1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import PSeries_reg.
Local Open Scope nat_scope.
Local Open Scope R_scope.
(**********)
Lemma continuity_sin : continuity sin.
Proof.
unfold continuity; intro.
assert (H0 := continuity_cos (PI / 2 - x)).
unfold continuity_pt in H0; unfold continue_in in H0; unfold limit1_in in H0;
unfold limit_in in H0; simpl in H0; unfold R_dist in H0;
unfold continuity_pt; unfold continue_in;
unfold limit1_in; unfold limit_in;
simpl; unfold R_dist; intros.
elim (H0 _ H); intros.
exists x0; intros.
elim H1; intros.
split.
assumption.
intros; rewrite <- (cos_shift x); rewrite <- (cos_shift x1); apply H3.
elim H4; intros.
split.
unfold D_x, no_cond; split.
trivial.
red; intro; unfold D_x, no_cond in H5; elim H5; intros _ H8; elim H8;
rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive x1);
apply Ropp_eq_compat; apply Rplus_eq_reg_l with (PI / 2);
apply H7.
replace (PI / 2 - x1 - (PI / 2 - x)) with (x - x1); [ idtac | ring ];
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H6.
Qed.
Lemma CVN_R_sin :
forall fn:nat -> R -> R,
fn =
(fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) ->
CVN_R fn.
Proof.
unfold CVN_R; unfold CVN_r; intros fn H r.
exists (fun n:nat => / INR (fact (2 * n + 1)) * r ^ (2 * n)).
cut
{ l:R |
Un_cv
(fun n:nat =>
sum_f_R0
(fun k:nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n)
l }.
intros (x,p).
exists x.
split.
apply p.
intros; rewrite H; unfold Rdiv; do 2 rewrite Rabs_mult;
rewrite pow_1_abs; rewrite Rmult_1_l.
cut (0 < / INR (fact (2 * n + 1))).
intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))).
apply Rmult_le_compat_l.
left; apply H1.
rewrite <- RPow_abs; apply pow_maj_Rabs.
rewrite Rabs_Rabsolu; unfold Boule in H0; rewrite Rminus_0_r in H0; left;
apply H0.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
cut ((r:R) <> 0).
intro; apply Alembert_C2.
intro; apply Rabs_no_R0.
apply prod_neq_R0.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply pow_nonzero; assumption.
assert (H1 := Alembert_sin).
unfold sin_n in H1; unfold Un_cv in H1; unfold Un_cv; intros.
cut (0 < eps / Rsqr r).
intro; elim (H1 _ H3); intros N0 H4.
exists N0; intros.
unfold R_dist; assert (H6 := H4 _ H5).
unfold R_dist in H5;
replace
(Rabs
(Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) /
Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) with
(Rsqr r *
Rabs
((-1) ^ S n / INR (fact (2 * S n + 1)) /
((-1) ^ n / INR (fact (2 * n + 1))))).
apply Rmult_lt_reg_l with (/ Rsqr r).
apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
pattern (/ Rsqr r) at 1; rewrite <- (Rabs_right (/ Rsqr r)).
rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_l.
rewrite Rmult_0_r; rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps).
apply H6.
unfold Rsqr; apply prod_neq_R0; assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
unfold Rdiv; rewrite (Rmult_comm (Rsqr r)); repeat rewrite Rabs_mult;
rewrite Rabs_Rabsolu; rewrite pow_1_abs.
rewrite Rmult_1_l.
repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
rewrite Rabs_mult.
rewrite Rabs_Rinv.
rewrite pow_1_abs; rewrite Rinv_1; rewrite Rmult_1_l.
rewrite Rinv_mult_distr.
rewrite <- Rabs_Rinv.
rewrite Rinv_involutive.
rewrite Rabs_mult.
do 2 rewrite Rabs_Rabsolu.
rewrite (Rmult_comm (Rabs (r ^ (2 * S n)))).
rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rabs_Rinv.
rewrite Rabs_Rabsolu.
repeat rewrite Rabs_right.
replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r).
do 2 rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
unfold Rsqr; ring.
apply pow_nonzero; assumption.
replace (2 * S n)%nat with (S (S (2 * n))).
simpl; ring.
ring.
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rabs_no_R0; apply pow_nonzero; assumption.
apply INR_fact_neq_0.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply Rabs_no_R0; apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply Rabs_no_R0; apply pow_nonzero; assumption.
apply pow_nonzero; discrR.
apply INR_fact_neq_0.
apply pow_nonzero; discrR.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption ].
assert (H0 := cond_pos r); red; intro; rewrite H1 in H0;
elim (Rlt_irrefl _ H0).
Qed.
(** (sin h)/h -> 1 when h -> 0 *)
Lemma derivable_pt_lim_sin_0 : derivable_pt_lim sin 0 1.
Proof.
unfold derivable_pt_lim; intros.
set
(fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)).
cut (CVN_R fn).
intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
intro cv.
set (r := mkposreal _ Rlt_0_1).
cut (CVN_r fn r).
intro; cut (forall (n:nat) (y:R), Boule 0 r y -> continuity_pt (fn n) y).
intro; cut (Boule 0 r 0).
intro; assert (H2 := SFL_continuity_pt _ cv _ X0 H0 _ H1).
unfold continuity_pt in H2; unfold continue_in in H2; unfold limit1_in in H2;
unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
elim (H2 _ H); intros alp H3.
elim H3; intros.
exists (mkposreal _ H4).
simpl; intros.
rewrite sin_0; rewrite Rplus_0_l; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r.
cut (Rabs (SFL fn cv h - SFL fn cv 0) < eps).
intro; cut (SFL fn cv 0 = 1).
intro; cut (SFL fn cv h = sin h / h).
intro; rewrite H9 in H8; rewrite H10 in H8.
apply H8.
unfold SFL, sin.
case (cv h) as (x,HUn).
case (exist_sin (Rsqr h)) as (x0,Hsin).
unfold Rdiv; rewrite (Rinv_r_simpl_m h x0 H6).
eapply UL_sequence.
apply HUn.
unfold sin_in in Hsin; unfold sin_n, infinite_sum in Hsin;
unfold SP, fn, Un_cv; intros.
elim (Hsin _ H10); intros N0 H11.
exists N0; intros.
unfold R_dist; unfold R_dist in H11.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n)
with
(sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * Rsqr h ^ i) n).
apply H11; assumption.
apply sum_eq; intros; apply Rmult_eq_compat_l; unfold Rsqr;
rewrite pow_sqr; reflexivity.
unfold SFL, sin.
case (cv 0) as (?,HUn).
eapply UL_sequence.
apply HUn.
unfold SP, fn; unfold Un_cv; intros; exists 1%nat; intros.
unfold R_dist;
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n)
with 1.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
rewrite decomp_sum.
simpl; rewrite Rmult_1_r; unfold Rdiv; rewrite Rinv_1;
rewrite Rmult_1_r; pattern 1 at 1; rewrite <- Rplus_0_r;
apply Rplus_eq_compat_l.
symmetry ; apply sum_eq_R0; intros.
rewrite Rmult_0_l; rewrite Rmult_0_r; reflexivity.
unfold ge in H10; apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H10 ].
apply H5.
split.
unfold D_x, no_cond; split.
trivial.
apply (not_eq_sym (A:=R)); apply H6.
unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply H7.
unfold Boule; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite Rabs_R0; apply (cond_pos r).
intros; unfold fn;
replace (fun x:R => (-1) ^ n / INR (fact (2 * n + 1)) * x ^ (2 * n)) with
(fct_cte ((-1) ^ n / INR (fact (2 * n + 1))) * pow_fct (2 * n))%F;
[ idtac | reflexivity ].
apply continuity_pt_mult.
apply derivable_continuous_pt.
apply derivable_pt_const.
apply derivable_continuous_pt.
apply (derivable_pt_pow (2 * n) y).
apply (X r).
apply (CVN_R_CVS _ X).
apply CVN_R_sin; unfold fn; reflexivity.
Qed.
(** ((cos h)-1)/h -> 0 when h -> 0 *)
Lemma derivable_pt_lim_cos_0 : derivable_pt_lim cos 0 0.
Proof.
unfold derivable_pt_lim; intros.
assert (H0 := derivable_pt_lim_sin_0).
unfold derivable_pt_lim in H0.
cut (0 < eps / 2).
intro; elim (H0 _ H1); intros del H2.
cut (continuity_pt sin 0).
intro; unfold continuity_pt in H3; unfold continue_in in H3;
unfold limit1_in in H3; unfold limit_in in H3; simpl in H3;
unfold R_dist in H3.
cut (0 < eps / 2); [ intro | assumption ].
elim (H3 _ H4); intros del_c H5.
cut (0 < Rmin del del_c).
intro; set (delta := mkposreal _ H6).
exists delta; intros.
rewrite Rplus_0_l; replace (cos h - cos 0) with (-2 * Rsqr (sin (h / 2))).
unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
change (-2) with (-(2)).
unfold Rdiv; do 2 rewrite Ropp_mult_distr_l_reverse.
rewrite Rabs_Ropp.
replace (2 * Rsqr (sin (h * / 2)) * / h) with
(sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)).
apply Rle_lt_trans with
(Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2))).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs (sin (h / 2) / (h / 2) - 1)).
rewrite Rabs_mult; rewrite Rmult_comm;
pattern (Rabs (sin (h / 2) / (h / 2) - 1)) at 2;
rewrite <- Rmult_1_r; apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H9 := SIN_bound (h / 2)).
unfold Rabs; case (Rcase_abs (sin (h / 2))); intro.
rewrite <- (Ropp_involutive 1).
apply Ropp_le_contravar.
elim H9; intros; assumption.
elim H9; intros; assumption.
cut (Rabs (h / 2) < del).
intro; cut (h / 2 <> 0).
intro; assert (H11 := H2 _ H10 H9).
rewrite Rplus_0_l in H11; rewrite sin_0 in H11.
rewrite Rminus_0_r in H11; apply H11.
unfold Rdiv; apply prod_neq_R0.
apply H7.
apply Rinv_neq_0_compat; discrR.
apply Rlt_trans with (del / 2).
unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (/ 2)).
do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
apply Rlt_le_trans with (pos delta).
apply H8.
unfold delta; simpl; apply Rmin_l.
apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0.
rewrite <- (Rplus_0_r (del / 2)); pattern del at 1;
rewrite (double_var del); apply Rplus_lt_compat_l;
unfold Rdiv; apply Rmult_lt_0_compat.
apply (cond_pos del).
apply Rinv_0_lt_compat; prove_sup0.
elim H5; intros; assert (H11 := H10 (h / 2)).
rewrite sin_0 in H11; do 2 rewrite Rminus_0_r in H11.
apply H11.
split.
unfold D_x, no_cond; split.
trivial.
apply (not_eq_sym (A:=R)); unfold Rdiv; apply prod_neq_R0.
apply H7.
apply Rinv_neq_0_compat; discrR.
apply Rlt_trans with (del_c / 2).
unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (/ 2)).
do 2 rewrite <- (Rmult_comm (/ 2)).
apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
apply Rlt_le_trans with (pos delta).
apply H8.
unfold delta; simpl; apply Rmin_r.
apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0.
rewrite <- (Rplus_0_r (del_c / 2)); pattern del_c at 2;
rewrite (double_var del_c); apply Rplus_lt_compat_l.
unfold Rdiv; apply Rmult_lt_0_compat.
apply H9.
apply Rinv_0_lt_compat; prove_sup0.
rewrite Rmult_minus_distr_l; rewrite Rmult_1_r; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
rewrite (Rmult_comm 2); unfold Rdiv, Rsqr.
repeat rewrite Rmult_assoc.
repeat apply Rmult_eq_compat_l.
rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
apply Rmult_comm.
discrR.
apply H7.
apply Rinv_neq_0_compat; discrR.
pattern h at 2; replace h with (2 * (h / 2)).
rewrite (cos_2a_sin (h / 2)).
rewrite cos_0; unfold Rsqr; ring.
unfold Rdiv; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
discrR.
unfold Rmin; case (Rle_dec del del_c); intro.
apply (cond_pos del).
elim H5; intros; assumption.
apply continuity_sin.
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
(**********)
Theorem derivable_pt_lim_sin : forall x:R, derivable_pt_lim sin x (cos x).
Proof.
intro; assert (H0 := derivable_pt_lim_sin_0).
assert (H := derivable_pt_lim_cos_0).
unfold derivable_pt_lim in H0, H.
unfold derivable_pt_lim; intros.
cut (0 < eps / 2);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ apply H1 | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H0 _ H2); intros alp1 H3.
elim (H _ H2); intros alp2 H4.
set (alp := Rmin alp1 alp2).
cut (0 < alp).
intro; exists (mkposreal _ H5); intros.
replace ((sin (x + h) - sin x) / h - cos x) with
(sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1)).
apply Rle_lt_trans with
(Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1))).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs ((cos h - 1) / h)).
rewrite Rabs_mult; rewrite Rmult_comm;
pattern (Rabs ((cos h - 1) / h)) at 2; rewrite <- Rmult_1_r;
apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H8 := SIN_bound x); elim H8; intros.
unfold Rabs; case (Rcase_abs (sin x)); intro.
rewrite <- (Ropp_involutive 1).
apply Ropp_le_contravar; assumption.
assumption.
cut (Rabs h < alp2).
intro; assert (H9 := H4 _ H6 H8).
rewrite cos_0 in H9; rewrite Rplus_0_l in H9; rewrite Rminus_0_r in H9;
apply H9.
apply Rlt_le_trans with alp.
apply H7.
unfold alp; apply Rmin_r.
apply Rle_lt_trans with (Rabs (sin h / h - 1)).
rewrite Rabs_mult; rewrite Rmult_comm;
pattern (Rabs (sin h / h - 1)) at 2; rewrite <- Rmult_1_r;
apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H8 := COS_bound x); elim H8; intros.
unfold Rabs; case (Rcase_abs (cos x)); intro.
rewrite <- (Ropp_involutive 1); apply Ropp_le_contravar; assumption.
assumption.
cut (Rabs h < alp1).
intro; assert (H9 := H3 _ H6 H8).
rewrite sin_0 in H9; rewrite Rplus_0_l in H9; rewrite Rminus_0_r in H9;
apply H9.
apply Rlt_le_trans with alp.
apply H7.
unfold alp; apply Rmin_l.
rewrite sin_plus.
now field.
unfold alp; unfold Rmin; case (Rle_dec alp1 alp2); intro.
apply (cond_pos alp1).
apply (cond_pos alp2).
Qed.
Lemma derivable_pt_lim_cos : forall x:R, derivable_pt_lim cos x (- sin x).
Proof.
intro; cut (forall h:R, sin (h + PI / 2) = cos h).
intro; replace (- sin x) with (cos (x + PI / 2) * (1 + 0)).
generalize (derivable_pt_lim_comp (id + fct_cte (PI / 2))%F sin); intros.
cut (derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)).
cut (derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))).
intros; generalize (H0 _ _ _ H2 H1);
replace (comp sin (id + fct_cte (PI / 2))%F) with
(fun x:R => sin (x + PI / 2)); [ idtac | reflexivity ].
unfold derivable_pt_lim; intros.
elim (H3 eps H4); intros.
exists x0.
intros; rewrite <- (H (x + h)); rewrite <- (H x); apply H5; assumption.
apply derivable_pt_lim_sin.
apply derivable_pt_lim_plus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
rewrite sin_cos; rewrite <- (Rplus_comm x); ring.
intro; rewrite cos_sin; rewrite Rplus_comm; reflexivity.
Qed.
Lemma derivable_pt_sin : forall x:R, derivable_pt sin x.
Proof.
unfold derivable_pt; intro.
exists (cos x).
apply derivable_pt_lim_sin.
Qed.
Lemma derivable_pt_cos : forall x:R, derivable_pt cos x.
Proof.
unfold derivable_pt; intro.
exists (- sin x).
apply derivable_pt_lim_cos.
Qed.
Lemma derivable_sin : derivable sin.
Proof.
unfold derivable; intro; apply derivable_pt_sin.
Qed.
Lemma derivable_cos : derivable cos.
Proof.
unfold derivable; intro; apply derivable_pt_cos.
Qed.
Lemma derive_pt_sin :
forall x:R, derive_pt sin x (derivable_pt_sin _) = cos x.
Proof.
intros; apply derive_pt_eq_0.
apply derivable_pt_lim_sin.
Qed.
Lemma derive_pt_cos :
forall x:R, derive_pt cos x (derivable_pt_cos _) = - sin x.
Proof.
intros; apply derive_pt_eq_0.
apply derivable_pt_lim_cos.
Qed.
|