aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Rtrigo_calc.v
blob: 7cbfc630335be65d628a629d0adcd5154b1bab89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import R_sqrt.
Local Open Scope R_scope.

Lemma tan_PI : tan PI = 0.
Proof.
  unfold tan; rewrite sin_PI; rewrite cos_PI; unfold Rdiv;
    apply Rmult_0_l.
Qed.

Lemma sin_3PI2 : sin (3 * (PI / 2)) = -1.
Proof.
  replace (3 * (PI / 2)) with (PI + PI / 2).
  rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; rewrite sin_PI2; ring.
  pattern PI at 1; rewrite (double_var PI); ring.
Qed.

Lemma tan_2PI : tan (2 * PI) = 0.
Proof.
  unfold tan; rewrite sin_2PI; unfold Rdiv; apply Rmult_0_l.
Qed.

Lemma sin_cos_PI4 : sin (PI / 4) = cos (PI / 4).
Proof.
  rewrite cos_sin.
  replace (PI / 2 + PI / 4) with (- (PI / 4) + PI) by field.
  rewrite neg_sin, sin_neg; ring.
Qed.

Lemma sin_PI3_cos_PI6 : sin (PI / 3) = cos (PI / 6).
Proof.
  replace (PI / 6) with (PI / 2 - PI / 3) by field.
  now rewrite cos_shift.
Qed.

Lemma sin_PI6_cos_PI3 : cos (PI / 3) = sin (PI / 6).
Proof.
  replace (PI / 6) with (PI / 2 - PI / 3) by field.
  now rewrite sin_shift.
Qed.

Lemma PI6_RGT_0 : 0 < PI / 6.
Proof.
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.

Lemma PI6_RLT_PI2 : PI / 6 < PI / 2.
Proof.
  unfold Rdiv; apply Rmult_lt_compat_l.
  apply PI_RGT_0.
  apply Rinv_lt_contravar; prove_sup.
Qed.

Lemma sin_PI6 : sin (PI / 6) = 1 / 2.
Proof.
  apply Rmult_eq_reg_l with (2 * cos (PI / 6)).
  replace (2 * cos (PI / 6) * sin (PI / 6)) with
  (2 * sin (PI / 6) * cos (PI / 6)) by ring.
  rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3) by field.
  rewrite sin_PI3_cos_PI6.
  field.
  apply prod_neq_R0.
  discrR.
  cut (0 < cos (PI / 6));
    [ intro H1; auto with real
      | apply cos_gt_0;
        [ apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0)
          | apply PI6_RLT_PI2 ] ].
Qed.

Lemma sqrt2_neq_0 : sqrt 2 <> 0.
Proof.
  assert (Hyp : 0 < 2);
    [ prove_sup0
      | generalize (Rlt_le 0 2 Hyp); intro H1; red; intro H2;
        generalize (sqrt_eq_0 2 H1 H2); intro H; absurd (2 = 0);
          [ discrR | assumption ] ].
Qed.

Lemma R1_sqrt2_neq_0 : 1 / sqrt 2 <> 0.
Proof.
  generalize (Rinv_neq_0_compat (sqrt 2) sqrt2_neq_0); intro H;
    generalize (prod_neq_R0 1 (/ sqrt 2) R1_neq_R0 H);
      intro H0; assumption.
Qed.

Lemma sqrt3_2_neq_0 : 2 * sqrt 3 <> 0.
Proof.
  apply prod_neq_R0;
    [ discrR
      | assert (Hyp : 0 < 3);
        [ prove_sup0
          | generalize (Rlt_le 0 3 Hyp); intro H1; red; intro H2;
            generalize (sqrt_eq_0 3 H1 H2); intro H; absurd (3 = 0);
              [ discrR | assumption ] ] ].
Qed.

Lemma Rlt_sqrt2_0 : 0 < sqrt 2.
Proof.
  assert (Hyp : 0 < 2);
    [ prove_sup0
      | generalize (sqrt_positivity 2 (Rlt_le 0 2 Hyp)); intro H1; elim H1;
        intro H2;
          [ assumption
            | absurd (0 = sqrt 2);
              [ apply (not_eq_sym (A:=R)); apply sqrt2_neq_0 | assumption ] ] ].
Qed.

Lemma Rlt_sqrt3_0 : 0 < sqrt 3.
Proof.
  cut (0%nat <> 1%nat);
    [ intro H0; assert (Hyp : 0 < 2);
      [ prove_sup0
        | generalize (Rlt_le 0 2 Hyp); intro H1; assert (Hyp2 : 0 < 3);
          [ prove_sup0
            | generalize (Rlt_le 0 3 Hyp2); intro H2;
              generalize (lt_INR_0 1 (neq_O_lt 1 H0));
                unfold INR; intro H3;
                  generalize (Rplus_lt_compat_l 2 0 1 H3);
                    rewrite Rplus_comm; rewrite Rplus_0_l; replace (2 + 1) with 3;
                      [ intro H4; generalize (sqrt_lt_1 2 3 H1 H2 H4); clear H3; intro H3;
                        apply (Rlt_trans 0 (sqrt 2) (sqrt 3) Rlt_sqrt2_0 H3)
                        | ring ] ] ]
      | discriminate ].
Qed.

Lemma PI4_RGT_0 : 0 < PI / 4.
Proof.
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.

Lemma cos_PI4 : cos (PI / 4) = 1 / sqrt 2.
Proof with trivial.
  apply Rsqr_inj...
  apply cos_ge_0...
  left; apply (Rlt_trans (- (PI / 2)) 0 (PI / 4) _PI2_RLT_0 PI4_RGT_0)...
  left; apply PI4_RLT_PI2...
  left; apply (Rmult_lt_0_compat 1 (/ sqrt 2))...
  prove_sup...
  apply Rinv_0_lt_compat; apply Rlt_sqrt2_0...
  rewrite Rsqr_div...
  rewrite Rsqr_1; rewrite Rsqr_sqrt...
  unfold Rsqr; pattern (cos (PI / 4)) at 1;
    rewrite <- sin_cos_PI4;
      replace (sin (PI / 4) * cos (PI / 4)) with
      (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4))) by field.
  rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2) by field.
  rewrite sin_PI2...
  field.
  left; prove_sup...
  apply sqrt2_neq_0...
Qed.

Lemma sin_PI4 : sin (PI / 4) = 1 / sqrt 2.
Proof.
  rewrite sin_cos_PI4; apply cos_PI4.
Qed.

Lemma tan_PI4 : tan (PI / 4) = 1.
Proof.
  unfold tan; rewrite sin_cos_PI4.
  unfold Rdiv; apply Rinv_r.
  change (cos (PI / 4) <> 0); rewrite cos_PI4; apply R1_sqrt2_neq_0.
Qed.

Lemma cos3PI4 : cos (3 * (PI / 4)) = -1 / sqrt 2.
Proof.
  replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4)) by field.
  rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4.
  unfold Rdiv.
  ring.
Qed.

Lemma sin3PI4 : sin (3 * (PI / 4)) = 1 / sqrt 2.
Proof.
  replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4)) by field.
  now rewrite sin_shift, cos_neg, cos_PI4.
Qed.

Lemma cos_PI6 : cos (PI / 6) = sqrt 3 / 2.
Proof with trivial.
  apply Rsqr_inj...
  apply cos_ge_0...
  left; apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0)...
  left; apply PI6_RLT_PI2...
  left; apply (Rmult_lt_0_compat (sqrt 3) (/ 2))...
  apply Rlt_sqrt3_0...
  apply Rinv_0_lt_compat; prove_sup0...
  rewrite Rsqr_div...
  rewrite cos2; unfold Rsqr; rewrite sin_PI6; rewrite sqrt_def...
  field.
  left ; prove_sup0.
  discrR.
Qed.

Lemma tan_PI6 : tan (PI / 6) = 1 / sqrt 3.
Proof.
  unfold tan; rewrite sin_PI6; rewrite cos_PI6; unfold Rdiv;
    repeat rewrite Rmult_1_l; rewrite Rinv_mult_distr.
  rewrite Rinv_involutive.
  rewrite (Rmult_comm (/ 2)); rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
  apply Rmult_1_r.
  discrR.
  discrR.
  red; intro; assert (H1 := Rlt_sqrt3_0); rewrite H in H1;
    elim (Rlt_irrefl 0 H1).
  apply Rinv_neq_0_compat; discrR.
Qed.

Lemma sin_PI3 : sin (PI / 3) = sqrt 3 / 2.
Proof.
  rewrite sin_PI3_cos_PI6; apply cos_PI6.
Qed.

Lemma cos_PI3 : cos (PI / 3) = 1 / 2.
Proof.
  rewrite sin_PI6_cos_PI3; apply sin_PI6.
Qed.

Lemma tan_PI3 : tan (PI / 3) = sqrt 3.
Proof.
  unfold tan; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv;
    rewrite Rmult_1_l; rewrite Rinv_involutive.
  rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
  apply Rmult_1_r.
  discrR.
  discrR.
Qed.

Lemma sin_2PI3 : sin (2 * (PI / 3)) = sqrt 3 / 2.
Proof.
  rewrite double; rewrite sin_plus; rewrite sin_PI3; rewrite cos_PI3;
    unfold Rdiv; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2));
      repeat rewrite <- Rmult_assoc; rewrite double_var;
        reflexivity.
Qed.

Lemma cos_2PI3 : cos (2 * (PI / 3)) = -1 / 2.
Proof.
  rewrite cos_2a, sin_PI3, cos_PI3.
  replace (sqrt 3 / 2 * (sqrt 3 / 2)) with ((sqrt 3 * sqrt 3) / 4) by field.
  rewrite sqrt_sqrt.
  field.
  left ; prove_sup0.
Qed.

Lemma tan_2PI3 : tan (2 * (PI / 3)) = - sqrt 3.
Proof.
  unfold tan; rewrite sin_2PI3, cos_2PI3.
  field.
Qed.

Lemma cos_5PI4 : cos (5 * (PI / 4)) = -1 / sqrt 2.
Proof.
  replace (5 * (PI / 4)) with (PI / 4 + PI) by field.
  rewrite neg_cos; rewrite cos_PI4; unfold Rdiv.
  ring.
Qed.

Lemma sin_5PI4 : sin (5 * (PI / 4)) = -1 / sqrt 2.
Proof.
  replace (5 * (PI / 4)) with (PI / 4 + PI) by field.
  rewrite neg_sin; rewrite sin_PI4; unfold Rdiv.
  ring.
Qed.

Lemma sin_cos5PI4 : cos (5 * (PI / 4)) = sin (5 * (PI / 4)).
Proof.
  rewrite cos_5PI4; rewrite sin_5PI4; reflexivity.
Qed.

Lemma Rgt_3PI2_0 : 0 < 3 * (PI / 2).
Proof.
  apply Rmult_lt_0_compat;
    [ prove_sup0
      | unfold Rdiv; apply Rmult_lt_0_compat;
        [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ] ].
Qed.

Lemma Rgt_2PI_0 : 0 < 2 * PI.
Proof.
  apply Rmult_lt_0_compat; [ prove_sup0 | apply PI_RGT_0 ].
Qed.

Lemma Rlt_PI_3PI2 : PI < 3 * (PI / 2).
Proof.
  generalize PI2_RGT_0; intro H1;
    generalize (Rplus_lt_compat_l PI 0 (PI / 2) H1);
      replace (PI + PI / 2) with (3 * (PI / 2)).
  rewrite Rplus_0_r; intro H2; assumption.
  pattern PI at 2; rewrite double_var; ring.
Qed.

Lemma Rlt_3PI2_2PI : 3 * (PI / 2) < 2 * PI.
Proof.
  generalize PI2_RGT_0; intro H1;
    generalize (Rplus_lt_compat_l (3 * (PI / 2)) 0 (PI / 2) H1);
      replace (3 * (PI / 2) + PI / 2) with (2 * PI).
  rewrite Rplus_0_r; intro H2; assumption.
  rewrite double; pattern PI at 1 2; rewrite double_var; ring.
Qed.

(***************************************************************)
(** Radian -> Degree | Degree -> Radian                        *)
(***************************************************************)

Definition plat : R := 180.
Definition toRad (x:R) : R := x * PI * / plat.
Definition toDeg (x:R) : R := x * plat * / PI.

Lemma rad_deg : forall x:R, toRad (toDeg x) = x.
Proof.
  intro; unfold toRad, toDeg;
    replace (x * plat * / PI * PI * / plat) with
    (x * (plat * / plat) * (PI * / PI)); [ idtac | ring ].
  repeat rewrite <- Rinv_r_sym.
  ring.
  apply PI_neq0.
  unfold plat; discrR.
Qed.

Lemma toRad_inj : forall x y:R, toRad x = toRad y -> x = y.
Proof.
  intros; unfold toRad in H; apply Rmult_eq_reg_l with PI.
  rewrite <- (Rmult_comm x); rewrite <- (Rmult_comm y).
  apply Rmult_eq_reg_l with (/ plat).
  rewrite <- (Rmult_comm (x * PI)); rewrite <- (Rmult_comm (y * PI));
    assumption.
  apply Rinv_neq_0_compat; unfold plat; discrR.
  apply PI_neq0.
Qed.

Lemma deg_rad : forall x:R, toDeg (toRad x) = x.
Proof.
  intro x; apply toRad_inj; rewrite (rad_deg (toRad x)); reflexivity.
Qed.

Definition sind (x:R) : R := sin (toRad x).
Definition cosd (x:R) : R := cos (toRad x).
Definition tand (x:R) : R := tan (toRad x).

Lemma Rsqr_sin_cos_d_one : forall x:R, Rsqr (sind x) + Rsqr (cosd x) = 1.
Proof.
  intro x; unfold sind; unfold cosd; apply sin2_cos2.
Qed.

(***************************************************)
(**               Other properties                 *)
(***************************************************)

Lemma sin_lb_ge_0 : forall a:R, 0 <= a -> a <= PI / 2 -> 0 <= sin_lb a.
Proof.
  intros; case (Rtotal_order 0 a); intro.
  left; apply sin_lb_gt_0; assumption.
  elim H1; intro.
  rewrite <- H2; unfold sin_lb; unfold sin_approx;
    unfold sum_f_R0; unfold sin_term;
      repeat rewrite pow_ne_zero.
  unfold Rdiv; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r;
    repeat rewrite Rplus_0_r; right; reflexivity.
  discriminate.
  discriminate.
  discriminate.
  discriminate.
  elim (Rlt_irrefl 0 (Rle_lt_trans 0 a 0 H H2)).
Qed.