1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Sumbool.
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis1.
Local Open Scope R_scope.
Fixpoint Dichotomy_lb (x y:R) (P:R -> bool) (N:nat) {struct N} : R :=
match N with
| O => x
| S n =>
let down := Dichotomy_lb x y P n in
let up := Dichotomy_ub x y P n in
let z := (down + up) / 2 in if P z then down else z
end
with Dichotomy_ub (x y:R) (P:R -> bool) (N:nat) {struct N} : R :=
match N with
| O => y
| S n =>
let down := Dichotomy_lb x y P n in
let up := Dichotomy_ub x y P n in
let z := (down + up) / 2 in if P z then z else up
end.
Definition dicho_lb (x y:R) (P:R -> bool) (N:nat) : R := Dichotomy_lb x y P N.
Definition dicho_up (x y:R) (P:R -> bool) (N:nat) : R := Dichotomy_ub x y P N.
(**********)
Lemma dicho_comp :
forall (x y:R) (P:R -> bool) (n:nat),
x <= y -> dicho_lb x y P n <= dicho_up x y P n.
Proof.
intros.
induction n as [| n Hrecn].
simpl; assumption.
simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
apply Rplus_le_compat_l.
assumption.
unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
rewrite <- (Rplus_comm (Dichotomy_ub x y P n)).
apply Rplus_le_compat_l.
assumption.
Qed.
Lemma dicho_lb_growing :
forall (x y:R) (P:R -> bool), x <= y -> Un_growing (dicho_lb x y P).
Proof.
intros.
unfold Un_growing.
intro.
simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
right; reflexivity.
unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
apply Rplus_le_compat_l.
replace (Dichotomy_ub x y P n) with (dicho_up x y P n);
[ apply dicho_comp; assumption | reflexivity ].
Qed.
Lemma dicho_up_decreasing :
forall (x y:R) (P:R -> bool), x <= y -> Un_decreasing (dicho_up x y P).
Proof.
intros.
unfold Un_decreasing.
intro.
simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
replace (Dichotomy_ub x y P n) with (dicho_up x y P n);
[ idtac | reflexivity ].
replace (Dichotomy_lb x y P n) with (dicho_lb x y P n);
[ idtac | reflexivity ].
rewrite <- (Rplus_comm (dicho_up x y P n)).
apply Rplus_le_compat_l.
apply dicho_comp; assumption.
right; reflexivity.
Qed.
Lemma dicho_lb_maj_y :
forall (x y:R) (P:R -> bool), x <= y -> forall n:nat, dicho_lb x y P n <= y.
Proof.
intros.
induction n as [| n Hrecn].
simpl; assumption.
simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
assumption.
unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ].
rewrite double; apply Rplus_le_compat.
assumption.
pattern y at 2; replace y with (Dichotomy_ub x y P 0);
[ idtac | reflexivity ].
apply decreasing_prop.
assert (H0 := dicho_up_decreasing x y P H).
assumption.
apply le_O_n.
Qed.
Lemma dicho_lb_maj :
forall (x y:R) (P:R -> bool), x <= y -> has_ub (dicho_lb x y P).
Proof.
intros.
cut (forall n:nat, dicho_lb x y P n <= y).
intro.
unfold has_ub.
unfold bound.
exists y.
unfold is_upper_bound.
intros.
elim H1; intros.
rewrite H2; apply H0.
apply dicho_lb_maj_y; assumption.
Qed.
Lemma dicho_up_min_x :
forall (x y:R) (P:R -> bool), x <= y -> forall n:nat, x <= dicho_up x y P n.
Proof.
intros.
induction n as [| n Hrecn].
simpl; assumption.
simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ].
rewrite double; apply Rplus_le_compat.
pattern x at 1; replace x with (Dichotomy_lb x y P 0);
[ idtac | reflexivity ].
apply tech9.
assert (H0 := dicho_lb_growing x y P H).
assumption.
apply le_O_n.
assumption.
assumption.
Qed.
Lemma dicho_up_min :
forall (x y:R) (P:R -> bool), x <= y -> has_lb (dicho_up x y P).
Proof.
intros.
cut (forall n:nat, x <= dicho_up x y P n).
intro.
unfold has_lb.
unfold bound.
exists (- x).
unfold is_upper_bound.
intros.
elim H1; intros.
rewrite H2.
unfold opp_seq.
apply Ropp_le_contravar.
apply H0.
apply dicho_up_min_x; assumption.
Qed.
Lemma dicho_lb_cv :
forall (x y:R) (P:R -> bool),
x <= y -> { l:R | Un_cv (dicho_lb x y P) l }.
Proof.
intros.
apply growing_cv.
apply dicho_lb_growing; assumption.
apply dicho_lb_maj; assumption.
Qed.
Lemma dicho_up_cv :
forall (x y:R) (P:R -> bool),
x <= y -> { l:R | Un_cv (dicho_up x y P) l }.
Proof.
intros.
apply decreasing_cv.
apply dicho_up_decreasing; assumption.
apply dicho_up_min; assumption.
Qed.
Lemma dicho_lb_dicho_up :
forall (x y:R) (P:R -> bool) (n:nat),
x <= y -> dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n.
Proof.
intros.
induction n as [| n Hrecn].
simpl.
unfold Rdiv; rewrite Rinv_1; ring.
simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
unfold Rdiv.
replace
((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P n)
with ((dicho_up x y P n - dicho_lb x y P n) / 2).
unfold Rdiv; rewrite Hrecn.
unfold Rdiv.
rewrite Rinv_mult_distr.
ring.
discrR.
apply pow_nonzero; discrR.
pattern (Dichotomy_lb x y P n) at 2;
rewrite (double_var (Dichotomy_lb x y P n));
unfold dicho_up, dicho_lb, Rminus, Rdiv; ring.
replace
(Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)
with ((dicho_up x y P n - dicho_lb x y P n) / 2).
unfold Rdiv; rewrite Hrecn.
unfold Rdiv.
rewrite Rinv_mult_distr.
ring.
discrR.
apply pow_nonzero; discrR.
pattern (Dichotomy_ub x y P n) at 1;
rewrite (double_var (Dichotomy_ub x y P n));
unfold dicho_up, dicho_lb, Rminus, Rdiv; ring.
Qed.
Definition pow_2_n (n:nat) := 2 ^ n.
Lemma pow_2_n_neq_R0 : forall n:nat, pow_2_n n <> 0.
Proof.
intro.
unfold pow_2_n.
apply pow_nonzero.
discrR.
Qed.
Lemma pow_2_n_growing : Un_growing pow_2_n.
Proof.
unfold Un_growing.
intro.
replace (S n) with (n + 1)%nat;
[ unfold pow_2_n; rewrite pow_add | ring ].
pattern (2 ^ n) at 1; rewrite <- Rmult_1_r.
apply Rmult_le_compat_l.
left; apply pow_lt; prove_sup0.
simpl.
rewrite Rmult_1_r.
pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
apply Rlt_0_1.
Qed.
Lemma pow_2_n_infty : cv_infty pow_2_n.
Proof.
cut (forall N:nat, INR N <= 2 ^ N).
intros.
unfold cv_infty.
intro.
case (total_order_T 0 M); intro.
elim s; intro.
set (N := up M).
cut (0 <= N)%Z.
intro.
elim (IZN N H0); intros N0 H1.
exists N0.
intros.
apply Rlt_le_trans with (INR N0).
rewrite INR_IZR_INZ.
rewrite <- H1.
unfold N.
assert (H3 := archimed M).
elim H3; intros; assumption.
apply Rle_trans with (pow_2_n N0).
unfold pow_2_n; apply H.
apply Rge_le.
apply growing_prop.
apply pow_2_n_growing.
assumption.
apply le_IZR.
unfold N.
simpl.
assert (H0 := archimed M); elim H0; intros.
left; apply Rlt_trans with M; assumption.
exists 0%nat; intros.
rewrite <- b.
unfold pow_2_n; apply pow_lt; prove_sup0.
exists 0%nat; intros.
apply Rlt_trans with 0.
assumption.
unfold pow_2_n; apply pow_lt; prove_sup0.
simple induction N.
simpl.
left; apply Rlt_0_1.
intros.
pattern (S n) at 2; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite S_INR; rewrite pow_add.
simpl.
rewrite Rmult_1_r.
apply Rle_trans with (2 ^ n).
rewrite <- (Rplus_comm 1).
rewrite <- (Rmult_1_r (INR n)).
apply (poly n 1).
apply Rlt_0_1.
pattern (2 ^ n) at 1; rewrite <- Rplus_0_r.
rewrite <- (Rmult_comm 2).
rewrite double.
apply Rplus_le_compat_l.
left; apply pow_lt; prove_sup0.
Qed.
Lemma cv_dicho :
forall (x y l1 l2:R) (P:R -> bool),
x <= y ->
Un_cv (dicho_lb x y P) l1 -> Un_cv (dicho_up x y P) l2 -> l1 = l2.
Proof.
intros.
assert (H2 := CV_minus _ _ _ _ H0 H1).
cut (Un_cv (fun i:nat => dicho_lb x y P i - dicho_up x y P i) 0).
intro.
assert (H4 := UL_sequence _ _ _ H2 H3).
symmetry ; apply Rminus_diag_uniq_sym; assumption.
unfold Un_cv; unfold R_dist.
intros.
assert (H4 := cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty).
case (total_order_T x y); intro.
elim s; intro.
unfold Un_cv in H4; unfold R_dist in H4.
cut (0 < y - x).
intro Hyp.
cut (0 < eps / (y - x)).
intro.
elim (H4 (eps / (y - x)) H5); intros N H6.
exists N; intros.
replace (dicho_lb x y P n - dicho_up x y P n - 0) with
(dicho_lb x y P n - dicho_up x y P n); [ idtac | ring ].
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr'.
rewrite dicho_lb_dicho_up.
unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (y - x)).
apply Rmult_lt_reg_l with (/ (y - x)).
apply Rinv_0_lt_compat; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (/ 2 ^ n) with (/ 2 ^ n - 0);
[ unfold pow_2_n, Rdiv in H6; rewrite <- (Rmult_comm eps); apply H6;
assumption
| ring ].
red; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp).
apply Rle_ge.
apply Rplus_le_reg_l with x; rewrite Rplus_0_r.
replace (x + (y - x)) with y; [ assumption | ring ].
assumption.
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ].
apply Rplus_lt_reg_l with x; rewrite Rplus_0_r.
replace (x + (y - x)) with y; [ assumption | ring ].
exists 0%nat; intros.
replace (dicho_lb x y P n - dicho_up x y P n - 0) with
(dicho_lb x y P n - dicho_up x y P n); [ idtac | ring ].
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr'.
rewrite dicho_lb_dicho_up.
rewrite b.
unfold Rminus, Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l;
rewrite Rabs_R0; assumption.
assumption.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
Qed.
Definition cond_positivity (x:R) : bool :=
match Rle_dec 0 x with
| left _ => true
| right _ => false
end.
(** Sequential caracterisation of continuity *)
Lemma continuity_seq :
forall (f:R -> R) (Un:nat -> R) (l:R),
continuity_pt f l -> Un_cv Un l -> Un_cv (fun i:nat => f (Un i)) (f l).
Proof.
unfold continuity_pt, Un_cv; unfold continue_in.
unfold limit1_in.
unfold limit_in.
unfold dist.
simpl.
unfold R_dist.
intros.
elim (H eps H1); intros alp H2.
elim H2; intros.
elim (H0 alp H3); intros N H5.
exists N; intros.
case (Req_dec (Un n) l); intro.
rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
apply H4.
split.
unfold D_x, no_cond.
split.
trivial.
apply (not_eq_sym (A:=R)); assumption.
apply H5; assumption.
Qed.
Lemma dicho_lb_car :
forall (x y:R) (P:R -> bool) (n:nat),
P x = false -> P (dicho_lb x y P n) = false.
Proof.
intros.
induction n as [| n Hrecn].
simpl.
assumption.
simpl.
assert
(X :=
sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))).
elim X; intro.
rewrite a.
unfold dicho_lb in Hrecn; assumption.
rewrite b.
assumption.
Qed.
Lemma dicho_up_car :
forall (x y:R) (P:R -> bool) (n:nat),
P y = true -> P (dicho_up x y P n) = true.
Proof.
intros.
induction n as [| n Hrecn].
simpl.
assumption.
simpl.
assert
(X :=
sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))).
elim X; intro.
rewrite a.
unfold dicho_lb in Hrecn; assumption.
rewrite b.
assumption.
Qed.
(** Intermediate Value Theorem *)
Lemma IVT :
forall (f:R -> R) (x y:R),
continuity f ->
x < y -> f x < 0 -> 0 < f y -> { z:R | x <= z <= y /\ f z = 0 }.
Proof.
intros.
cut (x <= y).
intro.
generalize (dicho_lb_cv x y (fun z:R => cond_positivity (f z)) H3).
generalize (dicho_up_cv x y (fun z:R => cond_positivity (f z)) H3).
intros X X0.
elim X; intros.
elim X0; intros.
assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p).
rewrite H4 in p0.
exists x0.
split.
split.
apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0).
simpl.
right; reflexivity.
apply growing_ineq.
apply dicho_lb_growing; assumption.
assumption.
apply Rle_trans with (dicho_up x y (fun z:R => cond_positivity (f z)) 0).
apply decreasing_ineq.
apply dicho_up_decreasing; assumption.
assumption.
right; reflexivity.
2: left; assumption.
set (Vn := fun n:nat => dicho_lb x y (fun z:R => cond_positivity (f z)) n).
set (Wn := fun n:nat => dicho_up x y (fun z:R => cond_positivity (f z)) n).
cut ((forall n:nat, f (Vn n) <= 0) -> f x0 <= 0).
cut ((forall n:nat, 0 <= f (Wn n)) -> 0 <= f x0).
intros.
cut (forall n:nat, f (Vn n) <= 0).
cut (forall n:nat, 0 <= f (Wn n)).
intros.
assert (H9 := H6 H8).
assert (H10 := H5 H7).
apply Rle_antisym; assumption.
intro.
unfold Wn.
cut (forall z:R, cond_positivity z = true <-> 0 <= z).
intro.
assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n).
elim (H7 (f (dicho_up x y (fun z:R => cond_positivity (f z)) n))); intros.
apply H9.
apply H8.
elim (H7 (f y)); intros.
apply H12.
left; assumption.
intro.
unfold cond_positivity.
case (Rle_dec 0 z); intro.
split.
intro; assumption.
intro; reflexivity.
split.
intro feqt;discriminate feqt.
intro.
elim n0; assumption.
unfold Vn.
cut (forall z:R, cond_positivity z = false <-> z < 0).
intros.
assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n).
left.
elim (H7 (f (dicho_lb x y (fun z:R => cond_positivity (f z)) n))); intros.
apply H9.
apply H8.
elim (H7 (f x)); intros.
apply H12.
assumption.
intro.
unfold cond_positivity.
case (Rle_dec 0 z); intro.
split.
intro feqt; discriminate feqt.
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H7)).
split.
intro; auto with real.
intro; reflexivity.
cut (Un_cv Wn x0).
intros.
assert (H7 := continuity_seq f Wn x0 (H x0) H5).
case (total_order_T 0 (f x0)); intro.
elim s; intro.
left; assumption.
rewrite <- b; right; reflexivity.
unfold Un_cv in H7; unfold R_dist in H7.
cut (0 < - f x0).
intro.
elim (H7 (- f x0) H8); intros.
cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H11 := H9 x2 H10).
rewrite Rabs_right in H11.
pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11.
unfold Rminus in H11; rewrite (Rplus_comm (f (Wn x2))) in H11.
assert (H12 := Rplus_lt_reg_l _ _ _ H11).
assert (H13 := H6 x2).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)).
apply Rle_ge; left; unfold Rminus; apply Rplus_le_lt_0_compat.
apply H6.
exact H8.
apply Ropp_0_gt_lt_contravar; assumption.
unfold Wn; assumption.
cut (Un_cv Vn x0).
intros.
assert (H7 := continuity_seq f Vn x0 (H x0) H5).
case (total_order_T 0 (f x0)); intro.
elim s; intro.
unfold Un_cv in H7; unfold R_dist in H7.
elim (H7 (f x0) a); intros.
cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H10 := H8 x2 H9).
rewrite Rabs_left in H10.
pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10.
rewrite Ropp_minus_distr' in H10.
unfold Rminus in H10.
assert (H11 := Rplus_lt_reg_l _ _ _ H10).
assert (H12 := H6 x2).
cut (0 < f (Vn x2)).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H13 H12)).
rewrite <- (Ropp_involutive (f (Vn x2))).
apply Ropp_0_gt_lt_contravar; assumption.
apply Rplus_lt_reg_l with (f x0 - f (Vn x2)).
rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0;
[ unfold Rminus; apply Rplus_lt_le_0_compat | ring ].
assumption.
apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
right; rewrite <- b; reflexivity.
left; assumption.
unfold Vn; assumption.
Qed.
Lemma IVT_cor :
forall (f:R -> R) (x y:R),
continuity f ->
x <= y -> f x * f y <= 0 -> { z:R | x <= z <= y /\ f z = 0 }.
Proof.
intros.
case (total_order_T 0 (f x)); intro.
case (total_order_T 0 (f y)); intro.
elim s; intro.
elim s0; intro.
cut (0 < f x * f y);
[ intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 H2))
| apply Rmult_lt_0_compat; assumption ].
exists y.
split.
split; [ assumption | right; reflexivity ].
symmetry ; exact b.
exists x.
split.
split; [ right; reflexivity | assumption ].
symmetry ; exact b.
elim s; intro.
cut (x < y).
intro.
assert (H3 := IVT (- f)%F x y (continuity_opp f H) H2).
cut ((- f)%F x < 0).
cut (0 < (- f)%F y).
intros.
elim (H3 H5 H4); intros.
exists x0.
elim p; intros.
split.
assumption.
unfold opp_fct in H7.
rewrite <- (Ropp_involutive (f x0)).
apply Ropp_eq_0_compat; assumption.
unfold opp_fct; apply Ropp_0_gt_lt_contravar; assumption.
unfold opp_fct.
apply Rplus_lt_reg_l with (f x); rewrite Rplus_opp_r; rewrite Rplus_0_r;
assumption.
inversion H0.
assumption.
rewrite H2 in a.
elim (Rlt_irrefl _ (Rlt_trans _ _ _ r a)).
exists x.
split.
split; [ right; reflexivity | assumption ].
symmetry ; assumption.
case (total_order_T 0 (f y)); intro.
elim s; intro.
cut (x < y).
intro.
apply IVT; assumption.
inversion H0.
assumption.
rewrite H2 in r.
elim (Rlt_irrefl _ (Rlt_trans _ _ _ r a)).
exists y.
split.
split; [ assumption | right; reflexivity ].
symmetry ; assumption.
cut (0 < f x * f y).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H2 H1)).
rewrite <- Rmult_opp_opp; apply Rmult_lt_0_compat;
apply Ropp_0_gt_lt_contravar; assumption.
Qed.
(** We can now define the square root function as the reciprocal
transformation of the square root function *)
Lemma Rsqrt_exists :
forall y:R, 0 <= y -> { z:R | 0 <= z /\ y = Rsqr z }.
Proof.
intros.
set (f := fun x:R => Rsqr x - y).
cut (f 0 <= 0).
intro.
cut (continuity f).
intro.
case (total_order_T y 1); intro.
elim s; intro.
cut (0 <= f 1).
intro.
cut (f 0 * f 1 <= 0).
intro.
assert (X := IVT_cor f 0 1 H1 (Rlt_le _ _ Rlt_0_1) H3).
elim X; intros t H4.
exists t.
elim H4; intros.
split.
elim H5; intros; assumption.
unfold f in H6.
apply Rminus_diag_uniq_sym; exact H6.
rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f 1)).
apply Rmult_le_compat_l; assumption.
unfold f.
rewrite Rsqr_1.
apply Rplus_le_reg_l with y.
rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
left; assumption.
exists 1.
split.
left; apply Rlt_0_1.
rewrite b; symmetry ; apply Rsqr_1.
cut (0 <= f y).
intro.
cut (f 0 * f y <= 0).
intro.
assert (X := IVT_cor f 0 y H1 H H3).
elim X; intros t H4.
exists t.
elim H4; intros.
split.
elim H5; intros; assumption.
unfold f in H6.
apply Rminus_diag_uniq_sym; exact H6.
rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f y)).
apply Rmult_le_compat_l; assumption.
unfold f.
apply Rplus_le_reg_l with y.
rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
pattern y at 1; rewrite <- Rmult_1_r.
unfold Rsqr; apply Rmult_le_compat_l.
assumption.
left; exact r.
replace f with (Rsqr - fct_cte y)%F.
apply continuity_minus.
apply derivable_continuous; apply derivable_Rsqr.
apply derivable_continuous; apply derivable_const.
reflexivity.
unfold f; rewrite Rsqr_0.
unfold Rminus; rewrite Rplus_0_l.
apply Rge_le.
apply Ropp_0_le_ge_contravar; assumption.
Qed.
(* Definition of the square root: R+->R *)
Definition Rsqrt (y:nonnegreal) : R :=
let (a,_) := Rsqrt_exists (nonneg y) (cond_nonneg y) in a.
(**********)
Lemma Rsqrt_positivity : forall x:nonnegreal, 0 <= Rsqrt x.
Proof.
intro.
assert (X := Rsqrt_exists (nonneg x) (cond_nonneg x)).
elim X; intros.
cut (x0 = Rsqrt x).
intros.
elim p; intros.
rewrite H in H0; assumption.
unfold Rsqrt.
case (Rsqrt_exists x (cond_nonneg x)).
intros.
elim p; elim a; intros.
apply Rsqr_inj.
assumption.
assumption.
rewrite <- H0; rewrite <- H2; reflexivity.
Qed.
(**********)
Lemma Rsqrt_Rsqrt : forall x:nonnegreal, Rsqrt x * Rsqrt x = x.
Proof.
intros.
assert (X := Rsqrt_exists (nonneg x) (cond_nonneg x)).
elim X; intros.
cut (x0 = Rsqrt x).
intros.
rewrite <- H.
elim p; intros.
rewrite H1; reflexivity.
unfold Rsqrt.
case (Rsqrt_exists x (cond_nonneg x)).
intros.
elim p; elim a; intros.
apply Rsqr_inj.
assumption.
assumption.
rewrite <- H0; rewrite <- H2; reflexivity.
Qed.
|