1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(*i $Id$ i*)
(***************************************************************************)
(** Basic lemmas for the classical reals numbers *)
(***************************************************************************)
Require Export Raxioms.
Require Export ZArithRing.
Require Omega.
Require Export Field.
(***************************************************************************)
(** Instantiating Ring tactic on reals *)
(***************************************************************************)
Lemma RTheory : (Ring_Theory Rplus Rmult R1 R0 Ropp [x,y:R]false).
Split.
Exact Rplus_sym.
Symmetry; Apply Rplus_assoc.
Exact Rmult_sym.
Symmetry; Apply Rmult_assoc.
Intro; Apply Rplus_Ol.
Intro; Apply Rmult_1l.
Exact Rplus_Ropp_r.
Intros.
Rewrite Rmult_sym.
Rewrite (Rmult_sym n p).
Rewrite (Rmult_sym m p).
Apply Rmult_Rplus_distr.
Intros; Contradiction.
Defined.
Add Field R Rplus Rmult R1 R0 Ropp [x,y:R]false Rinv RTheory Rinv_l
with minus:=Rminus div:=Rdiv.
(**************************************************************************)
(** Relation between orders and equality *)
(**************************************************************************)
(**********)
Lemma Rlt_antirefl:(r:R)~``r<r``.
Generalize Rlt_antisym. Intuition EAuto.
Qed.
Hints Resolve Rlt_antirefl : real.
Lemma Rlt_not_eq:(r1,r2:R)``r1<r2``->``r1<>r2``.
Red; Intros r1 r2 H H0; Apply (Rlt_antirefl r1).
Pattern 2 r1; Rewrite H0; Trivial.
Qed.
Lemma Rgt_not_eq:(r1,r2:R)``r1>r2``->``r1<>r2``.
Intros; Apply sym_not_eqT; Apply Rlt_not_eq; Auto with real.
Qed.
(**********)
Lemma imp_not_Req:(r1,r2:R)(``r1<r2``\/ ``r1>r2``) -> ``r1<>r2``.
Generalize Rlt_not_eq Rgt_not_eq. Intuition EAuto.
Qed.
Hints Resolve imp_not_Req : real.
(** Reasoning by case on equalities and order *)
(**********)
Lemma Req_EM:(r1,r2:R)(r1==r2)\/``r1<>r2``.
Intros ; Generalize (total_order_T r1 r2) imp_not_Req ; Intuition EAuto 3.
Qed.
Hints Resolve Req_EM : real.
(**********)
Lemma total_order:(r1,r2:R)``r1<r2``\/(r1==r2)\/``r1>r2``.
Intros;Generalize (total_order_T r1 r2);Tauto.
Qed.
(**********)
Lemma not_Req:(r1,r2:R)``r1<>r2``->(``r1<r2``\/``r1>r2``).
Intros; Generalize (total_order_T r1 r2) ; Tauto.
Qed.
(*********************************************************************************)
(** Order Lemma : relating [<], [>], [<=] and [>=] *)
(*********************************************************************************)
(**********)
Lemma Rlt_le:(r1,r2:R)``r1<r2``-> ``r1<=r2``.
Intros ; Red ; Tauto.
Qed.
Hints Resolve Rlt_le : real.
(**********)
Lemma Rle_ge : (r1,r2:R)``r1<=r2`` -> ``r2>=r1``.
NewDestruct 1; Red; Auto with real.
Qed.
(**********)
Lemma Rge_le : (r1,r2:R)``r1>=r2`` -> ``r2<=r1``.
NewDestruct 1; Red; Auto with real.
Qed.
(**********)
Lemma not_Rle:(r1,r2:R)~(``r1<=r2``)->``r1>r2``.
Intros r1 r2 ; Generalize (total_order r1 r2) ; Unfold Rle; Tauto.
Qed.
Hints Immediate Rle_ge Rge_le not_Rle : real.
(**********)
Lemma Rlt_le_not:(r1,r2:R)``r2<r1``->~(``r1<=r2``).
Generalize Rlt_antisym imp_not_Req ; Unfold Rle.
Intuition EAuto 3.
Qed.
Lemma Rle_not:(r1,r2:R)``r1>r2`` -> ~(``r1<=r2``).
Proof Rlt_le_not.
Hints Immediate Rlt_le_not : real.
Lemma Rle_not_lt: (r1, r2:R) ``r2 <= r1`` ->~ (``r1<r2``).
Intros r1 r2. Generalize (Rlt_antisym r1 r2) (imp_not_Req r1 r2).
Unfold Rle; Intuition.
Qed.
(**********)
Lemma Rlt_ge_not:(r1,r2:R)``r1<r2``->~(``r1>=r2``).
Generalize Rlt_le_not. Unfold Rle Rge. Intuition EAuto 3.
Qed.
Hints Immediate Rlt_ge_not : real.
(**********)
Lemma eq_Rle:(r1,r2:R)r1==r2->``r1<=r2``.
Unfold Rle; Tauto.
Qed.
Hints Immediate eq_Rle : real.
Lemma eq_Rge:(r1,r2:R)r1==r2->``r1>=r2``.
Unfold Rge; Tauto.
Qed.
Hints Immediate eq_Rge : real.
Lemma eq_Rle_sym:(r1,r2:R)r2==r1->``r1<=r2``.
Unfold Rle; Auto.
Qed.
Hints Immediate eq_Rle_sym : real.
Lemma eq_Rge_sym:(r1,r2:R)r2==r1->``r1>=r2``.
Unfold Rge; Auto.
Qed.
Hints Immediate eq_Rge_sym : real.
Lemma Rle_antisym : (r1,r2:R)``r1<=r2`` -> ``r2<=r1``-> r1==r2.
Intros r1 r2; Generalize (Rlt_antisym r1 r2) ; Unfold Rle ; Intuition.
Qed.
Hints Resolve Rle_antisym : real.
(**********)
Lemma Rle_le_eq:(r1,r2:R)(``r1<=r2``/\``r2<=r1``)<->(r1==r2).
Intuition.
Qed.
Lemma Rlt_rew : (x,x',y,y':R)``x==x'``->``x'<y'`` -> `` y' == y`` -> ``x < y``.
Intros; Replace x with x'; Replace y with y'; Assumption.
Qed.
(**********)
Lemma Rle_trans:(r1,r2,r3:R) ``r1<=r2``->``r2<=r3``->``r1<=r3``.
Generalize trans_eqT Rlt_trans Rlt_rew.
Unfold Rle.
Intuition EAuto 2.
Qed.
(**********)
Lemma Rle_lt_trans:(r1,r2,r3:R)``r1<=r2``->``r2<r3``->``r1<r3``.
Generalize Rlt_trans Rlt_rew.
Unfold Rle.
Intuition EAuto 2.
Qed.
(**********)
Lemma Rlt_le_trans:(r1,r2,r3:R)``r1<r2``->``r2<=r3``->``r1<r3``.
Generalize Rlt_trans Rlt_rew; Unfold Rle; Intuition EAuto 2.
Qed.
(** Decidability of the order *)
Lemma total_order_Rlt:(r1,r2:R)(sumboolT ``r1<r2`` ~(``r1<r2``)).
Intros;Generalize (total_order_T r1 r2) (imp_not_Req r1 r2) ; Intuition.
Qed.
(**********)
Lemma total_order_Rle:(r1,r2:R)(sumboolT ``r1<=r2`` ~(``r1<=r2``)).
Intros r1 r2.
Generalize (total_order_T r1 r2) (imp_not_Req r1 r2).
Intuition EAuto 4 with real.
Qed.
(**********)
Lemma total_order_Rgt:(r1,r2:R)(sumboolT ``r1>r2`` ~(``r1>r2``)).
Intros;Unfold Rgt;Intros;Apply total_order_Rlt.
Qed.
(**********)
Lemma total_order_Rge:(r1,r2:R)(sumboolT (``r1>=r2``) ~(``r1>=r2``)).
Intros;Generalize (total_order_Rle r2 r1);Intuition.
Qed.
Lemma total_order_Rlt_Rle:(r1,r2:R)(sumboolT ``r1<r2`` ``r2<=r1``).
Intros;Generalize (total_order_T r1 r2); Intuition.
Qed.
Lemma Rle_or_lt: (n, m:R)(Rle n m) \/ (Rlt m n).
Intros n m; Elim (total_order_Rlt_Rle m n);Auto with real.
Qed.
Lemma total_order_Rle_Rlt_eq :(r1,r2:R)``r1<=r2``->
(sumboolT ``r1<r2`` ``r1==r2``).
Intros r1 r2 H;Generalize (total_order_T r1 r2); Intuition.
Qed.
(**********)
Lemma inser_trans_R:(n,m,p,q:R)``n<=m<p``-> (sumboolT ``n<=m<q`` ``q<=m<p``).
Intros; Generalize (total_order_Rlt_Rle m q); Intuition.
Qed.
(****************************************************************)
(** Field Lemmas *)
(* This part contains lemma involving the Fields operations *)
(****************************************************************)
(*********************************************************)
(** Addition *)
(*********************************************************)
Lemma Rplus_ne:(r:R)``r+0==r``/\``0+r==r``.
Intro;Split;Ring.
Qed.
Hints Resolve Rplus_ne : real v62.
Lemma Rplus_Or:(r:R)``r+0==r``.
Intro; Ring.
Qed.
Hints Resolve Rplus_Or : real.
(**********)
Lemma Rplus_Ropp_l:(r:R)``(-r)+r==0``.
Intro; Ring.
Qed.
Hints Resolve Rplus_Ropp_l : real.
(**********)
Lemma Rplus_Ropp:(x,y:R)``x+y==0``->``y== -x``.
Intros; Replace y with ``(-x+x)+y``;
[ Rewrite -> Rplus_assoc; Rewrite -> H; Ring
| Ring ].
Qed.
(*i New i*)
Hint eqT_R_congr : real := Resolve (congr_eqT R).
Lemma Rplus_plus_r:(r,r1,r2:R)(r1==r2)->``r+r1==r+r2``.
Auto with real.
Qed.
(*i Old i*)Hints Resolve Rplus_plus_r : v62.
(**********)
Lemma r_Rplus_plus:(r,r1,r2:R)``r+r1==r+r2``->r1==r2.
Intros; Transitivity ``(-r+r)+r1``.
Ring.
Transitivity ``(-r+r)+r2``.
Repeat Rewrite -> Rplus_assoc; Rewrite <- H; Reflexivity.
Ring.
Qed.
Hints Resolve r_Rplus_plus : real.
(**********)
Lemma Rplus_ne_i:(r,b:R)``r+b==r`` -> ``b==0``.
Intros r b; Pattern 2 r; Replace r with ``r+0``;
EAuto with real.
Qed.
(***********************************************************)
(** Multiplication *)
(***********************************************************)
(**********)
Lemma Rinv_r:(r:R)``r<>0``->``r* (/r)==1``.
Intros; Rewrite -> Rmult_sym; Auto with real.
Qed.
Hints Resolve Rinv_r : real.
Lemma Rinv_l_sym:(r:R)``r<>0``->``1==(/r) * r``.
Symmetry; Auto with real.
Qed.
Lemma Rinv_r_sym:(r:R)``r<>0``->``1==r* (/r)``.
Symmetry; Auto with real.
Qed.
Hints Resolve Rinv_l_sym Rinv_r_sym : real.
(**********)
Lemma Rmult_Or :(r:R) ``r*0==0``.
Intro; Ring.
Qed.
Hints Resolve Rmult_Or : real v62.
(**********)
Lemma Rmult_Ol:(r:R)(``0*r==0``).
Intro; Ring.
Qed.
Hints Resolve Rmult_Ol : real v62.
(**********)
Lemma Rmult_ne:(r:R)``r*1==r``/\``1*r==r``.
Intro;Split;Ring.
Qed.
Hints Resolve Rmult_ne : real v62.
(**********)
Lemma Rmult_1r:(r:R)(``r*1==r``).
Intro; Ring.
Qed.
Hints Resolve Rmult_1r : real.
(**********)
Lemma Rmult_mult_r:(r,r1,r2:R)r1==r2->``r*r1==r*r2``.
Auto with real.
Qed.
(*i OLD i*)Hints Resolve Rmult_mult_r : v62.
(**********)
Lemma r_Rmult_mult:(r,r1,r2:R)(``r*r1==r*r2``)->``r<>0``->(r1==r2).
Intros; Transitivity ``(/r * r)*r1``.
Rewrite Rinv_l; Auto with real.
Transitivity ``(/r * r)*r2``.
Repeat Rewrite Rmult_assoc; Rewrite H; Trivial.
Rewrite Rinv_l; Auto with real.
Qed.
(**********)
Lemma without_div_Od:(r1,r2:R)``r1*r2==0`` -> ``r1==0`` \/ ``r2==0``.
Intros; Case (Req_EM r1 ``0``); [Intro Hz | Intro Hnotz].
Auto.
Right; Apply r_Rmult_mult with r1; Trivial.
Rewrite H; Auto with real.
Qed.
(**********)
Lemma without_div_Oi:(r1,r2:R) ``r1==0``\/``r2==0`` -> ``r1*r2==0``.
Intros r1 r2 [H | H]; Rewrite H; Auto with real.
Qed.
Hints Resolve without_div_Oi : real.
(**********)
Lemma without_div_Oi1:(r1,r2:R) ``r1==0`` -> ``r1*r2==0``.
Auto with real.
Qed.
(**********)
Lemma without_div_Oi2:(r1,r2:R) ``r2==0`` -> ``r1*r2==0``.
Auto with real.
Qed.
(**********)
Lemma without_div_O_contr:(r1,r2:R)``r1*r2<>0`` -> ``r1<>0`` /\ ``r2<>0``.
Intros r1 r2 H; Split; Red; Intro; Apply H; Auto with real.
Qed.
(**********)
Lemma mult_non_zero :(r1,r2:R)``r1<>0`` /\ ``r2<>0`` -> ``r1*r2<>0``.
Red; Intros r1 r2 (H1,H2) H.
Case (without_div_Od r1 r2); Auto with real.
Qed.
Hints Resolve mult_non_zero : real.
(**********)
Lemma Rmult_Rplus_distrl:
(r1,r2,r3:R) ``(r1+r2)*r3 == (r1*r3)+(r2*r3)``.
Intros; Ring.
Qed.
(** Square function *)
(***********)
Definition Rsqr:R->R:=[r:R]``r*r``.
(***********)
Lemma Rsqr_O:(Rsqr ``0``)==``0``.
Unfold Rsqr; Auto with real.
Qed.
(***********)
Lemma Rsqr_r_R0:(r:R)(Rsqr r)==``0``->``r==0``.
Unfold Rsqr;Intros;Elim (without_div_Od r r H);Trivial.
Qed.
(*********************************************************)
(** Opposite *)
(*********************************************************)
(**********)
Lemma eq_Ropp:(r1,r2:R)(r1==r2)->``-r1 == -r2``.
Auto with real.
Qed.
Hints Resolve eq_Ropp : real.
(**********)
Lemma Ropp_O:``-0==0``.
Ring.
Qed.
Hints Resolve Ropp_O : real v62.
(**********)
Lemma eq_RoppO:(r:R)``r==0``-> ``-r==0``.
Intros; Rewrite -> H; Auto with real.
Qed.
Hints Resolve eq_RoppO : real.
(**********)
Lemma Ropp_Ropp:(r:R)``-(-r)==r``.
Intro; Ring.
Qed.
Hints Resolve Ropp_Ropp : real.
(*********)
Lemma Ropp_neq:(r:R)``r<>0``->``-r<>0``.
Red;Intros r H H0.
Apply H.
Transitivity ``-(-r)``; Auto with real.
Qed.
Hints Resolve Ropp_neq : real.
(**********)
Lemma Ropp_distr1:(r1,r2:R)``-(r1+r2)==(-r1 + -r2)``.
Intros; Ring.
Qed.
Hints Resolve Ropp_distr1 : real.
(** Opposite and multiplication *)
Lemma Ropp_mul1:(r1,r2:R)``(-r1)*r2 == -(r1*r2)``.
Intros; Ring.
Qed.
Hints Resolve Ropp_mul1 : real.
(**********)
Lemma Ropp_mul2:(r1,r2:R)``(-r1)*(-r2)==r1*r2``.
Intros; Ring.
Qed.
Hints Resolve Ropp_mul2 : real.
(** Substraction *)
Lemma minus_R0:(r:R)``r-0==r``.
Intro;Ring.
Qed.
Hints Resolve minus_R0 : real.
Lemma Rminus_Ropp:(r:R)``0-r==-r``.
Intro;Ring.
Qed.
Hints Resolve Rminus_Ropp : real.
(**********)
Lemma Ropp_distr2:(r1,r2:R)``-(r1-r2)==r2-r1``.
Intros; Ring.
Qed.
Hints Resolve Ropp_distr2 : real.
Lemma Ropp_distr3:(r1,r2:R)``-(r2-r1)==r1-r2``.
Intros; Ring.
Qed.
Hints Resolve Ropp_distr3 : real.
(**********)
Lemma eq_Rminus:(r1,r2:R)(r1==r2)->``r1-r2==0``.
Intros; Rewrite H; Ring.
Qed.
Hints Resolve eq_Rminus : real.
(**********)
Lemma Rminus_eq:(r1,r2:R)``r1-r2==0`` -> r1==r2.
Intros r1 r2; Unfold Rminus; Rewrite -> Rplus_sym; Intro.
Rewrite <- (Ropp_Ropp r2); Apply (Rplus_Ropp (Ropp r2) r1 H).
Qed.
Hints Immediate Rminus_eq : real.
Lemma Rminus_eq_right:(r1,r2:R)``r2-r1==0`` -> r1==r2.
Intros;Generalize (Rminus_eq r2 r1 H);Clear H;Intro H;Rewrite H;Ring.
Qed.
Hints Immediate Rminus_eq_right : real.
Lemma Rplus_Rminus: (p,q:R)``p+(q-p)``==q.
Intros; Ring.
Qed.
Hints Resolve Rplus_Rminus:real.
(**********)
Lemma Rminus_eq_contra:(r1,r2:R)``r1<>r2``->``r1-r2<>0``.
Red; Intros r1 r2 H H0.
Apply H; Auto with real.
Qed.
Hints Resolve Rminus_eq_contra : real.
Lemma Rminus_not_eq:(r1,r2:R)``r1-r2<>0``->``r1<>r2``.
Red; Intros; Elim H; Apply eq_Rminus; Auto.
Qed.
Hints Resolve Rminus_not_eq : real.
Lemma Rminus_not_eq_right:(r1,r2:R)``r2-r1<>0`` -> ``r1<>r2``.
Red; Intros;Elim H;Rewrite H0; Ring.
Qed.
Hints Resolve Rminus_not_eq_right : real.
(**********)
Lemma Rminus_distr: (x,y,z:R) ``x*(y-z)==(x*y) - (x*z)``.
Intros; Ring.
Qed.
(** Inverse *)
Lemma Rinv_R1:``/1==1``.
Apply (r_Rmult_mult ``1`` ``/1`` ``1``); Auto with real.
Rewrite (Rinv_r R1 R1_neq_R0);Auto with real.
Qed.
Hints Resolve Rinv_R1 : real.
(*********)
Lemma Rinv_neq_R0:(r:R)``r<>0``->``(/r)<>0``.
Red; Intros; Apply R1_neq_R0.
Replace ``1`` with ``(/r) * r``; Auto with real.
Qed.
Hints Resolve Rinv_neq_R0 : real.
(*********)
Lemma Rinv_Rinv:(r:R)``r<>0``->``/(/r)==r``.
Intros;Apply (r_Rmult_mult ``/r``); Auto with real.
Transitivity ``1``; Auto with real.
Qed.
Hints Resolve Rinv_Rinv : real.
(*********)
Lemma Rinv_Rmult:(r1,r2:R)``r1<>0``->``r2<>0``->``/(r1*r2)==(/r1)*(/r2)``.
Intros; Apply (r_Rmult_mult ``r1*r2``);Auto with real.
Transitivity ``1``; Auto with real.
Transitivity ``(r1*/r1)*(r2*(/r2))``; Auto with real.
Rewrite Rinv_r; Trivial.
Rewrite Rinv_r; Auto with real.
Ring.
Qed.
(*********)
Lemma Ropp_Rinv:(r:R)``r<>0``->``-(/r)==/(-r)``.
Intros; Apply (r_Rmult_mult ``-r``);Auto with real.
Transitivity ``1``; Auto with real.
Rewrite (Ropp_mul2 r ``/r``); Auto with real.
Qed.
Lemma Rinv_r_simpl_r : (r1,r2:R)``r1<>0``->``r1*(/r1)*r2==r2``.
Intros; Transitivity ``1*r2``; Auto with real.
Rewrite Rinv_r; Auto with real.
Qed.
Lemma Rinv_r_simpl_l : (r1,r2:R)``r1<>0``->``r2*r1*(/r1)==r2``.
Intros; Transitivity ``r2*1``; Auto with real.
Transitivity ``r2*(r1*/r1)``; Auto with real.
Qed.
Lemma Rinv_r_simpl_m : (r1,r2:R)``r1<>0``->``r1*r2*(/r1)==r2``.
Intros; Transitivity ``r2*1``; Auto with real.
Transitivity ``r2*(r1*/r1)``; Auto with real.
Ring.
Qed.
Hints Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m : real.
(*********)
Lemma Rinv_Rmult_simpl:(a,b,c:R)``a<>0``->``(a*(/b))*(c*(/a))==c*(/b)``.
Intros.
Transitivity ``(a*/a)*(c*(/b))``; Auto with real.
Ring.
Qed.
(** Order and addition *)
Lemma Rlt_compatibility_r:(r,r1,r2:R)``r1<r2``->``r1+r<r2+r``.
Intros.
Rewrite (Rplus_sym r1 r); Rewrite (Rplus_sym r2 r); Auto with real.
Qed.
Hints Resolve Rlt_compatibility_r : real.
(**********)
Lemma Rlt_anti_compatibility: (r,r1,r2:R)``r+r1 < r+r2`` -> ``r1<r2``.
Intros; Cut ``(-r+r)+r1 < (-r+r)+r2``.
Rewrite -> Rplus_Ropp_l.
Elim (Rplus_ne r1); Elim (Rplus_ne r2); Intros; Rewrite <- H3;
Rewrite <- H1; Auto with zarith real.
Rewrite -> Rplus_assoc; Rewrite -> Rplus_assoc;
Apply (Rlt_compatibility ``-r`` ``r+r1`` ``r+r2`` H).
Qed.
(**********)
Lemma Rle_compatibility:(r,r1,r2:R)``r1<=r2`` -> ``r+r1 <= r+r2 ``.
Unfold Rle; Intros; Elim H; Intro.
Left; Apply (Rlt_compatibility r r1 r2 H0).
Right; Rewrite <- H0; Auto with zarith real.
Qed.
(**********)
Lemma Rle_compatibility_r:(r,r1,r2:R)``r1<=r2`` -> ``r1+r<=r2+r``.
Unfold Rle; Intros; Elim H; Intro.
Left; Apply (Rlt_compatibility_r r r1 r2 H0).
Right; Rewrite <- H0; Auto with real.
Qed.
Hints Resolve Rle_compatibility Rle_compatibility_r : real.
(**********)
Lemma Rle_anti_compatibility: (r,r1,r2:R)``r+r1<=r+r2`` -> ``r1<=r2``.
Unfold Rle; Intros; Elim H; Intro.
Left; Apply (Rlt_anti_compatibility r r1 r2 H0).
Right; Apply (r_Rplus_plus r r1 r2 H0).
Qed.
(**********)
Lemma sum_inequa_Rle_lt:(a,x,b,c,y,d:R)``a<=x`` -> ``x<b`` ->
``c<y`` -> ``y<=d`` -> ``a+c < x+y < b+d``.
Intros;Split.
Apply Rlt_le_trans with ``a+y``; Auto with real.
Apply Rlt_le_trans with ``b+y``; Auto with real.
Qed.
(*********)
Lemma Rplus_lt:(r1,r2,r3,r4:R)``r1<r2`` -> ``r3<r4`` -> ``r1+r3 < r2+r4``.
Intros; Apply Rlt_trans with ``r2+r3``; Auto with real.
Qed.
Lemma Rplus_le:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3<=r4`` -> ``r1+r3 <= r2+r4``.
Intros; Apply Rle_trans with ``r2+r3``; Auto with real.
Qed.
(*********)
Lemma Rplus_lt_le_lt:(r1,r2,r3,r4:R)``r1<r2`` -> ``r3<=r4`` ->
``r1+r3 < r2+r4``.
Intros; Apply Rlt_le_trans with ``r2+r3``; Auto with real.
Qed.
(*********)
Lemma Rplus_le_lt_lt:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3<r4`` ->
``r1+r3 < r2+r4``.
Intros; Apply Rle_lt_trans with ``r2+r3``; Auto with real.
Qed.
Hints Immediate Rplus_lt Rplus_le Rplus_lt_le_lt Rplus_le_lt_lt : real.
(** Order and Opposite *)
(**********)
Lemma Rgt_Ropp:(r1,r2:R) ``r1 > r2`` -> ``-r1 < -r2``.
Unfold Rgt; Intros.
Apply (Rlt_anti_compatibility ``r2+r1``).
Replace ``r2+r1+(-r1)`` with r2.
Replace ``r2+r1+(-r2)`` with r1.
Trivial.
Ring.
Ring.
Qed.
Hints Resolve Rgt_Ropp.
(**********)
Lemma Rlt_Ropp:(r1,r2:R) ``r1 < r2`` -> ``-r1 > -r2``.
Unfold Rgt; Auto with real.
Qed.
Hints Resolve Rlt_Ropp : real.
Lemma Ropp_Rlt: (x,y:R) ``-y < -x`` ->``x<y``.
Intros x y H'.
Rewrite <- (Ropp_Ropp x); Rewrite <- (Ropp_Ropp y); Auto with real.
Qed.
Hints Resolve Ropp_Rlt : real.
Lemma Rlt_Ropp1:(r1,r2:R) ``r2 < r1`` -> ``-r1 < -r2``.
Auto with real.
Qed.
Hints Resolve Rlt_Ropp1 : real.
(**********)
Lemma Rle_Ropp:(r1,r2:R) ``r1 <= r2`` -> ``-r1 >= -r2``.
Unfold Rge; Intros r1 r2 [H|H]; Auto with real.
Qed.
Hints Resolve Rle_Ropp : real.
Lemma Ropp_Rle: (x,y:R) ``-y <= -x`` ->``x <= y``.
Intros x y H.
Elim H;Auto with real.
Intro H1;Rewrite <-(Ropp_Ropp x);Rewrite <-(Ropp_Ropp y);Rewrite H1;
Auto with real.
Qed.
Hints Resolve Ropp_Rle : real.
Lemma Rle_Ropp1:(r1,r2:R) ``r2 <= r1`` -> ``-r1 <= -r2``.
Intros r1 r2 H;Elim H;Auto with real.
Intro H1;Rewrite H1;Auto with real.
Qed.
Hints Resolve Rle_Ropp1 : real.
(**********)
Lemma Rge_Ropp:(r1,r2:R) ``r1 >= r2`` -> ``-r1 <= -r2``.
Unfold Rge; Intros r1 r2 [H|H]; Auto with real.
Qed.
Hints Resolve Rge_Ropp : real.
(**********)
Lemma Rlt_RO_Ropp:(r:R) ``0 < r`` -> ``0 > -r``.
Intros; Replace ``0`` with ``-0``; Auto with real.
Qed.
Hints Resolve Rlt_RO_Ropp : real.
(**********)
Lemma Rgt_RO_Ropp:(r:R) ``0 > r`` -> ``0 < -r``.
Intros; Replace ``0`` with ``-0``; Auto with real.
Qed.
Hints Resolve Rgt_RO_Ropp : real.
(**********)
Lemma Rle_RO_Ropp:(r:R) ``0 <= r`` -> ``0 >= -r``.
Intros; Replace ``0`` with ``-0``; Auto with real.
Qed.
Hints Resolve Rle_RO_Ropp : real.
(**********)
Lemma Rge_RO_Ropp:(r:R) ``0 >= r`` -> ``0 <= -r``.
Intros; Replace ``0`` with ``-0``; Auto with real.
Qed.
Hints Resolve Rge_RO_Ropp : real.
(** Order and multiplication *)
Lemma Rlt_monotony_r:(r,r1,r2:R)``0<r`` -> ``r1 < r2`` -> ``r1*r < r2*r``.
Intros; Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real.
Qed.
Hints Resolve Rlt_monotony_r.
Lemma Rlt_monotony_contra:
(x, y, z:R) ``0<z`` ->``z*x<z*y`` ->``x<y``.
Intros x y z H H0.
Case (total_order x y); Intros Eq0; Auto; Elim Eq0; Clear Eq0; Intros Eq0.
Rewrite Eq0 in H0;ElimType False;Apply (Rlt_antirefl ``z*y``);Auto.
Generalize (Rlt_monotony z y x H Eq0);Intro;ElimType False;
Generalize (Rlt_trans ``z*x`` ``z*y`` ``z*x`` H0 H1);Intro;
Apply (Rlt_antirefl ``z*x``);Auto.
Qed.
Lemma Rlt_anti_monotony:(r,r1,r2:R)``r < 0`` -> ``r1 < r2`` -> ``r*r1 > r*r2``.
Intros; Replace r with ``-(-r)``; Auto with real.
Rewrite (Ropp_mul1 ``-r``); Rewrite (Ropp_mul1 ``-r``).
Apply Rlt_Ropp; Auto with real.
Qed.
(**********)
Lemma Rle_monotony:
(r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r*r1 <= r*r2``.
Intros r r1 r2;Unfold Rle;Intros H H0;Elim H;Elim H0;Intros; Auto with real.
Right;Rewrite <- H2;Ring.
Qed.
Hints Resolve Rle_monotony : real.
Lemma Rle_monotony_r:
(r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r1*r <= r2*r``.
Intros r r1 r2 H;
Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real.
Qed.
Hints Resolve Rle_monotony_r : real.
Lemma Rle_monotony_contra:
(x, y, z:R) ``0<z`` ->``z*x<=z*y`` ->``x<=y``.
Intros x y z H H0;Case H0; Auto with real.
Intros H1; Apply Rlt_le.
Apply Rlt_monotony_contra with z := z;Auto.
Intros H1;Replace x with (Rmult (Rinv z) (Rmult z x)); Auto with real.
Replace y with (Rmult (Rinv z) (Rmult z y)).
Rewrite H1;Auto with real.
Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real.
Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real.
Qed.
Lemma Rle_anti_monotony
:(r,r1,r2:R)``r <= 0`` -> ``r1 <= r2`` -> ``r*r1 >= r*r2``.
Intros; Replace r with ``-(-r)``; Auto with real.
Rewrite (Ropp_mul1 ``-r``); Rewrite (Ropp_mul1 ``-r``).
Apply Rle_Ropp; Auto with real.
Qed.
Hints Resolve Rle_anti_monotony : real.
Lemma Rle_Rmult_comp:
(x, y, z, t:R) ``0 <= x`` -> ``0 <= z`` -> ``x <= y`` -> ``z <= t`` ->
``x*z <= y*t``.
Intros x y z t H' H'0 H'1 H'2.
Apply Rle_trans with r2 := ``x*t``; Auto with real.
Repeat Rewrite [x:?](Rmult_sym x t).
Apply Rle_monotony; Auto.
Apply Rle_trans with z; Auto.
Qed.
Hints Resolve Rle_Rmult_comp :real.
Lemma Rmult_lt:(r1,r2,r3,r4:R)``r3>0`` -> ``r2>0`` ->
`` r1 < r2`` -> ``r3 < r4`` -> ``r1*r3 < r2*r4``.
Intros; Apply Rlt_trans with ``r2*r3``; Auto with real.
Qed.
(** Order and Substractions *)
Lemma Rlt_minus:(r1,r2:R)``r1 < r2`` -> ``r1-r2 < 0``.
Intros; Apply (Rlt_anti_compatibility ``r2``).
Replace ``r2+(r1-r2)`` with r1.
Replace ``r2+0`` with r2; Auto with real.
Ring.
Qed.
Hints Resolve Rlt_minus : real.
(**********)
Lemma Rle_minus:(r1,r2:R)``r1 <= r2`` -> ``r1-r2 <= 0``.
Unfold Rle; Intros; Elim H; Auto with real.
Qed.
(**********)
Lemma Rminus_lt:(r1,r2:R)``r1-r2 < 0`` -> ``r1 < r2``.
Intros; Replace r1 with ``r1-r2+r2``.
Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real.
Ring.
Qed.
(**********)
Lemma Rminus_le:(r1,r2:R)``r1-r2 <= 0`` -> ``r1 <= r2``.
Intros; Replace r1 with ``r1-r2+r2``.
Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real.
Ring.
Qed.
(**********)
Lemma tech_Rplus:(r,s:R)``0<=r`` -> ``0<s`` -> ``r+s<>0``.
Intros; Apply sym_not_eqT; Apply Rlt_not_eq.
Rewrite Rplus_sym; Replace ``0`` with ``0+0``; Auto with real.
Qed.
Hints Immediate tech_Rplus : real.
(** Order and the square function *)
Lemma pos_Rsqr:(r:R)``0<=(Rsqr r)``.
Intro; Case (total_order_Rlt_Rle r ``0``); Unfold Rsqr; Intro.
Replace ``r*r`` with ``(-r)*(-r)``; Auto with real.
Replace ``0`` with ``-r*0``; Auto with real.
Replace ``0`` with ``0*r``; Auto with real.
Qed.
(***********)
Lemma pos_Rsqr1:(r:R)``r<>0``->``0<(Rsqr r)``.
Intros; Case (not_Req r ``0``); Trivial; Unfold Rsqr; Intro.
Replace ``r*r`` with ``(-r)*(-r)``; Auto with real.
Replace ``0`` with ``-r*0``; Auto with real.
Replace ``0`` with ``0*r``; Auto with real.
Qed.
Hints Resolve pos_Rsqr pos_Rsqr1 : real.
(** Zero is less than one *)
Lemma Rlt_R0_R1:``0<1``.
Replace ``1`` with ``(Rsqr 1)``; Auto with real.
Unfold Rsqr; Auto with real.
Qed.
Hints Resolve Rlt_R0_R1 : real.
(** Order and inverse *)
Lemma Rlt_Rinv:(r:R)``0<r``->``0</r``.
Intros; Change ``/r>0``; Apply not_Rle; Red; Intros.
Absurd ``1<=0``; Auto with real.
Replace ``1`` with ``r*(/r)``; Auto with real.
Replace ``0`` with ``r*0``; Auto with real.
Qed.
Hints Resolve Rlt_Rinv : real.
(*********)
Lemma Rlt_Rinv2:(r:R)``r < 0``->``/r < 0``.
Intros; Change ``0>/r``; Apply not_Rle; Red; Intros.
Absurd ``1<=0``; Auto with real.
Replace ``1`` with ``r*(/r)``; Auto with real.
Replace ``0`` with ``r*0``; Auto with real.
Qed.
Hints Resolve Rlt_Rinv2 : real.
(**********)
Lemma Rlt_monotony_rev:
(r,r1,r2:R)``0<r`` -> ``r*r1 < r*r2`` -> ``r1 < r2``.
Intros; Replace r1 with ``/r*(r*r1)``.
Replace r2 with ``/r*(r*r2)``; Auto with real.
Transitivity ``r*/r*r2``; Auto with real.
Ring.
Transitivity ``r*/r*r1``; Auto with real.
Ring.
Qed.
(*********)
Lemma Rinv_lt:(r1,r2:R)``0 < r1*r2`` -> ``r1 < r2`` -> ``/r2 < /r1``.
Intros; Apply Rlt_monotony_rev with ``r1*r2``; Auto with real.
Case (without_div_O_contr r1 r2 ); Intros; Auto with real.
Replace ``r1*r2*/r2`` with r1.
Replace ``r1*r2*/r1`` with r2; Trivial.
Symmetry; Auto with real.
Symmetry; Auto with real.
Qed.
Lemma Rlt_Rinv_R1: (x, y:R) ``1 <= x`` -> ``x<y`` ->``/y< /x``.
Intros x y H' H'0.
Cut (Rlt R0 x); [Intros Lt0 | Apply Rlt_le_trans with r2 := R1];
Auto with real.
Apply Rlt_monotony_contra with z := x; Auto with real.
Rewrite (Rmult_sym x (Rinv x)); Rewrite Rinv_l; Auto with real.
Apply Rlt_monotony_contra with z := y; Auto with real.
Apply Rlt_trans with r2:=x;Auto.
Cut ``y*(x*/y)==x``.
Intro H1;Rewrite H1;Rewrite (Rmult_1r y);Auto.
Rewrite (Rmult_sym x); Rewrite <- Rmult_assoc; Rewrite (Rmult_sym y (Rinv y));
Rewrite Rinv_l; Auto with real.
Apply imp_not_Req; Right.
Red; Apply Rlt_trans with r2 := x; Auto with real.
Qed.
Hints Resolve Rlt_Rinv_R1 :real.
(*********************************************************)
(** Greater *)
(*********************************************************)
(**********)
Lemma Rge_ge_eq:(r1,r2:R)``r1 >= r2`` -> ``r2 >= r1`` -> r1==r2.
Intros; Apply Rle_antisym; Auto with real.
Qed.
(**********)
Lemma Rlt_not_ge:(r1,r2:R)~(``r1<r2``)->``r1>=r2``.
Intros; Unfold Rge; Elim (total_order r1 r2); Intro.
Absurd ``r1<r2``; Trivial.
Case H0; Auto.
Qed.
(**********)
Lemma Rgt_not_le:(r1,r2:R)~(``r1>r2``)->``r1<=r2``.
Intros r1 r2 H; Apply Rge_le.
Exact (Rlt_not_ge r2 r1 H).
Qed.
(**********)
Lemma Rgt_ge:(r1,r2:R)``r1>r2`` -> ``r1 >= r2``.
Red; Auto with real.
Qed.
(**********)
Lemma Rlt_sym:(r1,r2:R)``r1<r2`` <-> ``r2>r1``.
Split; Unfold Rgt; Auto with real.
Qed.
(**********)
Lemma Rle_sym1:(r1,r2:R)``r1<=r2``->``r2>=r1``.
Proof Rle_ge.
(**********)
Lemma Rle_sym2:(r1,r2:R)``r2>=r1`` -> ``r1<=r2``.
Proof [r1,r2](Rge_le r2 r1).
(**********)
Lemma Rle_sym:(r1,r2:R)``r1<=r2``<->``r2>=r1``.
Split; Auto with real.
Qed.
(**********)
Lemma Rge_gt_trans:(r1,r2,r3:R)``r1>=r2``->``r2>r3``->``r1>r3``.
Unfold Rgt; Intros; Apply Rlt_le_trans with r2; Auto with real.
Qed.
(**********)
Lemma Rgt_ge_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>=r3`` -> ``r1>r3``.
Unfold Rgt; Intros; Apply Rle_lt_trans with r2; Auto with real.
Qed.
(**********)
Lemma Rgt_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>r3`` -> ``r1>r3``.
Unfold Rgt; Intros; Apply Rlt_trans with r2; Auto with real.
Qed.
(**********)
Lemma Rge_trans:(r1,r2,r3:R)``r1>=r2`` -> ``r2>=r3`` -> ``r1>=r3``.
Intros; Apply Rle_ge.
Apply Rle_trans with r2; Auto with real.
Qed.
(**********)
Lemma Rgt_RoppO:(r:R)``r>0``->``(-r)<0``.
Intros; Rewrite <- Ropp_O; Auto with real.
Qed.
(**********)
Lemma Rlt_RoppO:(r:R)``r<0``->``-r>0``.
Intros; Rewrite <- Ropp_O; Auto with real.
Qed.
Hints Resolve Rgt_RoppO Rlt_RoppO: real.
(**********)
Lemma Rlt_r_plus_R1:(r:R)``0<=r`` -> ``0<r+1``.
Intros.
Apply Rlt_le_trans with ``1``; Auto with real.
Pattern 1 ``1``; Replace ``1`` with ``0+1``; Auto with real.
Qed.
Hints Resolve Rlt_r_plus_R1: real.
(**********)
Lemma Rlt_r_r_plus_R1:(r:R)``r<r+1``.
Intros.
Pattern 1 r; Replace r with ``r+0``; Auto with real.
Qed.
Hints Resolve Rlt_r_r_plus_R1: real.
(**********)
Lemma tech_Rgt_minus:(r1,r2:R)``0<r2``->``r1>r1-r2``.
Red; Unfold Rminus; Intros.
Pattern 2 r1; Replace r1 with ``r1+0``; Auto with real.
Qed.
(***********)
Lemma Rgt_plus_plus_r:(r,r1,r2:R)``r1>r2``->``r+r1 > r+r2``.
Unfold Rgt; Auto with real.
Qed.
Hints Resolve Rgt_plus_plus_r : real.
(***********)
Lemma Rgt_r_plus_plus:(r,r1,r2:R)``r+r1 > r+r2`` -> ``r1 > r2``.
Unfold Rgt; Intros; Apply (Rlt_anti_compatibility r r2 r1 H).
Qed.
(***********)
Lemma Rge_plus_plus_r:(r,r1,r2:R)``r1>=r2`` -> ``r+r1 >= r+r2``.
Intros; Apply Rle_ge; Auto with real.
Qed.
Hints Resolve Rge_plus_plus_r : real.
(***********)
Lemma Rge_r_plus_plus:(r,r1,r2:R)``r+r1 >= r+r2`` -> ``r1>=r2``.
Intros; Apply Rle_ge; Apply Rle_anti_compatibility with r; Auto with real.
Qed.
(***********)
Lemma Rge_monotony:
(x,y,z:R) ``z>=0`` -> ``x>=y`` -> ``x*z >= y*z``.
Intros; Apply Rle_ge; Auto with real.
Qed.
(***********)
Lemma Rgt_minus:(r1,r2:R)``r1>r2`` -> ``r1-r2 > 0``.
Intros; Replace ``0`` with ``r2-r2``; Auto with real.
Unfold Rgt Rminus; Auto with real.
Qed.
(*********)
Lemma minus_Rgt:(r1,r2:R)``r1-r2 > 0`` -> ``r1>r2``.
Intros; Replace r2 with ``r2+0``; Auto with real.
Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real.
Qed.
(**********)
Lemma Rge_minus:(r1,r2:R)``r1>=r2`` -> ``r1-r2 >= 0``.
Unfold Rge; Intros; Elim H; Intro.
Left; Apply (Rgt_minus r1 r2 H0).
Right; Apply (eq_Rminus r1 r2 H0).
Qed.
(*********)
Lemma minus_Rge:(r1,r2:R)``r1-r2 >= 0`` -> ``r1>=r2``.
Intros; Replace r2 with ``r2+0``; Auto with real.
Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real.
Qed.
(*********)
Lemma Rmult_gt:(r1,r2:R)``r1>0`` -> ``r2>0`` -> ``r1*r2>0``.
Unfold Rgt;Intros.
Replace ``0`` with ``0*r2``; Auto with real.
Qed.
(*********)
Lemma Rmult_lt_0
:(r1,r2,r3,r4:R)``r3>=0``->``r2>0``->``r1<r2``->``r3<r4``->``r1*r3<r2*r4``.
Intros; Apply Rle_lt_trans with ``r2*r3``; Auto with real.
Qed.
(*********)
Lemma Rmult_lt_pos:(x,y:R)``0<x`` -> ``0<y`` -> ``0<x*y``.
Proof Rmult_gt.
(***********)
Lemma Rplus_eq_R0_l:(a,b:R)``0<=a`` -> ``0<=b`` -> ``a+b==0`` -> ``a==0``.
Intros a b [H|H] H0 H1; Auto with real.
Absurd ``0<a+b``.
Rewrite H1; Auto with real.
Replace ``0`` with ``0+0``; Auto with real.
Qed.
Lemma Rplus_eq_R0
:(a,b:R)``0<=a`` -> ``0<=b`` -> ``a+b==0`` -> ``a==0``/\``b==0``.
Split.
Apply Rplus_eq_R0_l with b; Auto with real.
Apply Rplus_eq_R0_l with a; Auto with real.
Rewrite Rplus_sym; Auto with real.
Qed.
(***********)
Lemma Rplus_Rsr_eq_R0_l:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``.
Intros; Apply Rsqr_r_R0; Apply Rplus_eq_R0_l with (Rsqr b); Auto with real.
Qed.
Lemma Rplus_Rsr_eq_R0:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``/\``b==0``.
Split.
Apply Rplus_Rsr_eq_R0_l with b; Auto with real.
Apply Rplus_Rsr_eq_R0_l with a; Auto with real.
Rewrite Rplus_sym; Auto with real.
Qed.
(**********************************************************)
(** Injection from [N] to [R] *)
(**********************************************************)
(**********)
Lemma S_INR:(n:nat)(INR (S n))==``(INR n)+1``.
Intro; Case n; Auto with real.
Qed.
(**********)
Lemma S_O_plus_INR:(n:nat)
(INR (plus (S O) n))==``(INR (S O))+(INR n)``.
Intro; Simpl; Case n; Intros; Auto with real.
Qed.
(**********)
Lemma plus_INR:(n,m:nat)(INR (plus n m))==``(INR n)+(INR m)``.
Intros n m; Induction n.
Simpl; Auto with real.
Replace (plus (S n) m) with (S (plus n m)); Auto with arith.
Repeat Rewrite S_INR.
Rewrite Hrecn; Ring.
Qed.
(**********)
Lemma minus_INR:(n,m:nat)(le m n)->(INR (minus n m))==``(INR n)-(INR m)``.
Intros n m le; Pattern m n; Apply le_elim_rel; Auto with real.
Intros; Rewrite <- minus_n_O; Auto with real.
Intros; Repeat Rewrite S_INR; Simpl.
Rewrite H0; Ring.
Qed.
(*********)
Lemma mult_INR:(n,m:nat)(INR (mult n m))==(Rmult (INR n) (INR m)).
Intros n m; Induction n.
Simpl; Auto with real.
Intros; Repeat Rewrite S_INR; Simpl.
Rewrite plus_INR; Rewrite Hrecn; Ring.
Qed.
Hints Resolve plus_INR minus_INR mult_INR : real.
(*********)
Lemma lt_INR_0:(n:nat)(lt O n)->``0 < (INR n)``.
Induction 1; Intros; Auto with real.
Rewrite S_INR; Auto with real.
Qed.
Hints Resolve lt_INR_0: real.
Lemma lt_INR:(n,m:nat)(lt n m)->``(INR n) < (INR m)``.
Induction 1; Intros; Auto with real.
Rewrite S_INR; Auto with real.
Rewrite S_INR; Apply Rlt_trans with (INR m0); Auto with real.
Qed.
Hints Resolve lt_INR: real.
Lemma INR_lt_1:(n:nat)(lt (S O) n)->``1 < (INR n)``.
Intros;Replace ``1`` with (INR (S O));Auto with real.
Qed.
Hints Resolve INR_lt_1: real.
(**********)
Lemma INR_pos : (p:positive)``0<(INR (convert p))``.
Intro; Apply lt_INR_0.
Simpl; Auto with real.
Apply compare_convert_O.
Qed.
Hints Resolve INR_pos : real.
(**********)
Lemma pos_INR:(n:nat)``0 <= (INR n)``.
Intro n; Case n.
Simpl; Auto with real.
Auto with arith real.
Qed.
Hints Resolve pos_INR: real.
Lemma INR_lt:(n,m:nat)``(INR n) < (INR m)``->(lt n m).
Double Induction 1 2;Intros.
Simpl;ElimType False;Apply (Rlt_antirefl R0);Auto.
Auto with arith.
Generalize (pos_INR (S n0));Intro;Cut (INR O)==R0;
[Intro H2;Rewrite H2 in H0;Idtac|Simpl;Trivial].
Generalize (Rle_lt_trans ``0`` (INR (S n0)) ``0`` H1 H0);Intro;
ElimType False;Apply (Rlt_antirefl R0);Auto.
Do 2 Rewrite S_INR in H1;Cut ``(INR n1) < (INR n0)``.
Intro H2;Generalize (H0 n0 H2);Intro;Auto with arith.
Apply (Rlt_anti_compatibility ``1`` (INR n1) (INR n0)).
Rewrite Rplus_sym;Rewrite (Rplus_sym ``1`` (INR n0));Trivial.
Qed.
Hints Resolve INR_lt: real.
(*********)
Lemma le_INR:(n,m:nat)(le n m)->``(INR n)<=(INR m)``.
Induction 1; Intros; Auto with real.
Rewrite S_INR.
Apply Rle_trans with (INR m0); Auto with real.
Qed.
Hints Resolve le_INR: real.
(**********)
Lemma not_INR_O:(n:nat)``(INR n)<>0``->~n=O.
Red; Intros n H H1.
Apply H.
Rewrite H1; Trivial.
Qed.
Hints Immediate not_INR_O : real.
(**********)
Lemma not_O_INR:(n:nat)~n=O->``(INR n)<>0``.
Intro n; Case n.
Intro; Absurd (0)=(0); Trivial.
Intros; Rewrite S_INR.
Apply Rgt_not_eq; Red; Auto with real.
Qed.
Hints Resolve not_O_INR : real.
Lemma not_nm_INR:(n,m:nat)~n=m->``(INR n)<>(INR m)``.
Intros n m H; Case (le_or_lt n m); Intros H1.
Case (le_lt_or_eq ? ? H1); Intros H2.
Apply imp_not_Req; Auto with real.
ElimType False;Auto.
Apply sym_not_eqT; Apply imp_not_Req; Auto with real.
Qed.
Hints Resolve not_nm_INR : real.
Lemma INR_eq: (n,m:nat)(INR n)==(INR m)->n=m.
Intros;Case (le_or_lt n m); Intros H1.
Case (le_lt_or_eq ? ? H1); Intros H2;Auto.
Cut ~n=m.
Intro H3;Generalize (not_nm_INR n m H3);Intro H4;
ElimType False;Auto.
Omega.
Symmetry;Cut ~m=n.
Intro H3;Generalize (not_nm_INR m n H3);Intro H4;
ElimType False;Auto.
Omega.
Qed.
Hints Resolve INR_eq : real.
Lemma INR_le: (n, m : nat) (Rle (INR n) (INR m)) -> (le n m).
Intros;Elim H;Intro.
Generalize (INR_lt n m H0);Intro;Auto with arith.
Generalize (INR_eq n m H0);Intro;Rewrite H1;Auto.
Qed.
Hints Resolve INR_le : real.
Lemma not_1_INR:(n:nat)~n=(S O)->``(INR n)<>1``.
Replace ``1`` with (INR (S O)); Auto with real.
Qed.
Hints Resolve not_1_INR : real.
(**********************************************************)
(** Injection from [Z] to [R] *)
(**********************************************************)
(**********)
Definition INZ:=inject_nat.
(**********)
Lemma IZN:(z:Z)(`0<=z`)->(Ex [n:nat] z=(INZ n)).
Unfold INZ;Intros;Apply inject_nat_complete;Assumption.
Qed.
(**********)
Lemma INR_IZR_INZ:(n:nat)(INR n)==(IZR (INZ n)).
Induction n; Auto with real.
Intros; Simpl; Rewrite bij1; Auto with real.
Qed.
Lemma plus_IZR_NEG_POS :
(p,q:positive)(IZR `(POS p)+(NEG q)`)==``(IZR (POS p))+(IZR (NEG q))``.
Intros.
Case (lt_eq_lt_dec (convert p) (convert q)).
Intros [H | H]; Simpl.
Rewrite convert_compare_INFERIEUR; Simpl; Trivial.
Rewrite (true_sub_convert q p).
Rewrite minus_INR; Auto with arith; Ring.
Apply ZC2; Apply convert_compare_INFERIEUR; Trivial.
Rewrite (convert_intro p q); Trivial.
Rewrite convert_compare_EGAL; Simpl; Auto with real.
Intro H; Simpl.
Rewrite convert_compare_SUPERIEUR; Simpl; Auto with arith.
Rewrite (true_sub_convert p q).
Rewrite minus_INR; Auto with arith; Ring.
Apply ZC2; Apply convert_compare_INFERIEUR; Trivial.
Qed.
(**********)
Lemma plus_IZR:(z,t:Z)(IZR `z+t`)==``(IZR z)+(IZR t)``.
NewDestruct z; NewDestruct t; Intros; Auto with real.
Simpl; Intros; Rewrite convert_add; Auto with real.
Apply plus_IZR_NEG_POS.
Rewrite Zplus_sym; Rewrite Rplus_sym; Apply plus_IZR_NEG_POS.
Simpl; Intros; Rewrite convert_add; Rewrite plus_INR; Auto with real.
Qed.
(**********)
Lemma mult_IZR:(z,t:Z)(IZR `z*t`)==``(IZR z)*(IZR t)``.
Intros z t; Case z; Case t; Simpl; Auto with real.
Intros t1 z1; Rewrite times_convert; Auto with real.
Intros t1 z1; Rewrite times_convert; Auto with real.
Rewrite Rmult_sym.
Rewrite Ropp_mul1; Auto with real.
Apply eq_Ropp; Rewrite mult_sym; Auto with real.
Intros t1 z1; Rewrite times_convert; Auto with real.
Rewrite Ropp_mul1; Auto with real.
Intros t1 z1; Rewrite times_convert; Auto with real.
Rewrite Ropp_mul2; Auto with real.
Qed.
(**********)
Lemma Ropp_Ropp_IZR:(z:Z)(IZR (`-z`))==``-(IZR z)``.
Intro z; Case z; Simpl; Auto with real.
Qed.
(**********)
Lemma Z_R_minus:(z1,z2:Z)``(IZR z1)-(IZR z2)``==(IZR `z1-z2`).
Intros; Unfold Rminus; Unfold Zminus.
Rewrite <-(Ropp_Ropp_IZR z2); Symmetry; Apply plus_IZR.
Qed.
(**********)
Lemma lt_O_IZR:(z:Z)``0 < (IZR z)``->`0<z`.
Intro z; Case z; Simpl; Intros.
Absurd ``0<0``; Auto with real.
Unfold Zlt; Simpl; Trivial.
Case Rlt_le_not with 1:=H.
Replace ``0`` with ``-0``; Auto with real.
Qed.
(**********)
Lemma lt_IZR:(z1,z2:Z)``(IZR z1)<(IZR z2)``->`z1<z2`.
Intros; Apply Zlt_O_minus_lt.
Apply lt_O_IZR.
Rewrite <- Z_R_minus.
Exact (Rgt_minus (IZR z2) (IZR z1) H).
Qed.
(**********)
Lemma eq_IZR_R0:(z:Z)``(IZR z)==0``->`z=0`.
NewDestruct z; Simpl; Intros; Auto with zarith.
Case (Rlt_not_eq ``0`` (INR (convert p))); Auto with real.
Case (Rlt_not_eq ``-(INR (convert p))`` ``0`` ); Auto with real.
Qed.
(**********)
Lemma eq_IZR:(z1,z2:Z)(IZR z1)==(IZR z2)->z1=z2.
Intros;Generalize (eq_Rminus (IZR z1) (IZR z2) H);
Rewrite (Z_R_minus z1 z2);Intro;Generalize (eq_IZR_R0 `z1-z2` H0);
Intro;Omega.
Qed.
(**********)
Lemma not_O_IZR:(z:Z)`z<>0`->``(IZR z)<>0``.
Intros z H; Red; Intros H0; Case H.
Apply eq_IZR; Auto.
Qed.
(*********)
Lemma le_O_IZR:(z:Z)``0<= (IZR z)``->`0<=z`.
Unfold Rle; Intros z [H|H].
Red;Intro;Apply (Zlt_le_weak `0` z (lt_O_IZR z H)); Assumption.
Rewrite (eq_IZR_R0 z); Auto with zarith real.
Qed.
(**********)
Lemma le_IZR:(z1,z2:Z)``(IZR z1)<=(IZR z2)``->`z1<=z2`.
Unfold Rle; Intros z1 z2 [H|H].
Apply (Zlt_le_weak z1 z2); Auto with real.
Apply lt_IZR; Trivial.
Rewrite (eq_IZR z1 z2); Auto with zarith real.
Qed.
(**********)
Lemma le_IZR_R1:(z:Z)``(IZR z)<=1``-> `z<=1`.
Pattern 1 ``1``; Replace ``1`` with (IZR `1`); Intros; Auto.
Apply le_IZR; Trivial.
Qed.
(**********)
Lemma IZR_ge: (m,n:Z) `m>= n` -> ``(IZR m)>=(IZR n)``.
Intros;Apply Rlt_not_ge;Red;Intro.
Generalize (lt_IZR m n H0); Intro; Omega.
Qed.
Lemma IZR_le: (m,n:Z) `m<= n` -> ``(IZR m)<=(IZR n)``.
Intros;Apply Rgt_not_le;Red;Intro.
Unfold Rgt in H0;Generalize (lt_IZR n m H0); Intro; Omega.
Qed.
Lemma IZR_lt: (m,n:Z) `m< n` -> ``(IZR m)<(IZR n)``.
Intros;Cut `m<=n`.
Intro H0;Elim (IZR_le m n H0);Intro;Auto.
Generalize (eq_IZR m n H1);Intro;ElimType False;Omega.
Omega.
Qed.
Lemma one_IZR_lt1 : (z:Z)``-1<(IZR z)<1``->`z=0`.
Intros z (H1,H2).
Apply Zle_antisym.
Apply Zlt_n_Sm_le; Apply lt_IZR; Trivial.
Replace `0` with (Zs `-1`); Trivial.
Apply Zlt_le_S; Apply lt_IZR; Trivial.
Qed.
Lemma one_IZR_r_R1
: (r:R)(z,x:Z)``r<(IZR z)<=r+1``->``r<(IZR x)<=r+1``->z=x.
Intros r z x (H1,H2) (H3,H4).
Cut `z-x=0`; Auto with zarith.
Apply one_IZR_lt1.
Rewrite <- Z_R_minus; Split.
Replace ``-1`` with ``r-(r+1)``.
Unfold Rminus; Apply Rplus_lt_le_lt; Auto with real.
Ring.
Replace ``1`` with ``(r+1)-r``.
Unfold Rminus; Apply Rplus_le_lt_lt; Auto with real.
Ring.
Qed.
(**********)
Lemma single_z_r_R1:
(r:R)(z,x:Z)``r<(IZR z)``->``(IZR z)<=r+1``->``r<(IZR x)``->
``(IZR x)<=r+1``->z=x.
Intros; Apply one_IZR_r_R1 with r; Auto.
Qed.
(**********)
Lemma tech_single_z_r_R1
:(r:R)(z:Z)``r<(IZR z)``->``(IZR z)<=r+1``
-> (Ex [s:Z] (~s=z/\``r<(IZR s)``/\``(IZR s)<=r+1``))->False.
Intros r z H1 H2 (s, (H3,(H4,H5))).
Apply H3; Apply single_z_r_R1 with r; Trivial.
Qed.
(*****************************************************************)
(** Definitions of new types *)
(*****************************************************************)
Record nonnegreal : Type := mknonnegreal {
nonneg :> R;
cond_nonneg : ``0<=nonneg`` }.
Record posreal : Type := mkposreal {
pos :> R;
cond_pos : ``0<pos`` }.
Record nonposreal : Type := mknonposreal {
nonpos :> R;
cond_nonpos : ``nonpos<=0`` }.
Record negreal : Type := mknegreal {
neg :> R;
cond_neg : ``neg<0`` }.
Record nonzeroreal : Type := mknonzeroreal {
nonzero :> R;
cond_nonzero : ~``nonzero==0`` }.
(**********)
Lemma prod_neq_R0 : (x,y:R) ~``x==0``->~``y==0``->~``x*y==0``.
Intros; Red; Intro; Generalize (without_div_Od x y H1); Intro; Elim H2; Intro; [Rewrite H3 in H; Elim H | Rewrite H3 in H0; Elim H0]; Reflexivity.
Qed.
(*********)
Lemma Rmult_le_pos : (x,y:R) ``0<=x`` -> ``0<=y`` -> ``0<=x*y``.
Intros; Rewrite <- (Rmult_Ol x); Rewrite <- (Rmult_sym x); Apply (Rle_monotony x R0 y H H0).
Qed.
(**********************************************************)
(** Other rules about < and <= *)
(**********************************************************)
Lemma gt0_plus_gt0_is_gt0 : (x,y:R) ``0<x`` -> ``0<y`` -> ``0<x+y``.
Intros; Apply Rlt_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rlt_compatibility; Assumption].
Qed.
Lemma ge0_plus_gt0_is_gt0 : (x,y:R) ``0<=x`` -> ``0<y`` -> ``0<x+y``.
Intros; Apply Rle_lt_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rlt_compatibility; Assumption].
Qed.
Lemma gt0_plus_ge0_is_gt0 : (x,y:R) ``0<x`` -> ``0<=y`` -> ``0<x+y``.
Intros; Rewrite <- Rplus_sym; Apply ge0_plus_gt0_is_gt0; Assumption.
Qed.
Lemma ge0_plus_ge0_is_ge0 : (x,y:R) ``0<=x`` -> ``0<=y`` -> ``0<=x+y``.
Intros; Apply Rle_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption].
Qed.
Lemma plus_le_is_le : (x,y,z:R) ``0<=y`` -> ``x+y<=z`` -> ``x<=z``.
Intros; Apply Rle_trans with ``x+y``; [Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption | Assumption].
Qed.
Lemma plus_lt_is_lt : (x,y,z:R) ``0<=y`` -> ``x+y<z`` -> ``x<z``.
Intros; Apply Rle_lt_trans with ``x+y``; [Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption | Assumption].
Qed.
Lemma Rmult_lt2 : (r1,r2,r3,r4:R) ``0<=r1`` -> ``0<=r3`` -> ``r1<r2`` -> ``r3<r4`` -> ``r1*r3<r2*r4``.
Intros; Apply Rle_lt_trans with ``r2*r3``; [Apply Rle_monotony_r; [Assumption | Left; Assumption] | Apply Rlt_monotony; [Apply Rle_lt_trans with r1; Assumption | Assumption]].
Qed.
Lemma le_epsilon : (x,y:R) ((eps : R) ``0<eps``->``x<=y+eps``) -> ``x<=y``.
Intros; Elim (total_order x y); Intro.
Left; Assumption.
Elim H0; Intro.
Right; Assumption.
Clear H0; Generalize (Rgt_minus x y H1); Intro H2; Change ``0<x-y`` in H2.
Cut ``0<2``.
Intro.
Generalize (Rmult_lt_pos ``x-y`` ``/2`` H2 (Rlt_Rinv ``2`` H0)); Intro H3; Generalize (H ``(x-y)*/2`` H3); Replace ``y+(x-y)*/2`` with ``(y+x)*/2``.
Intro H4; Generalize (Rle_monotony ``2`` x ``(y+x)*/2`` (Rlt_le ``0`` ``2`` H0) H4); Rewrite <- (Rmult_sym ``((y+x)*/2)``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Replace ``2*x`` with ``x+x``.
Rewrite (Rplus_sym y); Intro H5; Apply Rle_anti_compatibility with x; Assumption.
Ring.
Replace ``2`` with (INR (S (S O))); [Apply not_O_INR; Discriminate | Ring].
Pattern 2 y; Replace y with ``y/2+y/2``.
Unfold Rminus Rdiv.
Repeat Rewrite Rmult_Rplus_distrl.
Ring.
Cut (z:R) ``2*z == z + z``.
Intro.
Rewrite <- (H4 ``y/2``).
Unfold Rdiv.
Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m.
Replace ``2`` with (INR (2)).
Apply not_O_INR.
Discriminate.
Unfold INR; Reflexivity.
Intro; Ring.
Cut ~(O=(2)); [Intro H0; Generalize (lt_INR_0 (2) (neq_O_lt (2) H0)); Unfold INR; Intro; Assumption | Discriminate].
Qed.
(*****************************************************)
(** Complementary results about [INR] *)
(*****************************************************)
Fixpoint INR2 [n:nat] : R := Cases n of
O => ``0``
| (S n0) => Cases n0 of
O => ``1``
| (S _) => ``1+(INR2 n0)``
end
end.
Theorem INR_eq_INR2 : (n:nat) (INR n)==(INR2 n).
Induction n; [Unfold INR INR2; Reflexivity | Intros; Unfold INR INR2; Fold INR INR2; Rewrite H; Case n0; [Reflexivity | Intros; Ring]].
Qed.
Lemma add_auto : (p,q:nat) ``(INR2 (S p))+(INR2 q)==(INR2 p)+(INR2 (S q))``.
Intros; Repeat Rewrite <- INR_eq_INR2; Repeat Rewrite S_INR; Ring.
Qed.
|