aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Sets/Partial_Order.v
blob: 4fe8f4f6a44a2249f9af55eab6c9331ce48ff6fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(****************************************************************************)
(*                                                                          *)
(*                         Naive Set Theory in Coq                          *)
(*                                                                          *)
(*                     INRIA                        INRIA                   *)
(*              Rocquencourt                        Sophia-Antipolis        *)
(*                                                                          *)
(*                                 Coq V6.1                                 *)
(*									    *)
(*			         Gilles Kahn 				    *)
(*				 Gerard Huet				    *)
(*									    *)
(*									    *)
(*                                                                          *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks  *)
(* to the Newton Institute for providing an exceptional work environment    *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration.  *)
(****************************************************************************)

(*i $Id$ i*)

Require Export Ensembles.
Require Export Relations_1.

Section Partial_orders.
  Variable U : Type.

  Definition Carrier := Ensemble U.

  Definition Rel := Relation U.

  Record PO : Type := Definition_of_PO
    { Carrier_of : Ensemble U;
      Rel_of : Relation U;
      PO_cond1 : Inhabited U Carrier_of;
      PO_cond2 : Order U Rel_of }.
  Variable p : PO.

  Definition Strict_Rel_of : Rel := fun x y:U => Rel_of p x y /\ x <> y.

  Inductive covers (y x:U) : Prop :=
    Definition_of_covers :
    Strict_Rel_of x y ->
    ~ (exists z : _, Strict_Rel_of x z /\ Strict_Rel_of z y) ->
    covers y x.

End Partial_orders.

Hint Unfold Carrier_of Rel_of Strict_Rel_of: sets v62.
Hint Resolve Definition_of_covers: sets v62.


Section Partial_order_facts.
  Variable U : Type.
  Variable D : PO U.

  Lemma Strict_Rel_Transitive_with_Rel :
    forall x y z:U,
      Strict_Rel_of U D x y -> Rel_of U D y z -> Strict_Rel_of U D x z.
  Proof.
    unfold Strict_Rel_of at 1 in |- *.
    red in |- *.
    elim D; simpl in |- *.
    intros C R H' H'0; elim H'0.
    intros H'1 H'2 H'3 x y z H'4 H'5; split.
    apply H'2 with (y := y); tauto.
    red in |- *; intro H'6.
    elim H'4; intros H'7 H'8; apply H'8; clear H'4.
    apply H'3; auto.
    rewrite H'6; tauto.
  Qed.

  Lemma Strict_Rel_Transitive_with_Rel_left :
    forall x y z:U,
      Rel_of U D x y -> Strict_Rel_of U D y z -> Strict_Rel_of U D x z.
  Proof.
    unfold Strict_Rel_of at 1 in |- *.
    red in |- *.
    elim D; simpl in |- *.
    intros C R H' H'0; elim H'0.
    intros H'1 H'2 H'3 x y z H'4 H'5; split.
    apply H'2 with (y := y); tauto.
    red in |- *; intro H'6.
    elim H'5; intros H'7 H'8; apply H'8; clear H'5.
    apply H'3; auto.
    rewrite <- H'6; auto.
  Qed.

  Lemma Strict_Rel_Transitive : Transitive U (Strict_Rel_of U D).
    red in |- *.
    intros x y z H' H'0.
    apply Strict_Rel_Transitive_with_Rel with (y := y);
      [ intuition | unfold Strict_Rel_of in H', H'0; intuition ].
  Qed.
End Partial_order_facts.