1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
Require Export Ensembles.
Require Export Constructive_sets.
Require Export Classical.
Section Ensembles_classical.
Variable U : Type.
Lemma not_included_empty_Inhabited :
forall A:Ensemble U, ~ Included U A (Empty_set U) -> Inhabited U A.
Proof.
intros A NI.
elim (not_all_ex_not U (fun x:U => ~ In U A x)).
intros x H; apply Inhabited_intro with x.
apply NNPP; auto with sets.
red; intro.
apply NI; red.
intros x H'; elim (H x); trivial with sets.
Qed.
Lemma not_empty_Inhabited :
forall A:Ensemble U, A <> Empty_set U -> Inhabited U A.
Proof.
intros; apply not_included_empty_Inhabited.
red; auto with sets.
Qed.
Lemma Inhabited_Setminus :
forall X Y:Ensemble U,
Included U X Y -> ~ Included U Y X -> Inhabited U (Setminus U Y X).
Proof.
intros X Y I NI.
elim (not_all_ex_not U (fun x:U => In U Y x -> In U X x) NI).
intros x YX.
apply Inhabited_intro with x.
apply Setminus_intro.
apply not_imply_elim with (In U X x); trivial with sets.
auto with sets.
Qed.
Lemma Strict_super_set_contains_new_element :
forall X Y:Ensemble U,
Included U X Y -> X <> Y -> Inhabited U (Setminus U Y X).
Proof.
auto 7 using Inhabited_Setminus with sets.
Qed.
Lemma Subtract_intro :
forall (A:Ensemble U) (x y:U), In U A y -> x <> y -> In U (Subtract U A x) y.
Proof.
unfold Subtract at 1; auto with sets.
Qed.
Hint Resolve Subtract_intro : sets.
Lemma Subtract_inv :
forall (A:Ensemble U) (x y:U), In U (Subtract U A x) y -> In U A y /\ x <> y.
Proof.
intros A x y H'; elim H'; auto with sets.
Qed.
Lemma Included_Strict_Included :
forall X Y:Ensemble U, Included U X Y -> Strict_Included U X Y \/ X = Y.
Proof.
intros X Y H'; try assumption.
elim (classic (X = Y)); auto with sets.
Qed.
Lemma Strict_Included_inv :
forall X Y:Ensemble U,
Strict_Included U X Y -> Included U X Y /\ Inhabited U (Setminus U Y X).
Proof.
intros X Y H'; red in H'.
split; [ tauto | idtac ].
elim H'; intros H'0 H'1; try exact H'1; clear H'.
apply Strict_super_set_contains_new_element; auto with sets.
Qed.
Lemma not_SIncl_empty :
forall X:Ensemble U, ~ Strict_Included U X (Empty_set U).
Proof.
intro X; red; intro H'; try exact H'.
lapply (Strict_Included_inv X (Empty_set U)); auto with sets.
intro H'0; elim H'0; intros H'1 H'2; elim H'2; clear H'0.
intros x H'0; elim H'0.
intro H'3; elim H'3.
Qed.
Lemma Complement_Complement :
forall A:Ensemble U, Complement U (Complement U A) = A.
Proof.
unfold Complement; intros; apply Extensionality_Ensembles;
auto with sets.
red; split; auto with sets.
red; intros; apply NNPP; auto with sets.
Qed.
End Ensembles_classical.
Hint Resolve Strict_super_set_contains_new_element Subtract_intro
not_SIncl_empty: sets.
|