aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Rseries.v
blob: a5e4f8f7e0e6c7e812ee3c0b1d057c69594e2131 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Compare.
Local Open Scope R_scope.

Implicit Type r : R.

(* classical is needed for [Un_cv_crit] *)
(*********************************************************)
(** *        Definition of sequence and properties       *)
(*                                                       *)
(*********************************************************)

Section sequence.

(*********)
  Variable Un : nat -> R.

(*********)
  Fixpoint Rmax_N (N:nat) : R :=
    match N with
      | O => Un 0
      | S n => Rmax (Un (S n)) (Rmax_N n)
    end.

(*********)
  Definition EUn r : Prop :=  exists i : nat, r = Un i.

(*********)
  Definition Un_cv (l:R) : Prop :=
    forall eps:R,
      eps > 0 ->
      exists N : nat, (forall n:nat, (n >= N)%nat -> R_dist (Un n) l < eps).

(*********)
  Definition Cauchy_crit : Prop :=
    forall eps:R,
      eps > 0 ->
      exists N : nat,
        (forall n m:nat,
          (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps).

(*********)
  Definition Un_growing : Prop := forall n:nat, Un n <= Un (S n).

(*********)
  Lemma EUn_noempty :  exists r : R, EUn r.
  Proof.
    unfold EUn; split with (Un 0); split with 0%nat; trivial.
  Qed.

(*********)
  Lemma Un_in_EUn : forall n:nat, EUn (Un n).
  Proof.
    intro; unfold EUn; split with n; trivial.
  Qed.

(*********)
  Lemma Un_bound_imp :
    forall x:R, (forall n:nat, Un n <= x) -> is_upper_bound EUn x.
  Proof.
    intros; unfold is_upper_bound; intros; unfold EUn in H0; elim H0;
      clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1;
        trivial.
  Qed.

(*********)
  Lemma growing_prop :
    forall n m:nat, Un_growing -> (n >= m)%nat -> Un n >= Un m.
  Proof.
    double induction n m; intros.
    unfold Rge; right; trivial.
    exfalso; unfold ge in H1; generalize (le_Sn_O n0); intro; auto.
    cut (n0 >= 0)%nat.
    generalize H0; intros; unfold Un_growing in H0;
      apply
        (Rge_trans (Un (S n0)) (Un n0) (Un 0) (Rle_ge (Un n0) (Un (S n0)) (H0 n0))
          (H 0%nat H2 H3)).
    elim n0; auto.
    elim (lt_eq_lt_dec n1 n0); intro y.
    elim y; clear y; intro y.
    unfold ge in H2; generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2)); intro;
      exfalso; auto.
    rewrite y; unfold Rge; right; trivial.
    unfold ge in H0; generalize (H0 (S n0) H1 (lt_le_S n0 n1 y)); intro;
      unfold Un_growing in H1;
        apply
          (Rge_trans (Un (S n1)) (Un n1) (Un (S n0))
            (Rle_ge (Un n1) (Un (S n1)) (H1 n1)) H3).
  Qed.

(*********)
  Lemma Un_cv_crit_lub : Un_growing -> forall l, is_lub EUn l -> Un_cv l.
  Proof.
    intros Hug l H eps Heps.

    cut (exists N, Un N > l - eps).
    intros (N, H3).
    exists N.
    intros n H4.
    unfold R_dist.
    rewrite Rabs_left1, Ropp_minus_distr.
    apply Rplus_lt_reg_l with (Un n - eps).
    apply Rlt_le_trans with (Un N).
    now replace (Un n - eps + (l - Un n)) with (l - eps) by ring.
    replace (Un n - eps + eps) with (Un n) by ring.
    apply Rge_le.
    now apply growing_prop.
    apply Rle_minus.
    apply (proj1 H).
    now exists n.

    assert (Hi2pn: forall n, 0 < (/ 2)^n).
    clear. intros n.
    apply pow_lt.
    apply Rinv_0_lt_compat.
    now apply (IZR_lt 0 2).

    pose (test := fun n => match Rle_lt_dec (Un n) (l - eps) with left _ => false | right _ => true end).
    pose (sum := let fix aux n := match n with S n' => aux n' +
      if test n' then (/ 2)^n else 0 | O => 0 end in aux).

    assert (Hsum': forall m n, sum m <= sum (m + n)%nat <= sum m + (/2)^m - (/2)^(m + n)).
    clearbody test.
    clear -Hi2pn.
    intros m.
    induction n.
    rewrite<- plus_n_O.
    ring_simplify (sum m + (/ 2) ^ m - (/ 2) ^ m).
    split ; apply Rle_refl.
    rewrite <- plus_n_Sm.
    simpl.
    split.
    apply Rle_trans with (sum (m + n)%nat + 0).
    rewrite Rplus_0_r.
    apply IHn.
    apply Rplus_le_compat_l.
    case (test (m + n)%nat).
    apply Rlt_le.
    exact (Hi2pn (S (m + n))).
    apply Rle_refl.
    apply Rle_trans with (sum (m + n)%nat + / 2 * (/ 2) ^ (m + n)).
    apply Rplus_le_compat_l.
    case (test (m + n)%nat).
    apply Rle_refl.
    apply Rlt_le.
    exact (Hi2pn (S (m + n))).
    apply Rplus_le_reg_r with (-(/ 2 * (/ 2) ^ (m + n))).
    rewrite Rplus_assoc, Rplus_opp_r, Rplus_0_r.
    apply Rle_trans with (1 := proj2 IHn).
    apply Req_le.
    field.

    assert (Hsum: forall n, 0 <= sum n <= 1 - (/2)^n).
    intros N.
    generalize (Hsum' O N).
    simpl.
    now rewrite Rplus_0_l.

    destruct (completeness (fun x : R => exists n : nat, x = sum n)) as (m, (Hm1, Hm2)).
    exists 1.
    intros x (n, H1).
    rewrite H1.
    apply Rle_trans with (1 := proj2 (Hsum n)).
    apply Rlt_le.
    apply Rplus_lt_reg_l with ((/2)^n - 1).
    now ring_simplify.
    exists 0. now exists O.

    destruct (Rle_or_lt m 0) as [[Hm|Hm]|Hm].
    elim Rlt_not_le with (1 := Hm).
    apply Hm1.
    now exists O.

    assert (Hs0: forall n, sum n = 0).
    intros n.
    specialize (Hm1 (sum n) (ex_intro _ _ (eq_refl _))).
    apply Rle_antisym with (2 := proj1 (Hsum n)).
    now rewrite <- Hm.

    assert (Hub: forall n, Un n <= l - eps).
    intros n.
    generalize (eq_refl (sum (S n))).
    simpl sum at 1.
    rewrite 2!Hs0, Rplus_0_l.
    unfold test.
    destruct Rle_lt_dec. easy.
    intros H'.
    elim Rgt_not_eq with (2 := H').
    exact (Hi2pn (S n)).

    clear -Heps H Hub.
    destruct H as (_, H).
    refine (False_ind _ (Rle_not_lt _ _ (H (l - eps) _) _)).
    intros x (n, H1).
    now rewrite H1.
    apply Rplus_lt_reg_l with (eps - l).
    now ring_simplify.

    assert (Rabs (/2) < 1).
    rewrite Rabs_pos_eq.
    rewrite <- Rinv_1 at 3.
    apply Rinv_lt_contravar.
    rewrite Rmult_1_l.
    now apply (IZR_lt 0 2).
    now apply (IZR_lt 1 2).
    apply Rlt_le.
    apply Rinv_0_lt_compat.
    now apply (IZR_lt 0 2).
    destruct (pow_lt_1_zero (/2) H0 m Hm) as [N H4].
    exists N.
    apply Rnot_le_lt.
    intros H5.
    apply Rlt_not_le with (1 := H4 _ (le_refl _)).
    rewrite Rabs_pos_eq. 2: now apply Rlt_le.
    apply Hm2.
    intros x (n, H6).
    rewrite H6. clear x H6.

    assert (Hs: sum N = 0).
    clear H4.
    induction N.
    easy.
    simpl.
    assert (H6: Un N <= l - eps).
    apply Rle_trans with (2 := H5).
    apply Rge_le.
    apply growing_prop ; try easy.
    apply le_n_Sn.
    rewrite (IHN H6), Rplus_0_l.
    unfold test.
    destruct Rle_lt_dec.
    apply eq_refl.
    now elim Rlt_not_le with (1 := r).

    destruct (le_or_lt N n) as [Hn|Hn].
    rewrite le_plus_minus with (1 := Hn).
    apply Rle_trans with (1 := proj2 (Hsum' N (n - N)%nat)).
    rewrite Hs, Rplus_0_l.
    set (k := (N + (n - N))%nat).
    apply Rlt_le.
    apply Rplus_lt_reg_l with ((/2)^k - (/2)^N).
    now ring_simplify.
    apply Rle_trans with (sum N).
    rewrite le_plus_minus with (1 := Hn).
    rewrite plus_Snm_nSm.
    exact (proj1 (Hsum' _ _)).
    rewrite Hs.
    now apply Rlt_le.
  Qed.

(*********)
  Lemma Un_cv_crit : Un_growing -> bound EUn ->  exists l : R, Un_cv l.
  Proof.
    intros Hug Heub.
    exists (projT1 (completeness EUn Heub EUn_noempty)).
    destruct (completeness EUn Heub EUn_noempty) as (l, H).
    now apply Un_cv_crit_lub.
  Qed.

(*********)
  Lemma finite_greater :
    forall N:nat,  exists M : R, (forall n:nat, (n <= N)%nat -> Un n <= M).
  Proof.
    intro; induction  N as [| N HrecN].
    split with (Un 0); intros; rewrite (le_n_O_eq n H);
      apply (Req_le (Un n) (Un n) (eq_refl (Un n))).
    elim HrecN; clear HrecN; intros; split with (Rmax (Un (S N)) x); intros;
      elim (Rmax_Rle (Un (S N)) x (Un n)); intros; clear H1;
        inversion H0.
    rewrite <- H1; rewrite <- H1 in H2;
      apply
        (H2 (or_introl (Un n <= x) (Req_le (Un n) (Un n) (eq_refl (Un n))))).
    apply (H2 (or_intror (Un n <= Un (S N)) (H n H3))).
  Qed.

(*********)
  Lemma cauchy_bound : Cauchy_crit -> bound EUn.
  Proof.
    unfold Cauchy_crit, bound; intros; unfold is_upper_bound;
      unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros;
        generalize (H x); intro; generalize (le_dec x); intro;
          elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1));
            clear H; intros; unfold EUn in H; elim H; clear H;
              intros; elim (H1 x2); clear H1; intro y.
    unfold ge in H0; generalize (H0 x2 (le_n x) y); clear H0; intro;
      rewrite <- H in H0; unfold R_dist in H0; elim (Rabs_def2 (Un x - x1) 1 H0);
        clear H0; intros; elim (Rmax_Rle x0 (Un x + 1) x1);
          intros; apply H4; clear H3 H4; right; clear H H0 y;
            apply (Rlt_le x1 (Un x + 1)); generalize (Rlt_minus (-1) (Un x - x1) H1);
              clear H1; intro; apply (Rminus_lt x1 (Un x + 1));
                cut (-1 - (Un x - x1) = x1 - (Un x + 1));
                  [ intro; rewrite H0 in H; assumption | ring ].
    generalize (H2 x2 y); clear H2 H0; intro; rewrite <- H in H0;
      elim (Rmax_Rle x0 (Un x + 1) x1); intros; clear H1;
        apply H2; left; assumption.
  Qed.

End sequence.

(*****************************************************************)
(**  *       Definition of Power Series and properties           *)
(*                                                               *)
(*****************************************************************)

Section Isequence.

(*********)
  Variable An : nat -> R.

(*********)
  Definition Pser (x l:R) : Prop := infinite_sum (fun n:nat => An n * x ^ n) l.

End Isequence.

Lemma GP_infinite :
  forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)).
Proof.
  intros; unfold Pser; unfold infinite_sum; intros;
    elim (Req_dec x 0).
  intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1;
    cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1).
  intros; rewrite H3; rewrite R_dist_eq; auto.
  elim n; simpl.
  ring.
  intros; rewrite H3; ring.
  intro; cut (0 < eps * (Rabs (1 - x) * Rabs (/ x))).
  intro; elim (pow_lt_1_zero x H (eps * (Rabs (1 - x) * Rabs (/ x))) H2);
    intro N; intros; exists N; intros;
      cut
        (sum_f_R0 (fun n0:nat => 1 * x ^ n0) n = sum_f_R0 (fun n0:nat => x ^ n0) n).
  intros; rewrite H5;
    apply
      (Rmult_lt_reg_l (Rabs (1 - x))
        (R_dist (sum_f_R0 (fun n0:nat => x ^ n0) n) (/ (1 - x))) eps).
  apply Rabs_pos_lt.
  apply Rminus_eq_contra.
  apply Rlt_dichotomy_converse.
  right; unfold Rgt.
  apply (Rle_lt_trans x (Rabs x) 1).
  apply RRle_abs.
  assumption.
  unfold R_dist; rewrite <- Rabs_mult.
  rewrite Rmult_minus_distr_l.
  cut
    ((1 - x) * sum_f_R0 (fun n0:nat => x ^ n0) n =
      - (sum_f_R0 (fun n0:nat => x ^ n0) n * (x - 1))).
  intro; rewrite H6.
  rewrite GP_finite.
  rewrite Rinv_r.
  cut (- (x ^ (n + 1) - 1) - 1 = - x ^ (n + 1)).
  intro; rewrite H7.
  rewrite Rabs_Ropp; cut ((n + 1)%nat = S n); auto.
  intro H8; rewrite H8; simpl; rewrite Rabs_mult;
    apply
      (Rlt_le_trans (Rabs x * Rabs (x ^ n))
        (Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x)))) (
          Rabs (1 - x) * eps)).
  apply Rmult_lt_compat_l.
  apply Rabs_pos_lt.
  assumption.
  auto.
  cut
    (Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x))) =
      Rabs x * Rabs (/ x) * (eps * Rabs (1 - x))).
  clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r.
  rewrite Rabs_R1; cut (1 * (eps * Rabs (1 - x)) = Rabs (1 - x) * eps).
  intros; rewrite H9; unfold Rle; right; reflexivity.
  ring.
  assumption.
  ring.
  ring.
  ring.
  apply Rminus_eq_contra.
  apply Rlt_dichotomy_converse.
  right; unfold Rgt.
  apply (Rle_lt_trans x (Rabs x) 1).
  apply RRle_abs.
  assumption.
  ring; ring.
  elim n; simpl.
  ring.
  intros; rewrite H5.
  ring.
  apply Rmult_lt_0_compat.
  auto.
  apply Rmult_lt_0_compat.
  apply Rabs_pos_lt.
  apply Rminus_eq_contra.
  apply Rlt_dichotomy_converse.
  right; unfold Rgt.
  apply (Rle_lt_trans x (Rabs x) 1).
  apply RRle_abs.
  assumption.
  apply Rabs_pos_lt.
  apply Rinv_neq_0_compat.
  assumption.
Qed.