aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Ratan.v
blob: ce39d5ffe410f38d45d5b9e46290ab848f09131e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Fourier.
Require Import Rbase.
Require Import PSeries_reg.
Require Import Rtrigo1.
Require Import Ranalysis_reg.
Require Import Rfunctions.
Require Import AltSeries.
Require Import Rseries.
Require Import SeqProp.
Require Import Ranalysis5.
Require Import SeqSeries.
Require Import PartSum.
Require Import Omega.

Local Open Scope R_scope.

(** Tools *)

Lemma Ropp_div : forall x y, -x/y = -(x/y).
Proof.
intros x y; unfold Rdiv; rewrite <-Ropp_mult_distr_l_reverse; reflexivity.
Qed.

Definition pos_half_prf : 0 < /2.
Proof. fourier. Qed.

Definition pos_half := mkposreal (/2) pos_half_prf.

Lemma Boule_half_to_interval :
  forall x , Boule (/2) pos_half x -> 0 <= x <= 1.
Proof.
unfold Boule, pos_half; simpl.
intros x b; apply Rabs_def2 in b; destruct b; split; fourier.
Qed.

Lemma Boule_lt : forall c r x, Boule c r x -> Rabs x < Rabs c + r.
Proof.
unfold Boule; intros c r x h.
apply Rabs_def2 in h; destruct h; apply Rabs_def1;
 (destruct (Rle_lt_dec 0 c);[rewrite Rabs_pos_eq; fourier | 
    rewrite <- Rabs_Ropp, Rabs_pos_eq; fourier]).
Qed.

(* The following lemma does not belong here. *)
Lemma Un_cv_ext :
  forall un vn, (forall n, un n = vn n) ->
  forall l, Un_cv un l -> Un_cv vn l.
Proof.
intros un vn quv l P eps ep; destruct (P eps ep) as [N Pn]; exists N.
intro n; rewrite <- quv; apply Pn.
Qed.

(* The following two lemmas are general purposes about alternated series.
  They do not belong here. *)
Lemma Alt_first_term_bound :forall f l N n,
   Un_decreasing f -> Un_cv f 0 ->
   Un_cv (sum_f_R0 (tg_alt f)) l ->
   (N <= n)%nat ->
   R_dist (sum_f_R0 (tg_alt f) n) l <= f N.
Proof.
intros f l.
assert (WLOG :
   forall n P, (forall k, (0 < k)%nat -> P k) ->
         ((forall k, (0 < k)%nat -> P k) -> P 0%nat) -> P n).
clear.
intros [ | n] P Hs Ho;[solve[apply Ho, Hs] | apply Hs; auto with arith].
intros N; pattern N; apply WLOG; clear N.
intros [ | N] Npos n decr to0 cv nN.
  clear -Npos; elimtype False; omega.
 assert (decr' : Un_decreasing (fun i => f (S N + i)%nat)).
  intros k; replace (S N+S k)%nat with (S (S N+k)) by ring.
  apply (decr (S N + k)%nat).
 assert (to' : Un_cv (fun i => f (S N + i)%nat) 0).
  intros eps ep; destruct (to0 eps ep) as [M PM].
  exists M; intros k kM; apply PM; omega.
 assert (cv' : Un_cv
         (sum_f_R0 (tg_alt (fun i => ((-1) ^ S N * f(S N + i)%nat))))
             (l - sum_f_R0 (tg_alt f) N)).
  intros eps ep; destruct (cv eps ep) as [M PM]; exists M.
  intros n' nM. 
  match goal with |- ?C => set (U := C) end.
  assert (nM' : (n' + S N >= M)%nat) by omega.
   generalize (PM _ nM'); unfold R_dist.
  rewrite (tech2 (tg_alt f) N (n' + S N)).
  assert (t : forall a b c, (a + b) - c = b - (c - a)) by (intros; ring).
  rewrite t; clear t; unfold U, R_dist; clear U.
  replace (n' + S N - S N)%nat with n' by omega.
  rewrite <- (sum_eq (tg_alt (fun i => (-1) ^ S N * f(S N + i)%nat))).
   tauto.
   intros i _; unfold tg_alt.
   rewrite <- Rmult_assoc, <- pow_add, !(plus_comm i); reflexivity.
  omega.
  assert (cv'' : Un_cv (sum_f_R0 (tg_alt (fun i => f (S N + i)%nat)))
                   ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))).
  apply (Un_cv_ext (fun n => (-1) ^ S N * 
            sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n)).
   intros n0; rewrite scal_sum; apply sum_eq; intros i _.
   unfold tg_alt; ring_simplify; replace (((-1) ^ S N) ^ 2) with 1.
    ring.
   rewrite <- pow_mult, mult_comm, pow_mult; replace ((-1) ^2) with 1 by ring.
   rewrite pow1; reflexivity.
  apply CV_mult.
   solve[intros eps ep; exists 0%nat; intros; rewrite R_dist_eq; auto].
  assumption.
 destruct (even_odd_cor N) as [p [Neven | Nodd]].
  rewrite Neven; destruct (alternated_series_ineq _ _ p decr to0 cv) as [B C].
  case (even_odd_cor n) as [p' [neven | nodd]].
   rewrite neven.
   destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
   unfold R_dist; rewrite Rabs_pos_eq;[ | fourier].
   assert (dist : (p <= p')%nat) by omega.
   assert (t := decreasing_prop _ _ _ (CV_ALT_step1 f decr) dist).
   apply Rle_trans with (sum_f_R0 (tg_alt f) (2 * p) - l).
    unfold Rminus; apply Rplus_le_compat_r; exact t.
   match goal with _ : ?a <= l, _ : l <= ?b |- _ => 
    replace (f (S (2 * p))) with (b - a) by
     (rewrite tech5; unfold tg_alt; rewrite pow_1_odd; ring); fourier
   end.
  rewrite nodd; destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
   unfold R_dist; rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_minus_distr;
     [ | fourier].
   assert (dist : (p <= p')%nat) by omega.
   apply Rle_trans with (l - sum_f_R0 (tg_alt f) (S (2 * p))).
    unfold Rminus; apply Rplus_le_compat_l, Ropp_le_contravar.
    solve[apply Rge_le, (growing_prop _ _ _ (CV_ALT_step0 f decr) dist)].
   unfold Rminus; rewrite tech5, Ropp_plus_distr, <- Rplus_assoc.
   unfold tg_alt at 2; rewrite pow_1_odd; fourier.
 rewrite Nodd; destruct (alternated_series_ineq _ _ p decr to0 cv) as [B _].
 destruct (alternated_series_ineq _ _ (S p) decr to0 cv) as [_ C].
 assert (keep : (2 * S p = S (S ( 2 * p)))%nat) by ring.
 case (even_odd_cor n) as [p' [neven | nodd]].
   rewrite neven;
   destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
   unfold R_dist; rewrite Rabs_pos_eq;[ | fourier].
   assert (dist : (S p < S p')%nat) by omega.
   apply Rle_trans with (sum_f_R0 (tg_alt f) (2 * S p) - l).
   unfold Rminus; apply Rplus_le_compat_r,
     (decreasing_prop _ _ _ (CV_ALT_step1 f decr)).
   omega.
  rewrite keep, tech5; unfold tg_alt at 2; rewrite <- keep, pow_1_even.
  fourier.
 rewrite nodd; destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
 unfold R_dist; rewrite <- Rabs_Ropp, Rabs_pos_eq;[ | fourier].
 rewrite Ropp_minus_distr.
 apply Rle_trans with (l - sum_f_R0 (tg_alt f) (S (2 * p))).
  unfold Rminus; apply Rplus_le_compat_l, Ropp_le_contravar, Rge_le,
   (growing_prop _ _ _ (CV_ALT_step0 f decr)); omega.
 generalize C; rewrite keep, tech5; unfold tg_alt.
 rewrite <- keep, pow_1_even.
 assert (t : forall a b c, a <= b + 1 * c -> a - b <= c) by (intros; fourier).
 solve[apply t].
clear WLOG; intros Hyp [ | n] decr to0 cv _.
 generalize (alternated_series_ineq f l 0 decr to0 cv).
 unfold R_dist, tg_alt; simpl; rewrite !Rmult_1_l, !Rmult_1_r.
 assert (f 1%nat <= f 0%nat) by apply decr.
 intros [A B]; rewrite Rabs_pos_eq; fourier.
apply Rle_trans with (f 1%nat).
 apply (Hyp 1%nat (le_n 1) (S n) decr to0 cv).
 omega.
solve[apply decr].
Qed.

Lemma Alt_CVU : forall (f : nat -> R -> R) g h c r,
   (forall x, Boule c r x ->Un_decreasing (fun n => f n x)) -> 
   (forall x, Boule c r x -> Un_cv (fun n => f n x) 0) ->
   (forall x, Boule c r x -> 
       Un_cv (sum_f_R0 (tg_alt  (fun i => f i x))) (g x)) ->
   (forall x n, Boule c r x -> f n x <= h n) ->
   (Un_cv h 0) ->
   CVU (fun N x => sum_f_R0 (tg_alt (fun i => f i x)) N) g c r.
Proof.
intros f g h c r decr to0 to_g bound bound0 eps ep.  
assert (ep' : 0 <eps/2) by fourier.
destruct (bound0 _ ep) as [N Pn]; exists N.
intros n y nN dy.
rewrite <- Rabs_Ropp, Ropp_minus_distr; apply Rle_lt_trans with (f n y).
 solve[apply (Alt_first_term_bound (fun i => f i y) (g y) n n); auto].
apply Rle_lt_trans with (h n).
 apply bound; assumption.
clear - nN Pn.
generalize (Pn _ nN); unfold R_dist; rewrite Rminus_0_r; intros t.
apply Rabs_def2 in t; tauto.
Qed.

(* The following lemmas are general purpose lemmas about squares. 
  They do not belong here *)

Lemma pow2_ge_0 : forall x, 0 <= x ^ 2.
Proof.
intros x; destruct (Rle_lt_dec 0 x).
 replace (x ^ 2) with (x * x) by field.
 apply Rmult_le_pos; assumption.
 replace (x ^ 2) with ((-x) * (-x)) by field.
apply Rmult_le_pos; fourier.
Qed.

Lemma pow2_abs : forall x,  Rabs x ^ 2 = x ^ 2.
Proof.
intros x; destruct (Rle_lt_dec 0 x).
 rewrite Rabs_pos_eq;[field | assumption].
rewrite <- Rabs_Ropp, Rabs_pos_eq;[field | fourier].
Qed.

(** * Properties of tangent *)

Lemma derivable_pt_tan : forall x, -PI/2 < x < PI/2 -> derivable_pt tan x.
Proof.
intros x xint.
 unfold derivable_pt, tan. 
 apply derivable_pt_div ; [reg | reg | ].
 apply Rgt_not_eq.
 unfold Rgt ; apply cos_gt_0;
  [unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse; fold (-PI/2) |];tauto.
Qed.

Lemma derive_pt_tan : forall (x:R),
 forall (Pr1: -PI/2 < x < PI/2),
 derive_pt tan x (derivable_pt_tan x Pr1) = 1 + (tan x)^2.
Proof.
intros x pr.
assert (cos x <> 0).
 apply Rgt_not_eq, cos_gt_0; rewrite <- ?Ropp_div; tauto.
unfold tan; reg; unfold pow, Rsqr; field; assumption.
Qed.

(** Proof that tangent is a bijection *)
(* to be removed? *)

Lemma derive_increasing_interv :
  forall (a b:R) (f:R -> R),
    a < b ->
    forall (pr:forall x, a < x < b -> derivable_pt f x),
    (forall t:R, forall (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)) ->
    forall x y:R, a < x < b -> a < y < b -> x < y -> f x < f y.
Proof.
intros a b f a_lt_b pr Df_gt_0 x y x_encad y_encad x_lt_y.
 assert (derivable_id_interv : forall c : R, x < c < y -> derivable_pt id c).
  intros ; apply derivable_pt_id.
 assert (derivable_f_interv :  forall c : R, x < c < y -> derivable_pt f c).
  intros c c_encad. apply pr. split.
  apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 c_encad)].
  apply Rlt_trans with (r2:=y) ; [exact (proj2 c_encad) | exact (proj2 y_encad)].
 assert (f_cont_interv : forall c : R, x <= c <= y -> continuity_pt f c).
  intros c c_encad; apply derivable_continuous_pt ; apply pr. split.
  apply Rlt_le_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 c_encad)].
  apply Rle_lt_trans with (r2:=y) ; [ exact (proj2 c_encad) | exact (proj2 y_encad)].
 assert (id_cont_interv : forall c : R, x <= c <= y -> continuity_pt id c).
  intros ; apply derivable_continuous_pt ; apply derivable_pt_id. 
 elim (MVT f id x y derivable_f_interv derivable_id_interv x_lt_y f_cont_interv id_cont_interv).
  intros c Temp ; elim Temp ; clear Temp ; intros Pr eq.
   replace (id y - id x) with (y - x) in eq by intuition.
   replace (derive_pt id c (derivable_id_interv c Pr)) with 1 in eq.
   assert (Hyp : f y - f x > 0).
    rewrite Rmult_1_r in eq. rewrite <- eq.
    apply Rmult_gt_0_compat.
    apply Rgt_minus ; assumption.
    assert (c_encad2 : a <= c < b).
     split.
     apply Rlt_le ; apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 Pr)].
     apply Rle_lt_trans with (r2:=y) ; [apply Rlt_le ; exact (proj2 Pr) | exact (proj2 y_encad)].
     assert (c_encad : a < c < b).
      split.
      apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 Pr)].
      apply Rle_lt_trans with (r2:=y) ; [apply Rlt_le ; exact (proj2 Pr) | exact (proj2 y_encad)].
     assert (Temp := Df_gt_0 c c_encad).
     assert (Temp2 := pr_nu f c (derivable_f_interv c Pr) (pr c c_encad)).
     rewrite Temp2 ; apply Temp.
   apply Rminus_gt ; exact Hyp.
   symmetry ; rewrite derive_pt_eq ; apply derivable_pt_lim_id.
Qed.

(* begin hide *)
Lemma plus_Rsqr_gt_0 : forall x, 1 + x ^ 2 > 0.
Proof.
intro m. replace 0 with (0+0) by intuition.
 apply Rplus_gt_ge_compat. intuition.
 elim (total_order_T m 0) ; intro s'. case s'.
 intros m_cond. replace 0 with (0*0) by intuition.
  replace (m ^ 2) with ((-m)^2).
  apply Rle_ge ; apply Rmult_le_compat ; intuition ; apply Rlt_le ; rewrite Rmult_1_r ; intuition.
  field.
  intro H' ; rewrite H' ; right ; field.
   left. intuition.
Qed.
(* end hide *)

(* The following lemmas about PI should probably be in Rtrigo. *)

Lemma PI2_lower_bound :
  forall x, 0 < x < 2 -> 0 < cos x  -> x < PI/2.
Proof.
intros x [xp xlt2] cx.
destruct (Rtotal_order x (PI/2)) as [xltpi2 | [xeqpi2 | xgtpi2]].
  assumption.
 now case (Rgt_not_eq _ _ cx); rewrite xeqpi2, cos_PI2.
destruct (MVT_cor1 cos (PI/2) x derivable_cos xgtpi2) as
   [c [Pc [cint1 cint2]]].
revert Pc; rewrite cos_PI2, Rminus_0_r. 
rewrite <- (pr_nu cos c (derivable_pt_cos c)), derive_pt_cos.
assert (0 < c < 2) by (split; assert (t := PI2_RGT_0); fourier).
assert (0 < sin c) by now apply sin_pos_tech.
intros Pc.
case (Rlt_not_le _ _ cx).
rewrite <- (Rplus_0_l (cos x)), Pc, Ropp_mult_distr_l_reverse.
apply Rle_minus, Rmult_le_pos;[apply Rlt_le; assumption | fourier ].
Qed.

Lemma PI2_3_2 : 3/2 < PI/2.
Proof.
apply PI2_lower_bound;[split; fourier | ].
destruct (pre_cos_bound (3/2) 1) as [t _]; [fourier | fourier | ].
apply Rlt_le_trans with (2 := t); clear t.
unfold cos_approx; simpl; unfold cos_term.
rewrite !INR_IZR_INZ.
simpl.
field_simplify.
unfold Rdiv.
rewrite Rmult_0_l.
apply Rdiv_lt_0_compat ; now apply IZR_lt.
Qed.

Lemma PI2_1 : 1 < PI/2.
Proof. assert (t := PI2_3_2); fourier. Qed.

Lemma tan_increasing :
  forall x y:R,
    -PI/2 < x ->
    x < y -> 
    y < PI/2 -> tan x < tan y.
Proof.
intros x y Z_le_x x_lt_y y_le_1.
 assert (x_encad : -PI/2 < x < PI/2).
  split ; [assumption | apply Rlt_trans with (r2:=y) ; assumption].
 assert (y_encad : -PI/2 < y < PI/2).
  split ; [apply Rlt_trans with (r2:=x) ; intuition | intuition ].
 assert (local_derivable_pt_tan : forall x : R, -PI/2 < x < PI/2 ->
          derivable_pt tan x).
  intros ; apply derivable_pt_tan ; intuition.
 apply derive_increasing_interv with (a:=-PI/2) (b:=PI/2) (pr:=local_derivable_pt_tan) ; intuition.
 fourier.
 assert (Temp := pr_nu tan t (derivable_pt_tan t t_encad) (local_derivable_pt_tan t t_encad)) ;
 rewrite <- Temp ; clear Temp.
 assert (Temp := derive_pt_tan t t_encad) ; rewrite Temp ; clear Temp.
 apply plus_Rsqr_gt_0.
Qed.

Lemma tan_is_inj : forall x y, -PI/2 < x < PI/2 -> -PI/2 < y < PI/2 ->
   tan x = tan y -> x = y.
Proof.
  intros a b a_encad b_encad fa_eq_fb.
  case(total_order_T a b).
  intro s ; case s ; clear s.
  intro Hf.
  assert (Hfalse := tan_increasing a b (proj1 a_encad) Hf (proj2 b_encad)).
  case (Rlt_not_eq (tan a) (tan b)) ; assumption.
  intuition.
  intro Hf. assert (Hfalse := tan_increasing b a (proj1 b_encad) Hf (proj2 a_encad)).
  case (Rlt_not_eq (tan b) (tan a)) ; [|symmetry] ; assumption.
Qed.

Lemma exists_atan_in_frame :
 forall lb ub y, lb < ub -> -PI/2 < lb -> ub < PI/2 ->
 tan lb < y < tan ub -> {x | lb < x < ub /\ tan x = y}.
Proof.
intros lb ub y lb_lt_ub lb_cond ub_cond y_encad.
 case y_encad ; intros y_encad1 y_encad2.
     assert (f_cont : forall a : R, lb <= a <= ub -> continuity_pt tan a).
      intros a a_encad. apply derivable_continuous_pt ; apply derivable_pt_tan.
      split. apply Rlt_le_trans with (r2:=lb) ; intuition.
      apply Rle_lt_trans with (r2:=ub) ; intuition.
     assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => tan x - y) a).
      intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist.
      intros eps eps_pos. elim (f_cont a a_encad eps eps_pos).
      intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp).
      exists alpha. split.
      assumption. intros x  x_cond.
      replace (tan x - y - (tan a - y)) with (tan x - tan a) by field.
      exact (Temp x x_cond).
     assert (H1 : (fun x : R => tan x - y) lb < 0).
       apply Rlt_minus. assumption.
      assert (H2 : 0 < (fun x : R => tan x - y) ub).
       apply Rgt_minus. assumption.
     destruct (IVT_interv (fun x => tan x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx).
     exists x.
     destruct Hx as (Hyp,Result).
     intuition.
     assert (Temp2 : x <> lb).
      intro Hfalse. rewrite Hfalse in Result.
      assert (Temp2 : y <> tan lb).
       apply Rgt_not_eq ; assumption.
      clear - Temp2 Result. apply Temp2.
      intuition.
     clear -Temp2 H3.
      case H3 ; intuition. apply False_ind ; apply Temp2 ; symmetry ; assumption.
      assert (Temp : x <> ub).
      intro Hfalse. rewrite Hfalse in Result.
      assert (Temp2 : y <> tan ub).
       apply Rlt_not_eq ; assumption.
      clear - Temp2 Result. apply Temp2.
      intuition.
      case H4 ; intuition.
Qed.

(** * Definition of arctangent as the reciprocal function of tangent and proof of this status *)
Lemma tan_1_gt_1 : tan 1 > 1.
Proof.
assert (0 < cos 1) by (apply cos_gt_0; assert (t:=PI2_1); fourier).
assert (t1 : cos 1 <= 1 - 1/2 + 1/24).
 destruct (pre_cos_bound 1 0) as [_ t]; try fourier; revert t.
 unfold cos_approx, cos_term; simpl; intros t; apply Rle_trans with (1:=t).
 clear t; apply Req_le; field.
assert (t2 : 1 - 1/6 <= sin 1).
 destruct (pre_sin_bound 1 0) as [t _]; try fourier; revert t.
 unfold sin_approx, sin_term; simpl; intros t; apply Rle_trans with (2:=t).
 clear t; apply Req_le; field.
pattern 1 at 2; replace 1 with
  (cos 1 / cos 1) by (field; apply Rgt_not_eq; fourier).
apply Rlt_gt; apply (Rmult_lt_compat_r (/ cos 1) (cos 1) (sin 1)).
 apply Rinv_0_lt_compat; assumption.
apply Rle_lt_trans with (1 := t1); apply Rlt_le_trans with (2 := t2).
fourier.
Qed.

Definition frame_tan y : {x | 0 < x < PI/2 /\ Rabs y < tan x}.
Proof.
destruct (total_order_T (Rabs y) 1) as [Hs|Hgt].
 assert (yle1 : Rabs y <= 1) by (destruct Hs; fourier).
 clear Hs; exists 1; split;[split; [exact Rlt_0_1 | exact PI2_1] | ].
 apply Rle_lt_trans with (1 := yle1); exact tan_1_gt_1.
assert (0 < / (Rabs y + 1)).
 apply Rinv_0_lt_compat; fourier.
set (u := /2 * / (Rabs y + 1)).
assert (0 < u).
 apply Rmult_lt_0_compat; [fourier | assumption].
assert (vlt1 : / (Rabs y + 1) < 1).
 apply Rmult_lt_reg_r with (Rabs y + 1).
  assert (t := Rabs_pos y); fourier.
 rewrite Rinv_l; [rewrite Rmult_1_l | apply Rgt_not_eq]; fourier.
assert (vlt2 : u < 1).
 apply Rlt_trans with (/ (Rabs y + 1)).
  rewrite double_var.
  assert (t : forall x, 0 < x -> x < x + x) by (clear; intros; fourier).
  unfold u; rewrite Rmult_comm; apply t.
  unfold Rdiv; rewrite Rmult_comm; assumption.
 assumption.
assert(int : 0 < PI / 2 - u < PI / 2).
 split.
  assert (t := PI2_1); apply Rlt_Rminus, Rlt_trans with (2 := t); assumption.
 assert (dumb : forall x y, 0 < y -> x - y < x) by (clear; intros; fourier).
 apply dumb; clear dumb; assumption.
exists (PI/2 - u).
assert (tmp : forall x y, 0 < x -> y < 1 -> x * y < x).
 clear; intros x y x0 y1; pattern x at 2; rewrite <- (Rmult_1_r x).
 apply Rmult_lt_compat_l; assumption.
assert (0 < sin u).
 apply sin_gt_0;[ assumption | ].
 assert (t := PI2_Rlt_PI); assert (t' := PI2_1).
 apply Rlt_trans with (2 := Rlt_trans _ _ _ t' t); assumption.
split.
 assumption.
 apply Rlt_trans with (/2 * / cos(PI / 2 - u)).
 rewrite cos_shift.
 assert (sin u < u).
  assert (t1 : 0 <= u) by (apply Rlt_le; assumption).
  assert (t2 : u <= 4) by
   (apply Rle_trans with 1;[apply Rlt_le | fourier]; assumption).
  destruct (pre_sin_bound u 0 t1 t2) as [_ t].
  apply Rle_lt_trans with (1 := t); clear t1 t2 t.
  unfold sin_approx; simpl; unfold sin_term; simpl ((-1) ^ 0);
  replace ((-1) ^ 2) with 1 by ring; simpl ((-1) ^ 1);
  rewrite !Rmult_1_r, !Rmult_1_l; simpl plus; simpl (INR (fact 1)).
  rewrite <- (fun x => tech_pow_Rmult x 0), <- (fun x => tech_pow_Rmult x 2),
    <- (fun x => tech_pow_Rmult x 4).
  rewrite (Rmult_comm (-1)); simpl ((/(Rabs y + 1)) ^ 0).
  unfold Rdiv; rewrite Rinv_1, !Rmult_assoc, <- !Rmult_plus_distr_l.
  apply tmp;[assumption | ].
  rewrite Rplus_assoc, Rmult_1_l; pattern 1 at 2; rewrite <- Rplus_0_r.
  apply Rplus_lt_compat_l.
  rewrite <- Rmult_assoc.
  match goal with |- (?a * (-1)) + _ < 0 =>
   rewrite <- (Rplus_opp_l a); change (-1) with (-(1)); rewrite Ropp_mult_distr_r_reverse, Rmult_1_r
  end.
  apply Rplus_lt_compat_l.
  assert (0 < u ^ 2) by (apply pow_lt; assumption).
  replace (u ^ 4) with (u ^ 2 * u ^ 2) by ring.
 rewrite Rmult_assoc; apply Rmult_lt_compat_l; auto.
  apply Rlt_trans with (u ^ 2 * /INR (fact 3)).
   apply Rmult_lt_compat_l; auto.
   apply Rinv_lt_contravar.
    solve[apply Rmult_lt_0_compat; apply INR_fact_lt_0].
   rewrite !INR_IZR_INZ; apply IZR_lt; reflexivity.
  rewrite Rmult_comm; apply tmp.
   solve[apply Rinv_0_lt_compat, INR_fact_lt_0].
  apply Rlt_trans with (2 := vlt2).
  simpl; unfold u; apply tmp; auto; rewrite Rmult_1_r; assumption.
 apply Rlt_trans with (Rabs y + 1);[fourier | ]. 
 pattern (Rabs y + 1) at 1; rewrite <- (Rinv_involutive (Rabs y + 1));
  [ | apply Rgt_not_eq; fourier].
 rewrite <- Rinv_mult_distr.
   apply Rinv_lt_contravar.
    apply Rmult_lt_0_compat.
     apply Rmult_lt_0_compat;[fourier | assumption].
    assumption.
   replace (/(Rabs y + 1)) with (2 * u).
    fourier.
   unfold u; field; apply Rgt_not_eq; clear -Hgt; fourier.
  solve[discrR].
 apply Rgt_not_eq; assumption.
unfold tan.
set (u' := PI / 2); unfold Rdiv; apply Rmult_lt_compat_r; unfold u'.
 apply Rinv_0_lt_compat. 
 rewrite cos_shift; assumption.
assert (vlt3 : u < /4).
 replace (/4) with (/2 * /2) by field.
 unfold u; apply Rmult_lt_compat_l;[fourier | ].
 apply Rinv_lt_contravar.
  apply Rmult_lt_0_compat; fourier.
 fourier.
assert (1 < PI / 2 - u) by (assert (t := PI2_3_2); fourier).
apply Rlt_trans with (sin 1).
 assert (t' : 1 <= 4) by fourier.
 destruct (pre_sin_bound 1 0 (Rlt_le _ _ Rlt_0_1) t') as [t _].
 apply Rlt_le_trans with (2 := t); clear t.
 simpl plus; replace (sin_approx 1 1) with (5/6);[fourier | ].
 unfold sin_approx, sin_term; simpl; field.
apply sin_increasing_1.
    assert (t := PI2_1); fourier.
   apply Rlt_le, PI2_1.
  assert (t := PI2_1); fourier.
 fourier.
assumption.
Qed.

Lemma ub_opp : forall x, x < PI/2 -> -PI/2 < -x.
Proof.
intros x h; rewrite Ropp_div; apply Ropp_lt_contravar; assumption.
Qed.

Lemma pos_opp_lt : forall x, 0 < x -> -x < x.
Proof. intros; fourier. Qed.

Lemma tech_opp_tan : forall x y, -tan x < y -> tan (-x) < y.
Proof.
intros; rewrite tan_neg; assumption.
Qed.

Definition pre_atan (y : R) : {x : R | -PI/2 < x < PI/2 /\ tan x = y}.
Proof.
destruct (frame_tan y) as [ub [[ub0 ubpi2] Ptan_ub]].
set (pr := (conj (tech_opp_tan _ _ (proj2 (Rabs_def2 _ _ Ptan_ub)))
     (proj1 (Rabs_def2 _ _ Ptan_ub)))).
destruct (exists_atan_in_frame (-ub) ub y (pos_opp_lt _ ub0) (ub_opp _ ubpi2)
             ubpi2 pr) as [v [[vl vu] vq]].
exists v; clear pr.
split;[rewrite Ropp_div; split; fourier | assumption].
Qed.

Definition atan x := let (v, _) := pre_atan x in v.

Lemma atan_bound : forall x, -PI/2 < atan x < PI/2.
Proof.
intros x; unfold atan; destruct (pre_atan x) as [v [int _]]; exact int.
Qed.

Lemma atan_right_inv : forall x, tan (atan x) = x.
Proof.
intros x; unfold atan; destruct (pre_atan x) as [v [_ q]]; exact q.
Qed.

Lemma atan_opp : forall x, atan (- x) = - atan x.
Proof.
intros x; generalize (atan_bound (-x)); rewrite Ropp_div;intros [a b].
generalize (atan_bound x); rewrite Ropp_div; intros [c d].
apply tan_is_inj; try rewrite Ropp_div; try split; try fourier.
rewrite tan_neg, !atan_right_inv; reflexivity.
Qed.

Lemma derivable_pt_atan : forall x, derivable_pt atan x.
Proof.
intros x.
destruct (frame_tan x) as [ub [[ub0 ubpi] P]].
assert (lb_lt_ub : -ub < ub) by apply pos_opp_lt, ub0.
assert (xint : tan(-ub) < x < tan ub).
 assert (xint' : x < tan ub /\ -(tan ub) < x) by apply Rabs_def2, P.
  rewrite tan_neg; tauto.
assert (inv_p : forall x, tan(-ub) <= x -> x <= tan ub -> 
                     comp tan atan x = id x).
 intros; apply atan_right_inv.
assert (int_tan : forall y, tan (- ub) <= y -> y <= tan ub ->
                       -ub <= atan y <= ub).
 clear -ub0 ubpi; intros y lo up; split.
  destruct (Rle_lt_dec (-ub) (atan y)) as [h | abs]; auto.
  assert (y < tan (-ub)).
   rewrite <- (atan_right_inv y); apply tan_increasing.
     destruct (atan_bound y); assumption.
    assumption.
   fourier.
  fourier.
 destruct (Rle_lt_dec (atan y) ub) as [h | abs]; auto.
  assert (tan ub < y).
   rewrite <- (atan_right_inv y); apply tan_increasing.
    rewrite Ropp_div; fourier.
   assumption.
  destruct (atan_bound y); assumption.
 fourier.
assert (incr : forall x y, -ub <= x -> x < y -> y <= ub -> tan x < tan y).
 intros y z l yz u; apply tan_increasing.
   rewrite Ropp_div; fourier.
  assumption.
 fourier.
assert (der : forall a, -ub <= a <= ub -> derivable_pt tan a).
 intros a [la ua]; apply derivable_pt_tan.
 rewrite Ropp_div; split; fourier.
assert (df_neq : derive_pt tan (atan x)
     (derivable_pt_recip_interv_prelim1 tan atan 
        (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0).
 rewrite <- (pr_nu tan (atan x)
              (derivable_pt_tan (atan x) (atan_bound x))).
 rewrite derive_pt_tan.
 solve[apply Rgt_not_eq, plus_Rsqr_gt_0].
apply (derivable_pt_recip_interv tan atan (-ub) ub x
      lb_lt_ub xint inv_p int_tan incr der).
exact df_neq.
Qed.

Lemma atan_increasing : forall x y, x < y -> atan x < atan y.
Proof.
intros x y d.
assert (t1 := atan_bound x).
assert (t2 := atan_bound y).
destruct (Rlt_le_dec (atan x) (atan y)) as [lt | bad].
 assumption.
apply Rlt_not_le in d.
case d.
rewrite <- (atan_right_inv y), <- (atan_right_inv x).
destruct bad as [ylt | yx].
 apply Rlt_le, tan_increasing; try tauto.
solve[rewrite yx; apply Rle_refl].
Qed.

Lemma atan_0 : atan 0 = 0.
Proof.
apply tan_is_inj; try (apply atan_bound).
 assert (t := PI_RGT_0); rewrite Ropp_div; split; fourier.
rewrite atan_right_inv, tan_0.
reflexivity.
Qed.

Lemma atan_1 : atan 1 = PI/4.
Proof.
assert (ut := PI_RGT_0).
assert (-PI/2 < PI/4 < PI/2) by (rewrite Ropp_div; split; fourier).
assert (t := atan_bound 1).
apply tan_is_inj; auto.
rewrite tan_PI4, atan_right_inv; reflexivity.
Qed.

(** atan's derivative value is the function 1 / (1+x²) *)

Lemma derive_pt_atan : forall x,
      derive_pt atan x (derivable_pt_atan x) =
         1 / (1 + x²).
Proof.
intros x.
destruct (frame_tan x) as [ub [[ub0 ubpi] Pub]].
assert (lb_lt_ub : -ub < ub) by apply pos_opp_lt, ub0.
assert (xint : tan(-ub) < x < tan ub).
 assert (xint' : x < tan ub /\ -(tan ub) < x) by apply Rabs_def2, Pub.
  rewrite tan_neg; tauto.
assert (inv_p : forall x, tan(-ub) <= x -> x <= tan ub -> 
                     comp tan atan x = id x).
 intros; apply atan_right_inv.
assert (int_tan : forall y, tan (- ub) <= y -> y <= tan ub ->
                       -ub <= atan y <= ub).
 clear -ub0 ubpi; intros y lo up; split.
  destruct (Rle_lt_dec (-ub) (atan y)) as [h | abs]; auto.
  assert (y < tan (-ub)).
   rewrite <- (atan_right_inv y); apply tan_increasing.
     destruct (atan_bound y); assumption.
    assumption.
   fourier.
  fourier.
 destruct (Rle_lt_dec (atan y) ub) as [h | abs]; auto.
  assert (tan ub < y).
   rewrite <- (atan_right_inv y); apply tan_increasing.
    rewrite Ropp_div; fourier.
   assumption.
  destruct (atan_bound y); assumption.
 fourier.
assert (incr : forall x y, -ub <= x -> x < y -> y <= ub -> tan x < tan y).
 intros y z l yz u; apply tan_increasing.
   rewrite Ropp_div; fourier.
  assumption.
 fourier.
assert (der : forall a, -ub <= a <= ub -> derivable_pt tan a).
 intros a [la ua]; apply derivable_pt_tan.
 rewrite Ropp_div; split; fourier.
assert (df_neq : derive_pt tan (atan x)
     (derivable_pt_recip_interv_prelim1 tan atan 
        (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0).
 rewrite <- (pr_nu tan (atan x)
              (derivable_pt_tan (atan x) (atan_bound x))).
 rewrite derive_pt_tan.
 solve[apply Rgt_not_eq, plus_Rsqr_gt_0].
assert (t := derive_pt_recip_interv tan atan (-ub) ub x lb_lt_ub
        xint incr int_tan der inv_p df_neq).
rewrite <- (pr_nu atan x (derivable_pt_recip_interv tan atan (- ub) ub
      x lb_lt_ub xint inv_p int_tan incr der df_neq)).
rewrite t.
assert (t' := atan_bound x).
rewrite <- (pr_nu tan (atan x) (derivable_pt_tan _ t')). 
rewrite derive_pt_tan, atan_right_inv.
replace (Rsqr x) with (x ^ 2) by (unfold Rsqr; ring).
reflexivity.
Qed.

Lemma derivable_pt_lim_atan :
  forall x, derivable_pt_lim atan x (/(1 + x^2)).
Proof.
intros x.
apply derive_pt_eq_1 with (derivable_pt_atan x).
replace (x ^ 2) with (x * x) by ring.
rewrite <- (Rmult_1_l (Rinv _)).
apply derive_pt_atan.
Qed.

(** * Definition of the arctangent function as the sum of the arctan power series *)
(* Proof taken from Guillaume Melquiond's interval package for Coq *)

Definition Ratan_seq x :=  fun n => (x ^ (2 * n + 1) / INR (2 * n + 1))%R.

Lemma Ratan_seq_decreasing : forall x, (0 <= x <= 1)%R -> Un_decreasing (Ratan_seq x).
Proof.
intros x Hx n.
 unfold Ratan_seq, Rdiv.
 apply Rmult_le_compat. apply pow_le.
 exact (proj1 Hx).
 apply Rlt_le.
 apply Rinv_0_lt_compat.
 apply lt_INR_0.
 omega.
 destruct (proj1 Hx) as [Hx1|Hx1].
 destruct (proj2 Hx) as [Hx2|Hx2].
 (* . 0 < x < 1 *)
 rewrite <- (Rinv_involutive x).
 assert (/ x <> 0)%R by auto with real.
 repeat rewrite <- Rinv_pow with (1 := H).
 apply Rlt_le.
 apply Rinv_lt_contravar.
 apply Rmult_lt_0_compat ; apply pow_lt ; auto with real.
 apply Rlt_pow.
 rewrite <- Rinv_1.
 apply Rinv_lt_contravar.
 rewrite Rmult_1_r.
 exact Hx1.
 exact Hx2.
 omega.
 apply Rgt_not_eq.
 exact Hx1.
 (* . x = 1 *)
 rewrite Hx2.
 do 2 rewrite pow1.
 apply Rle_refl.
 (* . x = 0 *)
 rewrite <- Hx1.
 do 2 (rewrite pow_i ; [ idtac | omega ]).
 apply Rle_refl.
 apply Rlt_le.
 apply Rinv_lt_contravar.
 apply Rmult_lt_0_compat ; apply lt_INR_0 ; omega.
 apply lt_INR.
 omega.
Qed.

Lemma Ratan_seq_converging : forall x, (0 <= x <= 1)%R -> Un_cv (Ratan_seq x) 0.
Proof.
intros x Hx eps Heps.
 destruct (archimed (/ eps)) as (HN,_).
 assert (0 < up (/ eps))%Z.
  apply lt_IZR.
  apply Rlt_trans with (2 := HN).
  apply Rinv_0_lt_compat.
  exact Heps.
 case_eq (up (/ eps)) ;
  intros ; rewrite H0 in H ; try discriminate H.
   rewrite H0 in HN.
   simpl in HN.
   pose (N := Pos.to_nat p).
   fold N in HN.
   clear H H0.
   exists N.
  intros n Hn.
   unfold R_dist.
   rewrite Rminus_0_r.
   unfold Ratan_seq.
   rewrite Rabs_right.
   apply Rle_lt_trans with (1 ^ (2 * n + 1) / INR (2 * n + 1))%R.
   unfold Rdiv.
   apply Rmult_le_compat_r.
   apply Rlt_le.
   apply Rinv_0_lt_compat.
   apply lt_INR_0.
   omega.
   apply pow_incr.
   exact Hx.
   rewrite pow1.
   apply Rle_lt_trans with (/ INR (2 * N + 1))%R.
   unfold Rdiv.
   rewrite Rmult_1_l.
   apply Rinv_le_contravar.
   apply lt_INR_0.
   omega.
   apply le_INR.
   omega.
   rewrite <- (Rinv_involutive eps).
   apply Rinv_lt_contravar.
   apply Rmult_lt_0_compat.
   auto with real.
   apply lt_INR_0.
   omega.
   apply Rlt_trans with (INR N).
   destruct (archimed (/ eps)) as (H,_).
   assert (0 < up (/ eps))%Z.
   apply lt_IZR.
   apply Rlt_trans with (2 := H).
   apply Rinv_0_lt_compat.
   exact Heps.
   unfold N.
   rewrite INR_IZR_INZ, positive_nat_Z.
   exact HN.
   apply lt_INR.
   omega.
   apply Rgt_not_eq.
   exact Heps.
   apply Rle_ge.
   unfold Rdiv.
   apply Rmult_le_pos.
   apply pow_le.
   exact (proj1 Hx).
   apply Rlt_le.
   apply Rinv_0_lt_compat.
   apply lt_INR_0.
   omega.
Qed.

Definition ps_atan_exists_01 (x : R) (Hx:0 <= x <= 1) :
   {l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}.
Proof.
exact (alternated_series (Ratan_seq x)
  (Ratan_seq_decreasing _ Hx) (Ratan_seq_converging _ Hx)).
Defined.

Lemma Ratan_seq_opp : forall x n, Ratan_seq (-x) n = -Ratan_seq x n.
Proof.
intros x n; unfold Ratan_seq.
rewrite !pow_add, !pow_mult, !pow_1.
unfold Rdiv; replace ((-x) ^ 2) with (x ^ 2) by ring; ring.
Qed.

Lemma sum_Ratan_seq_opp : 
  forall x n, sum_f_R0 (tg_alt (Ratan_seq (- x))) n =
     - sum_f_R0 (tg_alt (Ratan_seq x)) n.
Proof.
intros x n; replace (-sum_f_R0 (tg_alt (Ratan_seq x)) n) with 
  (-1 * sum_f_R0 (tg_alt (Ratan_seq x)) n) by ring.
rewrite scal_sum; apply sum_eq; intros i _; unfold tg_alt.
rewrite Ratan_seq_opp; ring.
Qed.

Definition ps_atan_exists_1 (x : R) (Hx : -1 <= x <= 1) :
   {l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}.
Proof.
destruct (Rle_lt_dec 0 x).
 assert (pr : 0 <= x <= 1) by tauto.
 exact (ps_atan_exists_01 x pr).
assert (pr : 0 <= -x <= 1) by (destruct Hx; split; fourier).
destruct (ps_atan_exists_01 _ pr) as [v Pv].
exists (-v).
 apply (Un_cv_ext (fun n => (- 1) * sum_f_R0 (tg_alt (Ratan_seq (- x))) n)).
 intros n; rewrite sum_Ratan_seq_opp; ring.
replace (-v) with (-1 * v) by ring.
apply CV_mult;[ | assumption].
solve[intros; exists 0%nat; intros; rewrite R_dist_eq; auto].
Qed.

Definition in_int (x : R) : {-1 <= x <= 1}+{~ -1 <= x <= 1}.
Proof.
destruct (Rle_lt_dec x 1).
 destruct (Rle_lt_dec (-1) x).
  left;split; auto.
 right;intros [a1 a2]; fourier.
right;intros [a1 a2]; fourier.
Qed.

Definition ps_atan (x : R) : R :=
 match in_int x with
   left h => let (v, _) := ps_atan_exists_1 x h in v
 | right h => atan x
 end.

(** * Proof of the equivalence of the two definitions between -1 and 1 *)

Lemma ps_atan0_0 : ps_atan 0 = 0.
Proof.
unfold ps_atan.
 destruct (in_int 0) as [h1 | h2].
 destruct (ps_atan_exists_1 0 h1) as [v P].
 apply (UL_sequence _ _ _ P).
  apply (Un_cv_ext (fun n => 0)).
  symmetry;apply sum_eq_R0.
  intros i _; unfold tg_alt, Ratan_seq; rewrite plus_comm; simpl.
  unfold Rdiv; rewrite !Rmult_0_l, Rmult_0_r; reflexivity.
 intros eps ep; exists 0%nat; intros n _; unfold R_dist.
 rewrite Rminus_0_r, Rabs_pos_eq; auto with real.
case h2; split; fourier.
Qed.

Lemma ps_atan_exists_1_opp :
  forall x h h', proj1_sig (ps_atan_exists_1 (-x) h) = 
     -(proj1_sig (ps_atan_exists_1 x h')).
Proof.
intros x h h'; destruct (ps_atan_exists_1 (-x) h) as [v Pv].
destruct (ps_atan_exists_1 x h') as [u Pu]; simpl.
assert (Pu' : Un_cv (fun N => (-1) * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)).
 apply CV_mult;[ | assumption].
 intros eps ep; exists 0%nat; intros; rewrite R_dist_eq; assumption.  
assert (Pv' : Un_cv
           (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) v).
 apply Un_cv_ext with (2 := Pv); intros n; rewrite sum_Ratan_seq_opp; ring.
replace (-u) with (-1 * u) by ring.
apply UL_sequence with (1:=Pv') (2:= Pu').
Qed.

Lemma ps_atan_opp : forall x, ps_atan (-x) = -ps_atan x.
Proof.
intros x; unfold ps_atan.
destruct (in_int (- x)) as [inside | outside].
 destruct (in_int x) as [ins' | outs'].
 generalize (ps_atan_exists_1_opp x inside ins').
  intros h; exact h.
 destruct inside; case outs'; split; fourier.   
destruct (in_int x) as [ins' | outs'].
 destruct outside; case ins'; split; fourier.   
apply atan_opp.
Qed.

(** atan = ps_atan *)

Lemma ps_atanSeq_continuity_pt_1 : forall (N:nat) (x:R),
      0 <= x ->
      x <= 1 ->
      continuity_pt (fun x => sum_f_R0 (tg_alt (Ratan_seq x)) N) x.
Proof.
assert (Sublemma : forall (x:R) (N:nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * (comp (fun x => sum_f_R0 (fun n => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x ^ n) N) (fun x => x ^ 2) x)).
 intros x N.
  induction N.
   unfold tg_alt, Ratan_seq, comp ; simpl ; field.
   simpl sum_f_R0 at 1.
   rewrite IHN.
   replace (comp (fun x => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x ^ n) (S N)) (fun x => x ^ 2))
     with (comp (fun x => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x ^ n) N + (-1) ^ (S N) / INR (2 * (S N) + 1) * x ^ (S N)) (fun x => x ^ 2)).
   unfold comp.
   rewrite Rmult_plus_distr_l.
   apply Rplus_eq_compat_l.
   unfold tg_alt, Ratan_seq.
   rewrite <- Rmult_assoc.
   case (Req_dec x 0) ; intro Hyp.
   rewrite Hyp ; rewrite pow_i. rewrite Rmult_0_l ; rewrite Rmult_0_l.
   unfold Rdiv ; rewrite Rmult_0_l ; rewrite Rmult_0_r ; reflexivity.
   intuition.
   replace (x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S N) with (x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1))).
   rewrite Rmult_comm ; unfold Rdiv at 1.
   rewrite Rmult_assoc ; apply Rmult_eq_compat_l.
   field. apply Rgt_not_eq ; intuition.
   rewrite Rmult_assoc.
   replace (x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)) with (((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N) * x).
   rewrite Rmult_assoc.
   replace ((x ^ 2) ^ S N * x) with (x ^ (2 * S N + 1)).
   rewrite Rmult_comm at 1 ; reflexivity.
   rewrite <- pow_mult.
   assert (Temp : forall x n, x ^ n * x = x ^ (n+1)).
    intros a n ; induction n. rewrite pow_O. simpl ; intuition.
    simpl ; rewrite Rmult_assoc ; rewrite IHn ; intuition.
   rewrite Temp ; reflexivity.
   rewrite Rmult_comm ; reflexivity.
   intuition.
intros N x x_lb x_ub.
 intros eps eps_pos.
 assert (continuity_id : continuity id).
 apply derivable_continuous ; exact derivable_id.
assert (Temp := continuity_mult id (comp
        (fun x1 : R =>
         sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N)
        (fun x1 : R => x1 ^ 2))
           continuity_id).
assert (Temp2 : continuity
    (comp
       (fun x1 : R =>
        sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N)
       (fun x1 : R => x1 ^ 2))).
 apply continuity_comp.
 reg.
 apply continuity_finite_sum.
 elim (Temp Temp2 x eps eps_pos) ; clear Temp Temp2 ; intros alpha T ; destruct T as (alpha_pos, T).
 exists alpha ; split.
 intuition.
intros x0 x0_cond.
 rewrite Sublemma ; rewrite Sublemma.
apply T.
intuition.
Qed.

(** Definition of ps_atan's derivative *)

Definition Datan_seq := fun (x:R) (n:nat) => x ^ (2*n).

Lemma pow_lt_1_compat : forall x n, 0 <= x < 1 -> (0 < n)%nat ->
   0 <= x ^ n < 1.
Proof.
intros x n hx; induction 1; simpl.
 rewrite Rmult_1_r; tauto.
split.
 apply Rmult_le_pos; tauto.
rewrite <- (Rmult_1_r 1); apply Rmult_le_0_lt_compat; intuition.
Qed.

Lemma Datan_seq_Rabs : forall x n, Datan_seq (Rabs x) n = Datan_seq x n.
Proof.
intros x n; unfold Datan_seq; rewrite !pow_mult, pow2_abs; reflexivity.
Qed.

Lemma Datan_seq_pos : forall x n, 0 < x -> 0 < Datan_seq x n.
Proof.
intros x n x_lb ; unfold Datan_seq ; induction n.
 simpl ; intuition.
 replace (x ^ (2 * S n)) with ((x ^ 2) * (x ^ (2 * n))).
 apply Rmult_gt_0_compat.
 replace (x^2) with (x*x) by field ; apply Rmult_gt_0_compat ; assumption.
 assumption.
 replace (2 * S n)%nat with (S (S (2 * n))) by intuition.
 simpl ; field.
Qed.

Lemma Datan_sum_eq :forall x n,
  sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n)/(1 + x ^ 2).
Proof.
intros x n.
assert (dif : - x ^ 2 <> 1).
apply Rlt_not_eq; apply Rle_lt_trans with 0;[ | apply Rlt_0_1].
assert (t := pow2_ge_0 x); fourier.
replace (1 + x ^ 2) with (1 - - (x ^ 2)) by ring; rewrite <- (tech3 _ n dif).
apply sum_eq; unfold tg_alt, Datan_seq; intros i _.
rewrite pow_mult, <- Rpow_mult_distr.
f_equal.
ring.
Qed.

Lemma Datan_seq_increasing : forall x y n, (n > 0)%nat -> 0 <= x < y -> Datan_seq x n < Datan_seq y n.
Proof.
intros x y n n_lb x_encad ; assert (x_pos : x >= 0) by intuition.
 assert (y_pos : y > 0). apply Rle_lt_trans with (r2:=x) ; intuition.
 induction n.
 apply False_ind ; intuition.
 clear -x_encad x_pos y_pos ; induction n ; unfold Datan_seq.
 case x_pos ; clear x_pos ; intro x_pos.
 simpl ; apply Rmult_gt_0_lt_compat ; intuition. fourier.
 rewrite x_pos ; rewrite pow_i. replace (y ^ (2*1)) with (y*y).
 apply Rmult_gt_0_compat ; assumption.
 simpl ; field.
 intuition.
 assert (Hrew : forall a, a^(2 * S (S n)) = (a ^ 2) * (a ^ (2 * S n))).
  clear ; intro a ; replace (2 * S (S n))%nat with (S (S (2 * S n)))%nat by intuition.
  simpl ; field.
 case x_pos ; clear x_pos ; intro x_pos.
 rewrite Hrew ; rewrite Hrew.
 apply Rmult_gt_0_lt_compat ; intuition.
 apply Rmult_gt_0_lt_compat ; intuition ; fourier.
 rewrite x_pos.
 rewrite pow_i ; intuition.
Qed.

Lemma Datan_seq_decreasing : forall x,  -1 < x -> x < 1 -> Un_decreasing (Datan_seq x).
Proof.
intros x x_lb x_ub n.
unfold Datan_seq.
replace (2 * S n)%nat with (2 + 2 * n)%nat by ring.
rewrite <- (Rmult_1_l (x ^ (2 * n))).
rewrite pow_add.
apply Rmult_le_compat_r.
rewrite pow_mult; apply pow_le, pow2_ge_0.
apply Rlt_le; rewrite <- pow2_abs.
assert (intabs : 0 <= Rabs x < 1).
 split;[apply Rabs_pos | apply Rabs_def1]; tauto.
apply (pow_lt_1_compat (Rabs x) 2) in intabs.
 tauto.
omega.
Qed.

Lemma Datan_seq_CV_0 : forall x, -1 < x -> x < 1 -> Un_cv (Datan_seq x) 0.
Proof.
intros x x_lb x_ub eps eps_pos.
assert (x_ub2 : Rabs (x^2) < 1).
 rewrite Rabs_pos_eq;[ | apply pow2_ge_0].
 rewrite <- pow2_abs.
 assert (H: 0 <= Rabs x < 1)
   by (split;[apply Rabs_pos | apply Rabs_def1; auto]).
 apply (pow_lt_1_compat _ 2) in H;[tauto | omega].
elim (pow_lt_1_zero (x^2) x_ub2 eps eps_pos) ; intros N HN ; exists N ; intros n Hn.
unfold R_dist, Datan_seq.
replace (x ^ (2 * n) - 0) with ((x ^ 2) ^ n). apply HN ; assumption.
rewrite pow_mult ; field.
Qed.

Lemma Datan_lim : forall x, -1 < x -> x < 1 ->
    Un_cv (fun N : nat => sum_f_R0 (tg_alt (Datan_seq x)) N) (/ (1 + x ^ 2)).
Proof.
intros x x_lb x_ub eps eps_pos.
assert (Tool0 : 0 <= x ^ 2) by apply pow2_ge_0.
assert (Tool1 : 0 < (1 + x ^ 2)).
 solve[apply Rplus_lt_le_0_compat ; intuition].
assert (Tool2 : / (1 + x ^ 2) > 0).
 apply Rinv_0_lt_compat ; tauto.
assert (x_ub2' : 0<= Rabs (x^2) < 1).
 rewrite Rabs_pos_eq, <- pow2_abs;[ | apply pow2_ge_0].
 apply pow_lt_1_compat;[split;[apply Rabs_pos | ] | omega].
 apply Rabs_def1; assumption.
assert (x_ub2 : Rabs (x^2) < 1) by tauto.
assert (eps'_pos : ((1+x^2)*eps) > 0).
  apply Rmult_gt_0_compat ; assumption.
elim (pow_lt_1_zero _ x_ub2 _ eps'_pos) ; intros N HN ; exists N.
intros n Hn.
assert (H1 : - x^2 <> 1).
 apply Rlt_not_eq; apply Rle_lt_trans with (2 := Rlt_0_1).
assert (t := pow2_ge_0 x); fourier.
rewrite Datan_sum_eq. 
unfold R_dist.
assert (tool : forall a b, a / b - /b = (-1 + a) /b).
 intros a b; rewrite <- (Rmult_1_l (/b)); unfold Rdiv, Rminus.
 rewrite <- Ropp_mult_distr_l_reverse, Rmult_plus_distr_r, Rplus_comm.
 reflexivity.
set (u := 1 + x ^ 2); rewrite tool; unfold Rminus; rewrite <- Rplus_assoc.
unfold Rdiv, u.
change (-1) with (-(1)).
rewrite Rplus_opp_l, Rplus_0_l, Ropp_mult_distr_l_reverse, Rabs_Ropp.
rewrite Rabs_mult; clear tool u.
assert (tool : forall k, Rabs ((-x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)).
 clear -Tool0; induction k;[simpl; rewrite Rabs_R1;tauto | ].
 rewrite <- !(tech_pow_Rmult _ k), !Rabs_mult, Rabs_Ropp, IHk, Rabs_pos_eq.
  reflexivity.
 exact Tool0.
rewrite tool, (Rabs_pos_eq (/ _)); clear tool;[ | apply Rlt_le; assumption].
assert (tool : forall a b c, 0 < b -> a < b * c -> a * / b < c).
 intros a b c bp h; replace c with (b * c * /b).
  apply Rmult_lt_compat_r.  
   apply Rinv_0_lt_compat; assumption.
  assumption.
 field; apply Rgt_not_eq; exact bp.
apply tool;[exact Tool1 | ].
apply HN; omega.
Qed.

Lemma Datan_CVU_prelim : forall c (r : posreal), Rabs c + r < 1 ->
 CVU (fun N x => sum_f_R0 (tg_alt (Datan_seq x)) N)
     (fun y : R => / (1 + y ^ 2)) c r.
Proof.
intros c r ub_ub eps eps_pos.
apply (Alt_CVU (fun x n => Datan_seq n x) 
         (fun x => /(1 + x ^ 2))
         (Datan_seq (Rabs c + r)) c r).
     intros x inb; apply Datan_seq_decreasing;
      try (apply Boule_lt in inb; apply Rabs_def2 in inb;
         destruct inb; fourier).
    intros x inb; apply Datan_seq_CV_0;
      try (apply Boule_lt in inb; apply Rabs_def2 in inb;
         destruct inb; fourier).
   intros x inb; apply (Datan_lim x);
      try (apply Boule_lt in inb; apply Rabs_def2 in inb;
         destruct inb; fourier).
  intros x [ | n] inb.
   solve[unfold Datan_seq; apply Rle_refl].
  rewrite <- (Datan_seq_Rabs x); apply Rlt_le, Datan_seq_increasing.
   omega.
  apply Boule_lt in inb; intuition.
  solve[apply Rabs_pos].
 apply Datan_seq_CV_0.
  apply Rlt_trans with 0;[fourier | ].
  apply Rplus_le_lt_0_compat.
   solve[apply Rabs_pos].
  destruct r; assumption.
 assumption.
assumption.
Qed.

Lemma Datan_is_datan : forall (N:nat) (x:R),
      -1 <= x ->
      x < 1 ->
derivable_pt_lim (fun x => sum_f_R0 (tg_alt (Ratan_seq x)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N).
Proof.
assert (Tool : forall N, (-1) ^ (S (2 * N))  = - 1).
 intro n ; induction n.
  simpl ; field.
  replace ((-1) ^ S (2 * S n)) with ((-1) ^ 2 * (-1) ^ S (2*n)).
  rewrite IHn ; field.
  rewrite <- pow_add.
  replace (2 + S (2 * n))%nat with (S (2 * S n))%nat.
  reflexivity.
  intuition.
intros N x x_lb x_ub.
 induction N.
  unfold Datan_seq, Ratan_seq, tg_alt ; simpl.
  intros eps eps_pos.
   elim (derivable_pt_lim_id x eps eps_pos) ; intros delta Hdelta ; exists delta.
   intros h hneq h_b.
    replace (1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)) with (id (x + h) - id x). 
    rewrite Rmult_1_r.
    apply Hdelta ; assumption.
    unfold id ; field ; assumption.
  intros eps eps_pos.
  assert (eps_3_pos : (eps/3) > 0) by fourier.
  elim (IHN (eps/3) eps_3_pos) ; intros delta1 Hdelta1.
  assert (Main : derivable_pt_lim (fun x : R =>tg_alt (Ratan_seq x) (S N)) x ((tg_alt (Datan_seq x)) (S N))).
   clear -Tool ; intros eps' eps'_pos.
   elim (derivable_pt_lim_pow x (2 * (S N) + 1) eps' eps'_pos) ; intros delta Hdelta ; exists delta.
   intros h h_neq h_b ; unfold tg_alt, Ratan_seq, Datan_seq.
   replace (((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) -
    (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h -
    (-1) ^ S N * x ^ (2 * S N)) 
    with (((-1)^(S N)) * ((((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) -
    (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - x ^ (2 * S N))).
   rewrite Rabs_mult ; rewrite pow_1_abs ; rewrite Rmult_1_l.
   replace (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) -
    x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N))
    with ((/INR (2* S N + 1)) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h -
    INR (2 * S N + 1) * x ^ pred (2 * S N + 1))).
   rewrite Rabs_mult.
   case (Req_dec (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h -
     INR (2 * S N + 1) * x ^ pred (2 * S N + 1)) 0) ; intro Heq.
   rewrite Heq ; rewrite Rabs_R0 ; rewrite Rmult_0_r ; assumption.
   apply Rlt_trans with (r2:=Rabs
           (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h -
            INR (2 * S N + 1) * x ^ pred (2 * S N + 1))).
   rewrite <- Rmult_1_l ; apply Rmult_lt_compat_r.
   apply Rabs_pos_lt ; assumption.
   rewrite Rabs_right.
   replace 1 with (/1) by field.
   apply Rinv_1_lt_contravar ; intuition.
   apply Rgt_ge ; replace (INR (2 * S N + 1)) with (INR (2*S N) + 1) ;
   [apply RiemannInt.RinvN_pos | ].
   replace (2 * S N + 1)%nat with (S (2 * S N))%nat by intuition ;
   rewrite S_INR ; reflexivity.
   apply Hdelta ; assumption.
   rewrite Rmult_minus_distr_l.
   replace (/ INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ pred (2 * S N + 1))) with (x ^ (2 * S N)).
   unfold Rminus ; rewrite Rplus_comm.
   replace (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) +
      - (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h + - x ^ (2 * S N))
      with (- x ^ (2 * S N) + (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) +
      - (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h)) by intuition.
   apply Rplus_eq_compat_l. field.
   split ; [apply Rgt_not_eq|] ; intuition.
   clear ; replace (pred (2 * S N + 1)) with (2 * S N)%nat by intuition.
   field ; apply Rgt_not_eq ; intuition.
   field ; split ; [apply Rgt_not_eq |] ; intuition.
   elim (Main (eps/3) eps_3_pos) ; intros delta2 Hdelta2.
   destruct delta1 as (delta1, delta1_pos) ; destruct delta2 as (delta2, delta2_pos).
   pose (mydelta := Rmin delta1 delta2).
   assert (mydelta_pos : mydelta > 0).
    unfold mydelta ; rewrite Rmin_Rgt ; split ; assumption.
   pose (delta := mkposreal mydelta mydelta_pos) ; exists delta ; intros h h_neq h_b.
   clear Main IHN.
   unfold Rminus at 1.
   apply Rle_lt_trans with (r2:=eps/3 + eps / 3).
   assert (Temp : (sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) -
    sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h +
    - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N -
              sum_f_R0 (tg_alt (Ratan_seq x)) N) / h) + (-
             sum_f_R0 (tg_alt (Datan_seq x)) N) + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) /
             h - tg_alt (Datan_seq x) (S N))).
    simpl ; field ; intuition.
   apply Rle_trans with (r2:= Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N -
        sum_f_R0 (tg_alt (Ratan_seq x)) N) / h +
       - sum_f_R0 (tg_alt (Datan_seq x)) N) +
       Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h -
        tg_alt (Datan_seq x) (S N))).
   rewrite Temp ; clear Temp ; apply Rabs_triang.
   apply Rplus_le_compat ; apply Rlt_le ; [apply Hdelta1 | apply Hdelta2] ;
   intuition ; apply Rlt_le_trans with (r2:=delta) ; intuition unfold delta, mydelta.
   apply Rmin_l.
   apply Rmin_r.
   fourier.
Qed.

Lemma Ratan_CVU' :
  CVU (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N)
                     ps_atan (/2) (mkposreal (/2) pos_half_prf).
Proof.
apply (Alt_CVU (fun i r => Ratan_seq r i) ps_atan PI_tg (/2) pos_half);
  lazy beta.
    now intros; apply Ratan_seq_decreasing, Boule_half_to_interval.
   now intros; apply Ratan_seq_converging, Boule_half_to_interval.
  intros x b; apply Boule_half_to_interval in b.
  unfold ps_atan; destruct (in_int x) as [inside | outside];
   [ | destruct b; case outside; split; fourier].
  destruct (ps_atan_exists_1 x inside) as [v Pv].
  apply Un_cv_ext with (2 := Pv);[reflexivity].
 intros x n b; apply Boule_half_to_interval in b.
 rewrite <- (Rmult_1_l (PI_tg n)); unfold Ratan_seq, PI_tg. 
 apply Rmult_le_compat_r.
  apply Rlt_le, Rinv_0_lt_compat, (lt_INR 0); omega.
 rewrite <- (pow1 (2 * n + 1)); apply pow_incr; assumption.
exact PI_tg_cv.
Qed.

Lemma Ratan_CVU :
  CVU (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N)
                     ps_atan 0  (mkposreal 1 Rlt_0_1).
Proof.
intros eps ep; destruct (Ratan_CVU' eps ep) as [N Pn].
exists N; intros n x nN b_y.
case (Rtotal_order 0 x) as [xgt0 | [x0 | x0]].
  assert (Boule (/2) {| pos := / 2; cond_pos := pos_half_prf|} x).
   revert b_y; unfold Boule; simpl; intros b_y; apply Rabs_def2 in b_y.
   destruct b_y; unfold Boule; simpl; apply Rabs_def1; fourier.
  apply Pn; assumption.
 rewrite <- x0, ps_atan0_0.
 rewrite <- (sum_eq (fun _ => 0)), sum_cte, Rmult_0_l, Rminus_0_r, Rabs_pos_eq.
   assumption.
  apply Rle_refl.
 intros i _; unfold tg_alt, Ratan_seq, Rdiv; rewrite plus_comm; simpl.
 solve[rewrite !Rmult_0_l, Rmult_0_r; auto].
replace (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) with
  (-(ps_atan (-x) - sum_f_R0 (tg_alt (Ratan_seq (-x))) n)).
 rewrite Rabs_Ropp.
 assert (Boule (/2) {| pos := / 2; cond_pos := pos_half_prf|} (-x)).
  revert b_y; unfold Boule; simpl; intros b_y; apply Rabs_def2 in b_y.
  destruct b_y; unfold Boule; simpl; apply Rabs_def1; fourier.
 apply Pn; assumption.
unfold Rminus; rewrite ps_atan_opp, Ropp_plus_distr, sum_Ratan_seq_opp.
rewrite !Ropp_involutive; reflexivity.
Qed.

Lemma Alt_PI_tg : forall n, PI_tg n = Ratan_seq 1 n.
Proof.
intros n; unfold PI_tg, Ratan_seq, Rdiv; rewrite pow1, Rmult_1_l.
reflexivity.
Qed.

Lemma Ratan_is_ps_atan : forall eps, eps > 0 ->
       exists N, forall n, (n >= N)%nat -> forall x, -1 < x -> x < 1 ->
       Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps.
Proof.
intros eps ep.
destruct (Ratan_CVU _ ep) as [N1 PN1].
exists N1; intros n nN x xm1 x1; rewrite <- Rabs_Ropp, Ropp_minus_distr.
apply PN1; [assumption | ].
unfold Boule; simpl; rewrite Rminus_0_r; apply Rabs_def1; assumption.
Qed.

Lemma Datan_continuity : continuity (fun x => /(1+x ^ 2)).
Proof.
apply continuity_inv.
apply continuity_plus.
apply continuity_const ; unfold constant ; intuition.
apply derivable_continuous ; apply derivable_pow.
intro x ; apply Rgt_not_eq ; apply Rge_gt_trans with (1+0) ; [|fourier] ;
 apply Rplus_ge_compat_l.
 replace (x^2) with (x²).
 apply Rle_ge ; apply Rle_0_sqr.
 unfold Rsqr ; field.
Qed.

Lemma derivable_pt_lim_ps_atan : forall x, -1 < x < 1 ->
  derivable_pt_lim ps_atan x ((fun y => /(1 + y ^ 2)) x).
Proof.
intros x x_encad.
destruct (boule_in_interval (-1) 1 x x_encad) as [c [r [Pcr1 [P1 P2]]]].
change (/ (1 + x ^ 2)) with ((fun u => /(1 + u ^ 2)) x).
assert (t := derivable_pt_lim_CVU).
apply derivable_pt_lim_CVU with 
          (fn := (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N))
          (fn' := (fun N x => sum_f_R0 (tg_alt (Datan_seq x)) N))
          (c := c) (r := r).
    assumption.
   intros y N inb; apply Rabs_def2 in inb; destruct inb.
   apply Datan_is_datan.
    fourier.
   fourier.
  intros y inb; apply Rabs_def2 in inb; destruct inb.
  assert (y_gt_0 : -1 < y) by fourier.
  assert (y_lt_1 : y < 1) by fourier.
  intros eps eps_pos ; elim (Ratan_is_ps_atan eps eps_pos).
  intros N HN ; exists N; intros n n_lb ; apply HN ; tauto.
 apply Datan_CVU_prelim.
 replace ((c - r + (c + r)) / 2) with c by field.
 unfold mkposreal_lb_ub; simpl.
 replace ((c + r - (c - r)) / 2) with (r :R) by field.
 assert (Rabs c < 1 - r).
  unfold Boule in Pcr1; destruct r; simpl in *; apply Rabs_def1;
  apply Rabs_def2 in Pcr1; destruct Pcr1; fourier.
 fourier.
intros; apply Datan_continuity.
Qed.

Lemma derivable_pt_ps_atan :
   forall x, -1 < x < 1 -> derivable_pt ps_atan x.
Proof.
intros x x_encad.
exists (/(1+x^2)) ; apply derivable_pt_lim_ps_atan; assumption.
Qed.

Lemma ps_atan_continuity_pt_1 : forall eps : R,
       eps > 0 ->
       exists alp : R,
       alp > 0 /\
       (forall x, x < 1 -> 0 < x -> R_dist x 1 < alp ->
       dist R_met (ps_atan x) (Alt_PI/4) < eps).
Proof.
intros eps eps_pos.
assert (eps_3_pos : eps / 3 > 0) by fourier.
elim (Ratan_is_ps_atan (eps / 3) eps_3_pos) ; intros N1 HN1.
unfold Alt_PI.
destruct exist_PI as [v Pv]; replace ((4 * v)/4) with v by field.
assert (Pv' : Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) v).
 apply Un_cv_ext with (2:= Pv).
 intros; apply sum_eq; intros; unfold tg_alt; rewrite Alt_PI_tg; tauto.
destruct (Pv' (eps / 3) eps_3_pos) as [N2 HN2].
set (N := (N1 + N2)%nat).
assert (O_lb : 0 <= 1) by intuition ; assert (O_ub : 1 <= 1) by intuition ;
 elim (ps_atanSeq_continuity_pt_1 N 1 O_lb O_ub (eps / 3) eps_3_pos) ; intros alpha Halpha ;
 clear -HN1 HN2 Halpha eps_3_pos; destruct Halpha as (alpha_pos, Halpha).
exists alpha ; split;[assumption | ].
intros x x_ub x_lb x_bounds.
simpl ; unfold R_dist.
replace (ps_atan x - v) with ((ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N)
     + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N)
     + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)).
apply Rle_lt_trans with (r2:=Rabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) +
      Rabs ((sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) +
   (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v))).
rewrite Rplus_assoc ; apply Rabs_triang.
   replace eps with (2 / 3 * eps + eps / 3).
   rewrite Rplus_comm.
   apply Rplus_lt_compat.
   apply Rle_lt_trans with (r2 := Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) +
      Rabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)).
   apply Rabs_triang.
   apply Rlt_le_trans with (r2:= eps / 3 + eps / 3).
   apply Rplus_lt_compat.
   simpl in Halpha ; unfold R_dist in Halpha.
   apply Halpha ; split.
   unfold D_x, no_cond ; split ; [ | apply Rgt_not_eq ] ; intuition.
   intuition.
   apply HN2; unfold N; omega.
   fourier.
  rewrite <- Rabs_Ropp, Ropp_minus_distr; apply HN1.
     unfold N; omega.  
    fourier.
  assumption.
 field.
ring.
Qed.

Lemma Datan_eq_DatanSeq_interv : forall x, -1 < x < 1 ->
 forall (Pratan:derivable_pt ps_atan x) (Prmymeta:derivable_pt atan x),
      derive_pt ps_atan x Pratan = derive_pt atan x Prmymeta.
Proof.
assert (freq : 0 < tan 1) by apply (Rlt_trans _ _ _ Rlt_0_1 tan_1_gt_1).
intros x x_encad Pratan Prmymeta.
 rewrite pr_nu_var2_interv with (g:=ps_atan) (lb:=-1) (ub:=tan 1)
   (pr2 := derivable_pt_ps_atan x x_encad).
 rewrite pr_nu_var2_interv with (f:=atan) (g:=atan) (lb:=-1) (ub:= 1) (pr2:=derivable_pt_atan x).
 assert (Temp := derivable_pt_lim_ps_atan x x_encad).
 assert (Hrew1 : derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = (/(1+x^2))).
  apply derive_pt_eq_0 ; assumption.
  rewrite derive_pt_atan.
  rewrite Hrew1.
  replace (Rsqr x) with (x ^ 2) by (unfold Rsqr; ring).
  unfold Rdiv; rewrite Rmult_1_l; reflexivity.
     fourier.
    assumption.
   intros; reflexivity.
  fourier.
 assert (t := tan_1_gt_1); split;destruct x_encad; fourier.
intros; reflexivity.
Qed.

Lemma atan_eq_ps_atan :
 forall x, 0 < x < 1 -> atan x = ps_atan x.
Proof.
intros x x_encad.
assert (pr1 : forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) c).
 intros c c_encad.
 apply derivable_pt_minus.
  exact (derivable_pt_atan c).
 apply derivable_pt_ps_atan.
  destruct x_encad; destruct c_encad; split; fourier.
assert (pr2 : forall c : R, 0 < c < x -> derivable_pt id c).
 intros ; apply derivable_pt_id; fourier.
assert (delta_cont : forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) c).
 intros c [[c_encad1 | c_encad1 ] [c_encad2 | c_encad2]];
        apply continuity_pt_minus.
        apply derivable_continuous_pt ; apply derivable_pt_atan. 
       apply derivable_continuous_pt ; apply derivable_pt_ps_atan.
       split; destruct x_encad; fourier.
      apply derivable_continuous_pt, derivable_pt_atan.
     apply derivable_continuous_pt, derivable_pt_ps_atan.
     subst c; destruct x_encad; split; fourier.
    apply derivable_continuous_pt, derivable_pt_atan.
   apply derivable_continuous_pt, derivable_pt_ps_atan.
   subst c; split; fourier.
  apply derivable_continuous_pt, derivable_pt_atan.
 apply derivable_continuous_pt, derivable_pt_ps_atan.
 subst c; destruct x_encad; split; fourier.
assert (id_cont : forall c : R, 0 <= c <= x -> continuity_pt id c).
    intros ; apply derivable_continuous ; apply derivable_id.
assert (x_lb : 0 < x) by (destruct x_encad; fourier).
elim (MVT (atan - ps_atan)%F id 0 x pr1 pr2 x_lb delta_cont id_cont) ; intros d Temp ; elim Temp ; intros d_encad Main.
clear - Main x_encad.
assert (Temp : forall (pr: derivable_pt (atan - ps_atan) d), derive_pt (atan - ps_atan) d pr = 0).
 intro pr.
 assert (d_encad3 : -1 < d < 1).
  destruct d_encad; destruct x_encad; split; fourier.
 pose (pr3 := derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3)).
 rewrite <- pr_nu_var2_interv with (f:=(atan - ps_atan)%F) (g:=(atan - ps_atan)%F) (lb:=0) (ub:=x) (pr1:=pr3) (pr2:=pr).
    unfold pr3. rewrite derive_pt_minus.
    rewrite Datan_eq_DatanSeq_interv with (Prmymeta := derivable_pt_atan d).
     intuition.
    assumption. 
   destruct d_encad; fourier.
  assumption.
 reflexivity.
assert (iatan0 : atan 0 = 0).
 apply tan_is_inj.
   apply atan_bound.
  rewrite Ropp_div; assert (t := PI2_RGT_0); split; fourier.
 rewrite tan_0, atan_right_inv; reflexivity.
generalize Main; rewrite Temp, Rmult_0_r.
replace ((atan - ps_atan)%F x) with (atan x - ps_atan x) by intuition.
replace ((atan - ps_atan)%F 0) with (atan 0 - ps_atan 0) by intuition.
rewrite iatan0, ps_atan0_0, !Rminus_0_r.
replace (derive_pt id d (pr2 d d_encad)) with 1. 
 rewrite Rmult_1_r.
 solve[intros M; apply Rminus_diag_uniq; auto].
rewrite pr_nu_var with (g:=id) (pr2:=derivable_pt_id d).
 symmetry ; apply derive_pt_id.
tauto.
Qed.


Theorem Alt_PI_eq : Alt_PI = PI.
Proof.
apply Rmult_eq_reg_r with (/4); fold (Alt_PI/4); fold (PI/4);
  [ | apply Rgt_not_eq; fourier].
assert (0 < PI/6) by (apply PI6_RGT_0).
assert (t1:= PI2_1).
assert (t2 := PI_4).
assert (m := Alt_PI_RGT_0).
assert (-PI/2 < 1 < PI/2) by (rewrite Ropp_div; split; fourier).
apply cond_eq; intros eps ep.
change (R_dist (Alt_PI/4) (PI/4) < eps).
assert (ca : continuity_pt atan 1).
  apply derivable_continuous_pt, derivable_pt_atan.
assert (Xe : exists eps', exists eps'',
  eps' + eps'' <= eps /\ 0 < eps' /\ 0 < eps'').
 exists (eps/2); exists (eps/2); repeat apply conj; fourier.
destruct Xe as [eps' [eps'' [eps_ineq [ep' ep'']]]].
destruct (ps_atan_continuity_pt_1 _ ep') as [alpha [a0 Palpha]].
destruct (ca _ ep'') as [beta [b0 Pbeta]].
assert (Xa : exists a, 0 < a < 1 /\ R_dist a 1 < alpha /\
                R_dist a 1 < beta).
 exists (Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))).
 assert (/2 <= Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))) by apply Rmax_l.
 assert (Rmax (1 - alpha /2) (1 - beta /2) <=
         Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))) by apply Rmax_r.
 assert ((1 - alpha /2) <= Rmax (1 - alpha /2) (1 - beta /2)) by apply Rmax_l.
 assert ((1 - beta /2) <= Rmax (1 - alpha /2) (1 - beta /2)) by apply Rmax_r.
 assert (Rmax (1 - alpha /2) (1 - beta /2) < 1)
   by (apply Rmax_lub_lt; fourier).
 split;[split;[ | apply Rmax_lub_lt]; fourier | ].
 assert (0 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))).
  assert (Rmax (/2) (Rmax (1 - alpha / 2) 
            (1 - beta /2)) <= 1) by (apply Rmax_lub; fourier).
  fourier.
 split; unfold R_dist; rewrite <-Rabs_Ropp, Ropp_minus_distr,
   Rabs_pos_eq;fourier.
destruct Xa as [a [[Pa0 Pa1] [P1 P2]]].
apply Rle_lt_trans with (1 := R_dist_tri _ _ (ps_atan a)).
apply Rlt_le_trans with (2 := eps_ineq).
apply Rplus_lt_compat.
rewrite R_dist_sym; apply Palpha; assumption.
rewrite <- atan_eq_ps_atan.
 rewrite <- atan_1; apply (Pbeta a); auto.
 split; [ | exact P2].
split;[exact I | apply Rgt_not_eq; assumption].
split; assumption.
Qed.

Lemma PI_ineq :
  forall N : nat,
    sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI / 4 <=
    sum_f_R0 (tg_alt PI_tg) (2 * N).
Proof.
intros; rewrite <- Alt_PI_eq; apply Alt_PI_ineq.
Qed.