  Qed.

  Lemma incl_st_add_soustr :
    forall (X Y:Ensemble U) (x:U),
      ~ In U X x ->
      Strict_Included U (Add U X x) Y -> Strict_Included U X (Subtract U Y x).
  Proof.
    intros X Y x H' H'0; apply sincl_add_x with (x := x); auto using add_soustr_1 with sets.
    split.
    elim H'0.
    intros H'1 H'2.
    generalize (Inclusion_is_transitive U).
    intro H'4; red in H'4.
    apply H'4 with (y := Y); auto using add_soustr_2 with sets.
    red in H'0.
    elim H'0; intros H'1 H'2; try exact H'1; clear H'0. (* PB *)
    red in |- *; intro H'0; apply H'2.
    rewrite H'0; auto 8 using add_soustr_xy, add_soustr_1, add_soustr_2 with sets.
  Qed.

  Lemma Sub_Add_new :
    forall (X:Ensemble U) (x:U), ~ In U X x -> X = Subtract U (Add U X x) x.
  Proof.
    auto using incl_soustr_add_l with sets.
  Qed.

  Lemma Simplify_add :
    forall (X X0:Ensemble U) (x:U),
      ~ In U X x -> ~ In U X0 x -> Add U X x = Add U X0 x -> X = X0.
  Proof.
    intros X X0 x H' H'0 H'1; try assumption.
    rewrite (Sub_Add_new X x); auto with sets.
    rewrite (Sub_Add_new X0 x); auto with sets.
    rewrite H'1; auto with sets.
  Qed.

  Lemma Included_Add :
    forall (X A:Ensemble U) (x:U),
      Included U X (Add U A x) ->
      Included U X A \/ (exists A' : _, X = Add U A' x /\ Included U A' A).
  Proof.
    intros X A x H'0; try assumption.
    elim (classic (In U X x)).
    intro H'1; right; try assumption.
    exists (Subtract U X x).
    split; auto using incl_soustr_in, add_soustr_xy, add_soustr_1, add_soustr_2 with sets.
    red in H'0.
    red in |- *.
    intros x0 H'2; try assumption.
    lapply (Subtract_inv U X x x0); auto with sets.
    intro H'3; elim H'3; intros K K'; clear H'3.
    lapply (H'0 x0); auto with sets.
    intro H'3; try assumption.
    lapply (Add_inv U A x x0); auto with sets.
    intro H'4; elim H'4;
      [ intro H'5; try exact H'5; clear H'4 | intro H'5; clear H'4 ].
    elim K'; auto with sets.
    intro H'1; left; try assumption.
    red in H'0.
    red in |- *.
    intros x0 H'2; try assumption.
    lapply (H'0 x0); auto with sets.
    intro H'3; try assumption.
    lapply (Add_inv U A x x0); auto with sets.
    intro H'4; elim H'4;
      [ intro H'5; try exact H'5; clear H'4 | intro H'5; clear H'4 ].
    absurd (In U X x0); auto with sets.
    rewrite <- H'5; auto with sets.
  Qed.

  Lemma setcover_inv :
    forall A x y:Ensemble U,
      covers (Ensemble U) (Power_set_PO U A) y x ->
      Strict_Included U x y /\
      (forall z:Ensemble U, Included U x z -> Included U z y -> x = z \/ z = y).
  Proof.
    intros A x y H'; elim H'.
    unfold Strict_Rel_of in |- *; simpl in |- *.
    intros H'0 H'1; split; [ auto with sets | idtac ].
    intros z H'2 H'3; try assumption.
    elim (classic (x = z)); auto with sets.
    intro H'4; right; try assumption.
    elim (classic (z = y)); auto with sets.
    intro H'5; try assumption.
    elim H'1.
    exists z; auto with sets.
  Qed.

  Theorem Add_covers :
    forall A a:Ensemble U,
      Included U a A ->
      forall x:U,
	In U A x ->
	~ In U a x -> covers (Ensemble U) (Power_set_PO U A) (Add U a x) a.
  Proof.
    intros A a H' x H'0 H'1; try assumption.
    apply setcover_intro; auto with sets.
    red in |- *.
    split; [ idtac | red in |- *; intro H'2; try exact H'2 ]; auto with sets.
    apply H'1.
    rewrite H'2; auto with sets.
    red in |- *; intro H'2; elim H'2; clear H'2.
    intros z H'2; elim H'2; intros H'3 H'4; try exact H'3; clear H'2.
    lapply (Strict_Included_inv U a z); auto with sets; clear H'3.
    intro H'2; elim H'2; intros H'3 H'5; elim H'5; clear H'2 H'5.
    intros x0 H'2; elim H'2.
    intros H'5 H'6; try assumption.
    generalize H'4; intro K.
    red in H'4.
    elim H'4; intros H'8 H'9; red in H'8; clear H'4.
    lapply (H'8 x0); auto with sets.
    intro H'7; try assumption.
    elim (Add_inv U a x x0); auto with sets.
    intro H'15.
    cut (Included U (Add U a x) z).
    intro H'10; try assumption.
    red in K.
    elim K; intros H'11 H'12; apply H'12; clear K; auto with sets.
    rewrite H'15.
    red in |- *.
    intros x1 H'10; elim H'10; auto with sets.
    intros x2 H'11; elim H'11; auto with sets.
  Qed.

  Theorem covers_Add :
    forall A a a':Ensemble U,
      Included U a A ->
      Included U a' A ->
      covers (Ensemble U) (Power_set_PO U A) a' a ->
      exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x.
  Proof.
    intros A a a' H' H'0 H'1; try assumption.
    elim (setcover_inv A a a'); auto with sets.
    intros H'6 H'7.
    clear H'1.
    elim (Strict_Included_inv U a a'); auto with sets.
    intros H'5 H'8; elim H'8.
    intros x H'1; elim H'1.
    intros H'2 H'3; try assumption.
    exists x.
    split; [ try assumption | idtac ].
    clear H'8 H'1.
    elim (H'7 (Add U a x)); auto with sets.
    intro H'1.
    absurd (a = Add U a x); auto with sets.
    red in |- *; intro H'8; try exact H'8.
    apply H'3.
    rewrite H'8; auto with sets.
    auto with sets.
    red in |- *.
    intros x0 H'1; elim H'1; auto with sets.
    intros x1 H'8; elim H'8; auto with sets.
    split; [ idtac | try assumption ].
    red in H'0; auto with sets.
  Qed.

  Theorem covers_is_Add :
    forall A a a':Ensemble U,
      Included U a A ->
      Included U a' A ->
      (covers (Ensemble U) (Power_set_PO U A) a' a <->
	(exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x)).
  Proof.
    intros A a a' H' H'0; split; intro K.
    apply covers_Add with (A := A); auto with sets.
    elim K.
    intros x H'1; elim H'1; intros H'2 H'3; rewrite H'2; clear H'1.
    apply Add_covers; intuition.
  Qed.

  Theorem Singleton_atomic :
    forall (x:U) (A:Ensemble U),
      In U A x ->
      covers (Ensemble U) (Power_set_PO U A) (Singleton U x) (Empty_set U).
  Proof.
    intros x A H'.
    rewrite <- (Empty_set_zero' U x).
    apply Add_covers; auto with sets.
  Qed.

  Lemma less_than_singleton :
    forall (X:Ensemble U) (x:U),
      Strict_Included U X (Singleton U x) -> X = Empty_set U.
  Proof.
    intros X x H'; try assumption.
    red in H'.
    lapply (Singleton_atomic x (Full_set U));
      [ intro H'2; try exact H'2 | apply Full_intro ].
    elim H'; intros H'0 H'1; try exact H'1; clear H'.
    elim (setcover_inv (Full_set U) (Empty_set U) (Singleton U x));
      [ intros H'6 H'7; try exact H'7 | idtac ]; auto with sets.
    elim (H'7 X); [ intro H'5; try exact H'5 | intro H'5 | idtac | idtac ];
      auto with sets.
    elim H'1; auto with sets.
  Qed.

End Sets_as_an_algebra.

Hint Resolve incl_soustr_in: sets v62.
Hint Resolve incl_soustr: sets v62.
Hint Resolve incl_soustr_add_l: sets v62.
Hint Resolve incl_soustr_add_r: sets v62.
Hint Resolve add_soustr_1 add_soustr_2: sets v62.
Hint Resolve add_soustr_xy: sets v62.