1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import Max.
Require Import Omega.
Local Open Scope R_scope.
(*****************************************************************)
(** Convergence properties of sequences *)
(*****************************************************************)
Definition Un_decreasing (Un:nat -> R) : Prop :=
forall n:nat, Un (S n) <= Un n.
Definition opp_seq (Un:nat -> R) (n:nat) : R := - Un n.
Definition has_ub (Un:nat -> R) : Prop := bound (EUn Un).
Definition has_lb (Un:nat -> R) : Prop := bound (EUn (opp_seq Un)).
(**********)
Lemma growing_cv :
forall Un:nat -> R, Un_growing Un -> has_ub Un -> { l:R | Un_cv Un l }.
Proof.
intros Un Hug Heub.
exists (proj1_sig (completeness (EUn Un) Heub (EUn_noempty Un))).
destruct (completeness _ Heub (EUn_noempty Un)) as (l, H).
now apply Un_cv_crit_lub.
Qed.
Lemma decreasing_growing :
forall Un:nat -> R, Un_decreasing Un -> Un_growing (opp_seq Un).
Proof.
intro.
unfold Un_growing, opp_seq, Un_decreasing.
intros.
apply Ropp_le_contravar.
apply H.
Qed.
Lemma decreasing_cv :
forall Un:nat -> R, Un_decreasing Un -> has_lb Un -> { l:R | Un_cv Un l }.
Proof.
intros.
cut ({ l:R | Un_cv (opp_seq Un) l } -> { l:R | Un_cv Un l }).
intro X.
apply X.
apply growing_cv.
apply decreasing_growing; assumption.
exact H0.
intros (x,p).
exists (- x).
unfold Un_cv in p.
unfold R_dist in p.
unfold opp_seq in p.
unfold Un_cv.
unfold R_dist.
intros.
elim (p eps H1); intros.
exists x0; intros.
assert (H4 := H2 n H3).
rewrite <- Rabs_Ropp.
replace (- (Un n - - x)) with (- Un n - x); [ assumption | ring ].
Qed.
(***********)
Lemma ub_to_lub :
forall Un:nat -> R, has_ub Un -> { l:R | is_lub (EUn Un) l }.
Proof.
intros.
unfold has_ub in H.
apply completeness.
assumption.
exists (Un 0%nat).
unfold EUn.
exists 0%nat; reflexivity.
Qed.
(**********)
Lemma lb_to_glb :
forall Un:nat -> R, has_lb Un -> { l:R | is_lub (EUn (opp_seq Un)) l }.
Proof.
intros; unfold has_lb in H.
apply completeness.
assumption.
exists (- Un 0%nat).
exists 0%nat.
reflexivity.
Qed.
Definition lub (Un:nat -> R) (pr:has_ub Un) : R :=
let (a,_) := ub_to_lub Un pr in a.
Definition glb (Un:nat -> R) (pr:has_lb Un) : R :=
let (a,_) := lb_to_glb Un pr in - a.
(* Compatibility with previous unappropriate terminology *)
Notation maj_sup := ub_to_lub (only parsing).
Notation min_inf := lb_to_glb (only parsing).
Notation majorant := lub (only parsing).
Notation minorant := glb (only parsing).
Lemma maj_ss :
forall (Un:nat -> R) (k:nat),
has_ub Un -> has_ub (fun i:nat => Un (k + i)%nat).
Proof.
intros.
unfold has_ub in H.
unfold bound in H.
elim H; intros.
unfold is_upper_bound in H0.
unfold has_ub.
exists x.
unfold is_upper_bound.
intros.
apply H0.
elim H1; intros.
exists (k + x1)%nat; assumption.
Qed.
Lemma min_ss :
forall (Un:nat -> R) (k:nat),
has_lb Un -> has_lb (fun i:nat => Un (k + i)%nat).
Proof.
intros.
unfold has_lb in H.
unfold bound in H.
elim H; intros.
unfold is_upper_bound in H0.
unfold has_lb.
exists x.
unfold is_upper_bound.
intros.
apply H0.
elim H1; intros.
exists (k + x1)%nat; assumption.
Qed.
Definition sequence_ub (Un:nat -> R) (pr:has_ub Un)
(i:nat) : R := lub (fun k:nat => Un (i + k)%nat) (maj_ss Un i pr).
Definition sequence_lb (Un:nat -> R) (pr:has_lb Un)
(i:nat) : R := glb (fun k:nat => Un (i + k)%nat) (min_ss Un i pr).
(* Compatibility *)
Notation sequence_majorant := sequence_ub (only parsing).
Notation sequence_minorant := sequence_lb (only parsing).
Unset Standard Proposition Elimination Names.
Lemma Wn_decreasing :
forall (Un:nat -> R) (pr:has_ub Un), Un_decreasing (sequence_ub Un pr).
Proof.
intros.
unfold Un_decreasing.
intro.
unfold sequence_ub.
pose proof (ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) as (x,(H1,H2)).
pose proof (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)) as (x0,(H3,H4)).
cut (lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x);
[ intro Maj1; rewrite Maj1 | idtac ].
cut (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr) = x0);
[ intro Maj2; rewrite Maj2 | idtac ].
apply H2.
unfold is_upper_bound.
intros x1 H5.
unfold is_upper_bound in H3.
apply H3.
elim H5; intros.
exists (1 + x2)%nat.
replace (n + (1 + x2))%nat with (S n + x2)%nat.
assumption.
replace (S n) with (1 + n)%nat; [ ring | ring ].
cut
(is_lub (EUn (fun k:nat => Un (n + k)%nat))
(lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr))).
intros (H5,H6).
assert (H7 := H6 x0 H3).
assert
(H8 := H4 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)) H5).
apply Rle_antisym; assumption.
unfold lub.
case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)).
trivial.
cut
(is_lub (EUn (fun k:nat => Un (S n + k)%nat))
(lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))).
intros (H5,H6).
assert (H7 := H6 x H1).
assert
(H8 :=
H2 (lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) H5).
apply Rle_antisym; assumption.
unfold lub.
case (ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)).
trivial.
Qed.
Lemma Vn_growing :
forall (Un:nat -> R) (pr:has_lb Un), Un_growing (sequence_lb Un pr).
Proof.
intros.
unfold Un_growing.
intro.
unfold sequence_lb.
assert (H := lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)).
assert (H0 := lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)).
elim H; intros.
elim H0; intros.
cut (glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x);
[ intro Maj1; rewrite Maj1 | idtac ].
cut (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr) = - x0);
[ intro Maj2; rewrite Maj2 | idtac ].
unfold is_lub in p.
unfold is_lub in p0.
elim p; intros.
apply Ropp_le_contravar.
apply H2.
elim p0; intros.
unfold is_upper_bound.
intros.
unfold is_upper_bound in H3.
apply H3.
elim H5; intros.
exists (1 + x2)%nat.
unfold opp_seq in H6.
unfold opp_seq.
replace (n + (1 + x2))%nat with (S n + x2)%nat.
assumption.
replace (S n) with (1 + n)%nat; [ ring | ring ].
cut
(is_lub (EUn (opp_seq (fun k:nat => Un (n + k)%nat)))
(- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr))).
intro.
unfold is_lub in p0; unfold is_lub in H1.
elim p0; intros; elim H1; intros.
assert (H6 := H5 x0 H2).
assert
(H7 := H3 (- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)) H4).
rewrite <-
(Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
unfold glb.
case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)); simpl.
intro; rewrite Ropp_involutive.
trivial.
cut
(is_lub (EUn (opp_seq (fun k:nat => Un (S n + k)%nat)))
(- glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr))).
intro.
unfold is_lub in p; unfold is_lub in H1.
elim p; intros; elim H1; intros.
assert (H6 := H5 x H2).
assert
(H7 :=
H3 (- glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) H4).
rewrite <-
(Ropp_involutive
(glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
unfold glb.
case (lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)); simpl.
intro; rewrite Ropp_involutive.
trivial.
Qed.
(**********)
Lemma Vn_Un_Wn_order :
forall (Un:nat -> R) (pr1:has_ub Un) (pr2:has_lb Un)
(n:nat), sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n.
Proof.
intros.
split.
unfold sequence_lb.
cut { l:R | is_lub (EUn (opp_seq (fun i:nat => Un (n + i)%nat))) l }.
intro X.
elim X; intros.
replace (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)) with (- x).
unfold is_lub in p.
elim p; intros.
unfold is_upper_bound in H.
rewrite <- (Ropp_involutive (Un n)).
apply Ropp_le_contravar.
apply H.
exists 0%nat.
unfold opp_seq.
replace (n + 0)%nat with n; [ reflexivity | ring ].
cut
(is_lub (EUn (opp_seq (fun k:nat => Un (n + k)%nat)))
(- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2))).
intro.
unfold is_lub in p; unfold is_lub in H.
elim p; intros; elim H; intros.
assert (H4 := H3 x H0).
assert
(H5 := H1 (- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)) H2).
rewrite <-
(Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
unfold glb.
case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)); simpl.
intro; rewrite Ropp_involutive.
trivial.
apply lb_to_glb.
apply min_ss; assumption.
unfold sequence_ub.
cut { l:R | is_lub (EUn (fun i:nat => Un (n + i)%nat)) l }.
intro X.
elim X; intros.
replace (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) with x.
unfold is_lub in p.
elim p; intros.
unfold is_upper_bound in H.
apply H.
exists 0%nat.
replace (n + 0)%nat with n; [ reflexivity | ring ].
cut
(is_lub (EUn (fun k:nat => Un (n + k)%nat))
(lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1))).
intro.
unfold is_lub in p; unfold is_lub in H.
elim p; intros; elim H; intros.
assert (H4 := H3 x H0).
assert
(H5 := H1 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) H2).
apply Rle_antisym; assumption.
unfold lub.
case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)).
intro; trivial.
apply ub_to_lub.
apply maj_ss; assumption.
Qed.
Lemma min_maj :
forall (Un:nat -> R) (pr1:has_ub Un) (pr2:has_lb Un),
has_ub (sequence_lb Un pr2).
Proof.
intros.
assert (H := Vn_Un_Wn_order Un pr1 pr2).
unfold has_ub.
unfold bound.
unfold has_ub in pr1.
unfold bound in pr1.
elim pr1; intros.
exists x.
unfold is_upper_bound.
intros.
unfold is_upper_bound in H0.
elim H1; intros.
rewrite H2.
apply Rle_trans with (Un x1).
assert (H3 := H x1); elim H3; intros; assumption.
apply H0.
exists x1; reflexivity.
Qed.
Lemma maj_min :
forall (Un:nat -> R) (pr1:has_ub Un) (pr2:has_lb Un),
has_lb (sequence_ub Un pr1).
Proof.
intros.
assert (H := Vn_Un_Wn_order Un pr1 pr2).
unfold has_lb.
unfold bound.
unfold has_lb in pr2.
unfold bound in pr2.
elim pr2; intros.
exists x.
unfold is_upper_bound.
intros.
unfold is_upper_bound in H0.
elim H1; intros.
rewrite H2.
apply Rle_trans with (opp_seq Un x1).
assert (H3 := H x1); elim H3; intros.
unfold opp_seq; apply Ropp_le_contravar.
assumption.
apply H0.
exists x1; reflexivity.
Qed.
(**********)
Lemma cauchy_maj : forall Un:nat -> R, Cauchy_crit Un -> has_ub Un.
Proof.
intros.
unfold has_ub.
apply cauchy_bound.
assumption.
Qed.
(**********)
Lemma cauchy_opp :
forall Un:nat -> R, Cauchy_crit Un -> Cauchy_crit (opp_seq Un).
Proof.
intro.
unfold Cauchy_crit.
unfold R_dist.
intros.
elim (H eps H0); intros.
exists x; intros.
unfold opp_seq.
rewrite <- Rabs_Ropp.
replace (- (- Un n - - Un m)) with (Un n - Un m);
[ apply H1; assumption | ring ].
Qed.
(**********)
Lemma cauchy_min : forall Un:nat -> R, Cauchy_crit Un -> has_lb Un.
Proof.
intros.
unfold has_lb.
assert (H0 := cauchy_opp _ H).
apply cauchy_bound.
assumption.
Qed.
(**********)
Lemma maj_cv :
forall (Un:nat -> R) (pr:Cauchy_crit Un),
{ l:R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l }.
Proof.
intros.
apply decreasing_cv.
apply Wn_decreasing.
apply maj_min.
apply cauchy_min.
assumption.
Qed.
(**********)
Lemma min_cv :
forall (Un:nat -> R) (pr:Cauchy_crit Un),
{ l:R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l }.
Proof.
intros.
apply growing_cv.
apply Vn_growing.
apply min_maj.
apply cauchy_maj.
assumption.
Qed.
Lemma cond_eq :
forall x y:R, (forall eps:R, 0 < eps -> Rabs (x - y) < eps) -> x = y.
Proof.
intros.
destruct (total_order_T x y) as [[Hlt|Heq]|Hgt].
cut (0 < y - x).
intro.
assert (H1 := H (y - x) H0).
rewrite <- Rabs_Ropp in H1.
cut (- (x - y) = y - x); [ intro; rewrite H2 in H1 | ring ].
rewrite Rabs_right in H1.
elim (Rlt_irrefl _ H1).
left; assumption.
apply Rplus_lt_reg_l with x.
rewrite Rplus_0_r; replace (x + (y - x)) with y; [ assumption | ring ].
assumption.
cut (0 < x - y).
intro.
assert (H1 := H (x - y) H0).
rewrite Rabs_right in H1.
elim (Rlt_irrefl _ H1).
left; assumption.
apply Rplus_lt_reg_l with y.
rewrite Rplus_0_r; replace (y + (x - y)) with x; [ assumption | ring ].
Qed.
Lemma not_Rlt : forall r1 r2:R, ~ r1 < r2 -> r1 >= r2.
Proof.
intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rge.
tauto.
Qed.
(**********)
Lemma approx_maj :
forall (Un:nat -> R) (pr:has_ub Un) (eps:R),
0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps.
Proof.
intros Un pr.
pose (Vn := fix aux n := match n with S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' | O => Un O end).
pose (In := fix aux n := match n with S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' | O => O end).
assert (VUI: forall n, Vn n = Un (In n)).
induction n.
easy.
simpl.
destruct (Rle_lt_dec (Vn n) (Un (S n))) as [H1|H1].
destruct (Rle_lt_dec (Un (S n)) (Un (S n))) as [H2|H2].
easy.
elim (Rlt_irrefl _ H2).
destruct (Rle_lt_dec (Vn n) (Un (S n))) as [H2|H2].
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 H1)).
exact IHn.
assert (HubV : has_ub Vn).
destruct pr as (ub, Hub).
exists ub.
intros x (n, Hn).
rewrite Hn, VUI.
apply Hub.
now exists (In n).
assert (HgrV : Un_growing Vn).
intros n.
induction n.
simpl.
destruct (Rle_lt_dec (Un O) (Un 1%nat)) as [H|_].
exact H.
apply Rle_refl.
simpl.
destruct (Rle_lt_dec (Vn n) (Un (S n))) as [H1|H1].
destruct (Rle_lt_dec (Un (S n)) (Un (S (S n)))) as [H2|H2].
exact H2.
apply Rle_refl.
destruct (Rle_lt_dec (Vn n) (Un (S (S n)))) as [H2|H2].
exact H2.
apply Rle_refl.
destruct (ub_to_lub Vn HubV) as (l, Hl).
unfold lub.
destruct (ub_to_lub Un pr) as (l', Hl').
replace l' with l.
intros eps Heps.
destruct (Un_cv_crit_lub Vn HgrV l Hl eps Heps) as (n, Hn).
exists (In n).
rewrite <- VUI.
rewrite Rabs_minus_sym.
apply Hn.
apply le_refl.
apply Rle_antisym.
apply Hl.
intros n (k, Hk).
rewrite Hk, VUI.
apply Hl'.
now exists (In k).
apply Hl'.
intros n (k, Hk).
rewrite Hk.
apply Rle_trans with (Vn k).
clear.
induction k.
apply Rle_refl.
simpl.
destruct (Rle_lt_dec (Vn k) (Un (S k))) as [H|H].
apply Rle_refl.
now apply Rlt_le.
apply Hl.
now exists k.
Qed.
(**********)
Lemma approx_min :
forall (Un:nat -> R) (pr:has_lb Un) (eps:R),
0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < eps.
Proof.
intros Un pr.
unfold glb.
destruct lb_to_glb as (lb, Hlb).
intros eps Heps.
destruct (approx_maj _ pr eps Heps) as (n, Hn).
exists n.
unfold Rminus.
rewrite <- Ropp_plus_distr, Rabs_Ropp.
replace lb with (lub (opp_seq Un) pr).
now rewrite <- (Ropp_involutive (Un n)).
unfold lub.
destruct ub_to_lub as (ub, Hub).
apply Rle_antisym.
apply Hub.
apply Hlb.
apply Hlb.
apply Hub.
Qed.
(** Unicity of limit for convergent sequences *)
Lemma UL_sequence :
forall (Un:nat -> R) (l1 l2:R), Un_cv Un l1 -> Un_cv Un l2 -> l1 = l2.
Proof.
intros Un l1 l2; unfold Un_cv; unfold R_dist; intros.
apply cond_eq.
intros; cut (0 < eps / 2);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H (eps / 2) H2); intros.
elim (H0 (eps / 2) H2); intros.
set (N := max x x0).
apply Rle_lt_trans with (Rabs (l1 - Un N) + Rabs (Un N - l2)).
replace (l1 - l2) with (l1 - Un N + (Un N - l2));
[ apply Rabs_triang | ring ].
rewrite (double_var eps); apply Rplus_lt_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H3;
unfold ge, N; apply le_max_l.
apply H4; unfold ge, N; apply le_max_r.
Qed.
(**********)
Lemma CV_plus :
forall (An Bn:nat -> R) (l1 l2:R),
Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i:nat => An i + Bn i) (l1 + l2).
Proof.
unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / 2);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H (eps / 2) H2); intros.
elim (H0 (eps / 2) H2); intros.
set (N := max x x0).
exists N; intros.
replace (An n + Bn n - (l1 + l2)) with (An n - l1 + (Bn n - l2));
[ idtac | ring ].
apply Rle_lt_trans with (Rabs (An n - l1) + Rabs (Bn n - l2)).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
apply H3; unfold ge; apply le_trans with N;
[ unfold N; apply le_max_l | assumption ].
apply H4; unfold ge; apply le_trans with N;
[ unfold N; apply le_max_r | assumption ].
Qed.
(**********)
Lemma cv_cvabs :
forall (Un:nat -> R) (l:R),
Un_cv Un l -> Un_cv (fun i:nat => Rabs (Un i)) (Rabs l).
Proof.
unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros.
exists x; intros.
apply Rle_lt_trans with (Rabs (Un n - l)).
apply Rabs_triang_inv2.
apply H1; assumption.
Qed.
(**********)
Lemma CV_Cauchy :
forall Un:nat -> R, { l:R | Un_cv Un l } -> Cauchy_crit Un.
Proof.
intros Un X; elim X; intros.
unfold Cauchy_crit; intros.
unfold Un_cv in p; unfold R_dist in p.
cut (0 < eps / 2);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (p (eps / 2) H0); intros.
exists x0; intros.
unfold R_dist;
apply Rle_lt_trans with (Rabs (Un n - x) + Rabs (x - Un m)).
replace (Un n - Un m) with (Un n - x + (x - Un m));
[ apply Rabs_triang | ring ].
rewrite (double_var eps); apply Rplus_lt_compat.
apply H1; assumption.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H1; assumption.
Qed.
(**********)
Lemma maj_by_pos :
forall Un:nat -> R,
{ l:R | Un_cv Un l } ->
exists l : R, 0 < l /\ (forall n:nat, Rabs (Un n) <= l).
Proof.
intros Un X; elim X; intros.
cut { l:R | Un_cv (fun k:nat => Rabs (Un k)) l }.
intro X0.
assert (H := CV_Cauchy (fun k:nat => Rabs (Un k)) X0).
assert (H0 := cauchy_bound (fun k:nat => Rabs (Un k)) H).
elim H0; intros.
exists (x0 + 1).
cut (0 <= x0).
intro.
split.
apply Rplus_le_lt_0_compat; [ assumption | apply Rlt_0_1 ].
intros.
apply Rle_trans with x0.
unfold is_upper_bound in H1.
apply H1.
exists n; reflexivity.
pattern x0 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
apply Rlt_0_1.
apply Rle_trans with (Rabs (Un 0%nat)).
apply Rabs_pos.
unfold is_upper_bound in H1.
apply H1.
exists 0%nat; reflexivity.
exists (Rabs x).
apply cv_cvabs; assumption.
Qed.
(**********)
Lemma CV_mult :
forall (An Bn:nat -> R) (l1 l2:R),
Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i:nat => An i * Bn i) (l1 * l2).
Proof.
intros.
cut { l:R | Un_cv An l }.
intro X.
assert (H1 := maj_by_pos An X).
elim H1; intros M H2.
elim H2; intros.
unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / (2 * M)).
intro.
case (Req_dec l2 0); intro.
unfold Un_cv in H0; unfold R_dist in H0.
elim (H0 (eps / (2 * M)) H6); intros.
exists x; intros.
apply Rle_lt_trans with
(Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2)).
replace (An n * Bn n - l1 * l2) with
(An n * Bn n - An n * l2 + (An n * l2 - l1 * l2));
[ apply Rabs_triang | ring ].
replace (Rabs (An n * Bn n - An n * l2)) with
(Rabs (An n) * Rabs (Bn n - l2)).
replace (Rabs (An n * l2 - l1 * l2)) with 0.
rewrite Rplus_0_r.
apply Rle_lt_trans with (M * Rabs (Bn n - l2)).
do 2 rewrite <- (Rmult_comm (Rabs (Bn n - l2))).
apply Rmult_le_compat_l.
apply Rabs_pos.
apply H4.
apply Rmult_lt_reg_l with (/ M).
apply Rinv_0_lt_compat; apply H3.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite (Rmult_comm (/ M)).
apply Rlt_trans with (eps / (2 * M)).
apply H8; assumption.
unfold Rdiv; rewrite Rinv_mult_distr.
apply Rmult_lt_reg_l with 2.
prove_sup0.
replace (2 * (eps * (/ 2 * / M))) with (2 * / 2 * (eps * / M));
[ idtac | ring ].
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double.
pattern (eps * / M) at 1; rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ].
discrR.
discrR.
red; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3).
red; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3).
rewrite H7; do 2 rewrite Rmult_0_r; unfold Rminus;
rewrite Rplus_opp_r; rewrite Rabs_R0; reflexivity.
replace (An n * Bn n - An n * l2) with (An n * (Bn n - l2)); [ idtac | ring ].
symmetry ; apply Rabs_mult.
cut (0 < eps / (2 * Rabs l2)).
intro.
unfold Un_cv in H; unfold R_dist in H; unfold Un_cv in H0;
unfold R_dist in H0.
elim (H (eps / (2 * Rabs l2)) H8); intros N1 H9.
elim (H0 (eps / (2 * M)) H6); intros N2 H10.
set (N := max N1 N2).
exists N; intros.
apply Rle_lt_trans with
(Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2)).
replace (An n * Bn n - l1 * l2) with
(An n * Bn n - An n * l2 + (An n * l2 - l1 * l2));
[ apply Rabs_triang | ring ].
replace (Rabs (An n * Bn n - An n * l2)) with
(Rabs (An n) * Rabs (Bn n - l2)).
replace (Rabs (An n * l2 - l1 * l2)) with (Rabs l2 * Rabs (An n - l1)).
rewrite (double_var eps); apply Rplus_lt_compat.
apply Rle_lt_trans with (M * Rabs (Bn n - l2)).
do 2 rewrite <- (Rmult_comm (Rabs (Bn n - l2))).
apply Rmult_le_compat_l.
apply Rabs_pos.
apply H4.
apply Rmult_lt_reg_l with (/ M).
apply Rinv_0_lt_compat; apply H3.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite (Rmult_comm (/ M)).
apply Rlt_le_trans with (eps / (2 * M)).
apply H10.
unfold ge; apply le_trans with N.
unfold N; apply le_max_r.
assumption.
unfold Rdiv; rewrite Rinv_mult_distr.
right; ring.
discrR.
red; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3).
red; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3).
apply Rmult_lt_reg_l with (/ Rabs l2).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; apply Rlt_le_trans with (eps / (2 * Rabs l2)).
apply H9.
unfold ge; apply le_trans with N.
unfold N; apply le_max_l.
assumption.
unfold Rdiv; right; rewrite Rinv_mult_distr.
ring.
discrR.
apply Rabs_no_R0; assumption.
apply Rabs_no_R0; assumption.
replace (An n * l2 - l1 * l2) with (l2 * (An n - l1));
[ symmetry ; apply Rabs_mult | ring ].
replace (An n * Bn n - An n * l2) with (An n * (Bn n - l2));
[ symmetry ; apply Rabs_mult | ring ].
unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ].
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | assumption ] ].
exists l1; assumption.
Qed.
Lemma tech9 :
forall Un:nat -> R,
Un_growing Un -> forall m n:nat, (m <= n)%nat -> Un m <= Un n.
Proof.
intros; unfold Un_growing in H.
induction n as [| n Hrecn].
induction m as [| m Hrecm].
right; reflexivity.
elim (le_Sn_O _ H0).
cut ((m <= n)%nat \/ m = S n).
intro; elim H1; intro.
apply Rle_trans with (Un n).
apply Hrecn; assumption.
apply H.
rewrite H2; right; reflexivity.
inversion H0.
right; reflexivity.
left; assumption.
Qed.
Lemma tech13 :
forall (An:nat -> R) (k:R),
0 <= k < 1 ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
exists k0 : R,
k < k0 < 1 /\
(exists N : nat,
(forall n:nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k0)).
Proof.
intros; exists (k + (1 - k) / 2).
split.
split.
pattern k at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
unfold Rdiv; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_l with k; rewrite Rplus_0_r; replace (k + (1 - k)) with 1;
[ elim H; intros; assumption | ring ].
apply Rinv_0_lt_compat; prove_sup0.
apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv; rewrite Rmult_1_r; rewrite Rmult_plus_distr_l;
pattern 2 at 1; rewrite Rmult_comm; rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_r;
replace (2 * k + (1 - k)) with (1 + k); [ idtac | ring ].
elim H; intros.
apply Rplus_lt_compat_l; assumption.
unfold Un_cv in H0; cut (0 < (1 - k) / 2).
intro; elim (H0 ((1 - k) / 2) H1); intros.
exists x; intros.
assert (H4 := H2 n H3).
unfold R_dist in H4; rewrite <- Rabs_Rabsolu;
replace (Rabs (An (S n) / An n)) with (Rabs (An (S n) / An n) - k + k);
[ idtac | ring ];
apply Rle_lt_trans with (Rabs (Rabs (An (S n) / An n) - k) + Rabs k).
apply Rabs_triang.
rewrite (Rabs_right k).
apply Rplus_lt_reg_l with (- k); rewrite <- (Rplus_comm k);
repeat rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
repeat rewrite Rplus_0_l; apply H4.
apply Rle_ge; elim H; intros; assumption.
unfold Rdiv; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_l with k; rewrite Rplus_0_r; elim H; intros;
replace (k + (1 - k)) with 1; [ assumption | ring ].
apply Rinv_0_lt_compat; prove_sup0.
Qed.
(**********)
Lemma growing_ineq :
forall (Un:nat -> R) (l:R),
Un_growing Un -> Un_cv Un l -> forall n:nat, Un n <= l.
Proof.
intros; destruct (total_order_T (Un n) l) as [[Hlt|Heq]|Hgt].
left; assumption.
right; assumption.
cut (0 < Un n - l).
intro; unfold Un_cv in H0; unfold R_dist in H0.
elim (H0 (Un n - l) H1); intros N1 H2.
set (N := max n N1).
cut (Un n - l <= Un N - l).
intro; cut (Un N - l < Un n - l).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H3 H4)).
apply Rle_lt_trans with (Rabs (Un N - l)).
apply RRle_abs.
apply H2.
unfold ge, N; apply le_max_r.
unfold Rminus; do 2 rewrite <- (Rplus_comm (- l));
apply Rplus_le_compat_l.
apply tech9.
assumption.
unfold N; apply le_max_l.
apply Rplus_lt_reg_l with l.
rewrite Rplus_0_r.
replace (l + (Un n - l)) with (Un n); [ assumption | ring ].
Qed.
(** Un->l => (-Un) -> (-l) *)
Lemma CV_opp :
forall (An:nat -> R) (l:R), Un_cv An l -> Un_cv (opp_seq An) (- l).
Proof.
intros An l.
unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros.
exists x; intros.
unfold opp_seq; replace (- An n - - l) with (- (An n - l));
[ rewrite Rabs_Ropp | ring ].
apply H1; assumption.
Qed.
(**********)
Lemma decreasing_ineq :
forall (Un:nat -> R) (l:R),
Un_decreasing Un -> Un_cv Un l -> forall n:nat, l <= Un n.
Proof.
intros.
assert (H1 := decreasing_growing _ H).
assert (H2 := CV_opp _ _ H0).
assert (H3 := growing_ineq _ _ H1 H2).
apply Ropp_le_cancel.
unfold opp_seq in H3; apply H3.
Qed.
(**********)
Lemma CV_minus :
forall (An Bn:nat -> R) (l1 l2:R),
Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i:nat => An i - Bn i) (l1 - l2).
Proof.
intros.
replace (fun i:nat => An i - Bn i) with (fun i:nat => An i + opp_seq Bn i).
unfold Rminus; apply CV_plus.
assumption.
apply CV_opp; assumption.
unfold Rminus, opp_seq; reflexivity.
Qed.
(** Un -> +oo *)
Definition cv_infty (Un:nat -> R) : Prop :=
forall M:R, exists N : nat, (forall n:nat, (N <= n)%nat -> M < Un n).
(** Un -> +oo => /Un -> O *)
Lemma cv_infty_cv_R0 :
forall Un:nat -> R,
(forall n:nat, Un n <> 0) -> cv_infty Un -> Un_cv (fun n:nat => / Un n) 0.
Proof.
unfold cv_infty, Un_cv; unfold R_dist; intros.
elim (H0 (/ eps)); intros N0 H2.
exists N0; intros.
unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
rewrite (Rabs_Rinv _ (H n)).
apply Rmult_lt_reg_l with (Rabs (Un n)).
apply Rabs_pos_lt; apply H.
rewrite <- Rinv_r_sym.
apply Rmult_lt_reg_l with (/ eps).
apply Rinv_0_lt_compat; assumption.
rewrite Rmult_1_r; rewrite (Rmult_comm (/ eps)); rewrite Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; apply Rlt_le_trans with (Un n).
apply H2; assumption.
apply RRle_abs.
red; intro; rewrite H4 in H1; elim (Rlt_irrefl _ H1).
apply Rabs_no_R0; apply H.
Qed.
(**********)
Lemma decreasing_prop :
forall (Un:nat -> R) (m n:nat),
Un_decreasing Un -> (m <= n)%nat -> Un n <= Un m.
Proof.
unfold Un_decreasing; intros.
induction n as [| n Hrecn].
induction m as [| m Hrecm].
right; reflexivity.
elim (le_Sn_O _ H0).
cut ((m <= n)%nat \/ m = S n).
intro; elim H1; intro.
apply Rle_trans with (Un n).
apply H.
apply Hrecn; assumption.
rewrite H2; right; reflexivity.
inversion H0; [ right; reflexivity | left; assumption ].
Qed.
(** |x|^n/n! -> 0 *)
Lemma cv_speed_pow_fact :
forall x:R, Un_cv (fun n:nat => x ^ n / INR (fact n)) 0.
Proof.
intro;
cut
(Un_cv (fun n:nat => Rabs x ^ n / INR (fact n)) 0 ->
Un_cv (fun n:nat => x ^ n / INR (fact n)) 0).
intro; apply H.
unfold Un_cv; unfold R_dist; intros; case (Req_dec x 0);
intro.
exists 1%nat; intros.
rewrite H1; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
rewrite Rabs_R0; rewrite pow_ne_zero;
[ unfold Rdiv; rewrite Rmult_0_l; rewrite Rabs_R0; assumption
| red; intro; rewrite H3 in H2; elim (le_Sn_n _ H2) ].
assert (H2 := Rabs_pos_lt x H1); set (M := up (Rabs x)); cut (0 <= M)%Z.
intro; elim (IZN M H3); intros M_nat H4.
set (Un := fun n:nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))).
cut (Un_cv Un 0); unfold Un_cv; unfold R_dist; intros.
elim (H5 eps H0); intros N H6.
exists (M_nat + N)%nat; intros;
cut (exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat).
intro; elim H8; intros p H9.
elim H9; intros; rewrite H11; unfold Un in H6; apply H6; assumption.
exists (n - M_nat)%nat.
split.
unfold ge; apply (fun p n m:nat => plus_le_reg_l n m p) with M_nat;
rewrite <- le_plus_minus.
assumption.
apply le_trans with (M_nat + N)%nat.
apply le_plus_l.
assumption.
apply le_plus_minus; apply le_trans with (M_nat + N)%nat;
[ apply le_plus_l | assumption ].
set (Vn := fun n:nat => Rabs x * (Un 0%nat / INR (S n))).
cut (1 <= M_nat)%nat.
intro; cut (forall n:nat, 0 < Un n).
intro; cut (Un_decreasing Un).
intro; cut (forall n:nat, Un (S n) <= Vn n).
intro; cut (Un_cv Vn 0).
unfold Un_cv; unfold R_dist; intros.
elim (H10 eps0 H5); intros N1 H11.
exists (S N1); intros.
cut (forall n:nat, 0 < Vn n).
intro; apply Rle_lt_trans with (Rabs (Vn (pred n) - 0)).
repeat rewrite Rabs_right.
unfold Rminus; rewrite Ropp_0; do 2 rewrite Rplus_0_r;
replace n with (S (pred n)).
apply H9.
inversion H12; simpl; reflexivity.
apply Rle_ge; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; left;
apply H13.
apply Rle_ge; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; left;
apply H7.
apply H11; unfold ge; apply le_S_n; replace (S (pred n)) with n;
[ unfold ge in H12; exact H12 | inversion H12; simpl; reflexivity ].
intro; apply Rlt_le_trans with (Un (S n0)); [ apply H7 | apply H9 ].
cut (cv_infty (fun n:nat => INR (S n))).
intro; cut (Un_cv (fun n:nat => / INR (S n)) 0).
unfold Un_cv, R_dist; intros; unfold Vn.
cut (0 < eps1 / (Rabs x * Un 0%nat)).
intro; elim (H11 _ H13); intros N H14.
exists N; intros;
replace (Rabs x * (Un 0%nat / INR (S n)) - 0) with
(Rabs x * Un 0%nat * (/ INR (S n) - 0));
[ idtac | unfold Rdiv; ring ].
rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs (Rabs x * Un 0%nat)).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
apply prod_neq_R0.
apply Rabs_no_R0; assumption.
assert (H16 := H7 0%nat); red; intro; rewrite H17 in H16;
elim (Rlt_irrefl _ H16).
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (/ Rabs (Rabs x * Un 0%nat) * eps1) with (eps1 / (Rabs x * Un 0%nat)).
apply H14; assumption.
unfold Rdiv; rewrite (Rabs_right (Rabs x * Un 0%nat)).
apply Rmult_comm.
apply Rle_ge; apply Rmult_le_pos.
apply Rabs_pos.
left; apply H7.
apply Rabs_no_R0.
apply prod_neq_R0;
[ apply Rabs_no_R0; assumption
| assert (H16 := H7 0%nat); red; intro; rewrite H17 in H16;
elim (Rlt_irrefl _ H16) ].
unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rmult_lt_0_compat.
apply Rabs_pos_lt; assumption.
apply H7.
apply (cv_infty_cv_R0 (fun n:nat => INR (S n))).
intro; apply not_O_INR; discriminate.
assumption.
unfold cv_infty; intro;
destruct (total_order_T M0 0) as [[Hlt|Heq]|Hgt].
exists 0%nat; intros.
apply Rlt_trans with 0; [ assumption | apply lt_INR_0; apply lt_O_Sn ].
exists 0%nat; intros; rewrite Heq; apply lt_INR_0; apply lt_O_Sn.
set (M0_z := up M0).
assert (H10 := archimed M0).
cut (0 <= M0_z)%Z.
intro; elim (IZN _ H11); intros M0_nat H12.
exists M0_nat; intros.
apply Rlt_le_trans with (IZR M0_z).
elim H10; intros; assumption.
rewrite H12; rewrite <- INR_IZR_INZ; apply le_INR.
apply le_trans with n; [ assumption | apply le_n_Sn ].
apply le_IZR; left; simpl; unfold M0_z;
apply Rlt_trans with M0; [ assumption | elim H10; intros; assumption ].
intro; apply Rle_trans with (Rabs x * Un n * / INR (S n)).
unfold Un; replace (M_nat + S n)%nat with (M_nat + n + 1)%nat.
rewrite pow_add; replace (Rabs x ^ 1) with (Rabs x);
[ idtac | simpl; ring ].
unfold Rdiv; rewrite <- (Rmult_comm (Rabs x));
repeat rewrite Rmult_assoc; repeat apply Rmult_le_compat_l.
apply Rabs_pos.
left; apply pow_lt; assumption.
replace (M_nat + n + 1)%nat with (S (M_nat + n)).
rewrite fact_simpl; rewrite mult_comm; rewrite mult_INR;
rewrite Rinv_mult_distr.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red;
intro; assert (H10 := eq_sym H9); elim (fact_neq_0 _ H10).
left; apply Rinv_lt_contravar.
apply Rmult_lt_0_compat; apply lt_INR_0; apply lt_O_Sn.
apply lt_INR; apply lt_n_S.
pattern n at 1; replace n with (0 + n)%nat; [ idtac | reflexivity ].
apply plus_lt_compat_r.
apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
apply INR_fact_neq_0.
apply not_O_INR; discriminate.
ring.
ring.
unfold Vn; rewrite Rmult_assoc; unfold Rdiv;
rewrite (Rmult_comm (Un 0%nat)); rewrite (Rmult_comm (Un n)).
repeat apply Rmult_le_compat_l.
apply Rabs_pos.
left; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
apply decreasing_prop; [ assumption | apply le_O_n ].
unfold Un_decreasing; intro; unfold Un.
replace (M_nat + S n)%nat with (M_nat + n + 1)%nat.
rewrite pow_add; unfold Rdiv; rewrite Rmult_assoc;
apply Rmult_le_compat_l.
left; apply pow_lt; assumption.
replace (Rabs x ^ 1) with (Rabs x); [ idtac | simpl; ring ].
replace (M_nat + n + 1)%nat with (S (M_nat + n)).
apply Rmult_le_reg_l with (INR (fact (S (M_nat + n)))).
apply lt_INR_0; apply neq_O_lt; red; intro; assert (H9 := eq_sym H8);
elim (fact_neq_0 _ H9).
rewrite (Rmult_comm (Rabs x)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
rewrite fact_simpl; rewrite mult_INR; rewrite Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; apply Rle_trans with (INR M_nat).
left; rewrite INR_IZR_INZ.
rewrite <- H4; assert (H8 := archimed (Rabs x)); elim H8; intros; assumption.
apply le_INR; omega.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
ring.
ring.
intro; unfold Un; unfold Rdiv; apply Rmult_lt_0_compat.
apply pow_lt; assumption.
apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red; intro;
assert (H8 := eq_sym H7); elim (fact_neq_0 _ H8).
clear Un Vn; apply INR_le; simpl.
induction M_nat as [| M_nat HrecM_nat].
assert (H6 := archimed (Rabs x)); fold M in H6; elim H6; intros.
rewrite H4 in H7; rewrite <- INR_IZR_INZ in H7.
simpl in H7; elim (Rlt_irrefl _ (Rlt_trans _ _ _ H2 H7)).
apply (le_INR 1); apply le_n_S;
apply le_O_n.
apply le_IZR; simpl; left; apply Rlt_trans with (Rabs x).
assumption.
elim (archimed (Rabs x)); intros; assumption.
unfold Un_cv; unfold R_dist; intros; elim (H eps H0); intros.
exists x0; intros;
apply Rle_lt_trans with (Rabs (Rabs x ^ n / INR (fact n) - 0)).
unfold Rminus; rewrite Ropp_0; do 2 rewrite Rplus_0_r;
rewrite (Rabs_right (Rabs x ^ n / INR (fact n))).
unfold Rdiv; rewrite Rabs_mult; rewrite (Rabs_right (/ INR (fact n))).
rewrite RPow_abs; right; reflexivity.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt;
red; intro; assert (H4 := eq_sym H3); elim (fact_neq_0 _ H4).
apply Rle_ge; unfold Rdiv; apply Rmult_le_pos.
case (Req_dec x 0); intro.
rewrite H3; rewrite Rabs_R0.
induction n as [| n Hrecn];
[ simpl; left; apply Rlt_0_1
| simpl; rewrite Rmult_0_l; right; reflexivity ].
left; apply pow_lt; apply Rabs_pos_lt; assumption.
left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red;
intro; assert (H4 := eq_sym H3); elim (fact_neq_0 _ H4).
apply H1; assumption.
Qed.
|