1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Ranalysis_reg.
Require Import Rfunctions.
Require Import Rseries.
Require Import Fourier.
Require Import RiemannInt.
Require Import SeqProp.
Require Import Max.
Require Import Omega.
Require Import Lra.
Local Open Scope R_scope.
(** * Preliminaries lemmas *)
Lemma f_incr_implies_g_incr_interv : forall f g:R->R, forall lb ub,
lb < ub ->
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
(forall x , f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall x y, f lb <= x -> x < y -> y <= f ub -> g x < g y).
Proof.
intros f g lb ub lb_lt_ub f_incr f_eq_g g_ok x y lb_le_x x_lt_y y_le_ub.
assert (x_encad : f lb <= x <= f ub) by lra.
assert (y_encad : f lb <= y <= f ub) by lra.
assert (gx_encad := g_ok _ (proj1 x_encad) (proj2 x_encad)).
assert (gy_encad := g_ok _ (proj1 y_encad) (proj2 y_encad)).
case (Rlt_dec (g x) (g y)); [ easy |].
intros Hfalse.
assert (Temp := Rnot_lt_le _ _ Hfalse).
enough (y <= x) by lra.
replace y with (id y) by easy.
replace x with (id x) by easy.
rewrite <- f_eq_g by easy.
rewrite <- f_eq_g by easy.
assert (f_incr2 : forall x y, lb <= x -> x <= y -> y < ub -> f x <= f y). {
intros m n lb_le_m m_le_n n_lt_ub.
case (m_le_n).
- intros; apply Rlt_le, f_incr, Rlt_le; assumption.
- intros Hyp; rewrite Hyp; apply Req_le; reflexivity.
}
apply f_incr2; intuition.
enough (g x <> ub) by lra.
intro Hf.
assert (Htemp : (comp f g) x = f ub). {
unfold comp; rewrite Hf; reflexivity.
}
rewrite f_eq_g in Htemp by easy.
unfold id in Htemp.
fourier.
Qed.
Lemma derivable_pt_id_interv : forall (lb ub x:R),
lb <= x <= ub ->
derivable_pt id x.
Proof.
intros.
reg.
Qed.
Lemma pr_nu_var2_interv : forall (f g : R -> R) (lb ub x : R) (pr1 : derivable_pt f x)
(pr2 : derivable_pt g x),
lb < ub ->
lb < x < ub ->
(forall h : R, lb < h < ub -> f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.
Proof.
intros f g lb ub x Prf Prg lb_lt_ub x_encad local_eq.
assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs g x l)).
intros a l a_encad.
unfold derivable_pt_abs, derivable_pt_lim.
split.
intros Hyp eps eps_pos.
elim (Hyp eps eps_pos) ; intros delta Hyp2.
assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0).
clear-a lb ub a_encad delta.
apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition.
exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond).
intros h h_neq h_encad.
replace (g (a + h) - g a) with (f (a + h) - f a).
apply Hyp2 ; intuition.
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))).
assumption. apply Rmin_l.
assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h).
intros ; apply Ropp_eq_compat ; intuition.
rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity.
assumption.
assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
split.
assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
intros ; fourier.
apply Sublemma.
apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
assert (Sublemma : forall x y z, y < z - x -> x + y < z).
intros ; fourier.
apply Sublemma.
apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
intros Hyp eps eps_pos.
elim (Hyp eps eps_pos) ; intros delta Hyp2.
assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0).
clear-a lb ub a_encad delta.
apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition.
exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond).
intros h h_neq h_encad.
replace (f (a + h) - f a) with (g (a + h) - g a).
apply Hyp2 ; intuition.
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))).
assumption. apply Rmin_l.
assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h).
intros ; apply Ropp_eq_compat ; intuition.
rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity.
assumption.
assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
split.
assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
intros ; fourier.
apply Sublemma.
apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
assert (Sublemma : forall x y z, y < z - x -> x + y < z).
intros ; fourier.
apply Sublemma.
apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
unfold derivable_pt in Prf.
unfold derivable_pt in Prg.
elim Prf; intros x0 p.
elim Prg; intros x1 p0.
assert (Temp := p); rewrite H in Temp.
unfold derivable_pt_abs in p.
unfold derivable_pt_abs in p0.
simpl in |- *.
apply (uniqueness_limite g x x0 x1 Temp p0).
assumption.
Qed.
(* begin hide *)
Lemma leftinv_is_rightinv : forall (f g:R->R),
(forall x y, x < y -> f x < f y) ->
(forall x, (comp f g) x = id x) ->
(forall x, (comp g f) x = id x).
Proof.
intros f g f_incr Hyp x.
assert (forall x, f (g (f x)) = f x).
intros ; apply Hyp.
assert(f_inj : forall x y, f x = f y -> x = y).
intros a b fa_eq_fb.
case(total_order_T a b).
intro s ; case s ; clear s.
intro Hf.
assert (Hfalse := f_incr a b Hf).
apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption.
intuition.
intro Hf. assert (Hfalse := f_incr b a Hf).
apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption.
apply f_inj. unfold comp.
unfold comp in Hyp.
rewrite Hyp.
unfold id.
reflexivity.
Qed.
(* end hide *)
Lemma leftinv_is_rightinv_interv : forall (f g:R->R) (lb ub:R),
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall y, f lb <= y -> y <= f ub -> (comp f g) y = id y) ->
(forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
forall x,
lb <= x <= ub ->
(comp g f) x = id x.
Proof.
intros f g lb ub f_incr_interv Hyp g_wf x x_encad.
assert(f_inj : forall x y, lb <= x <= ub -> lb <= y <= ub -> f x = f y -> x = y).
intros a b a_encad b_encad fa_eq_fb.
case(total_order_T a b).
intro s ; case s ; clear s.
intro Hf.
assert (Hfalse := f_incr_interv a b (proj1 a_encad) Hf (proj2 b_encad)).
apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption.
intuition.
intro Hf. assert (Hfalse := f_incr_interv b a (proj1 b_encad) Hf (proj2 a_encad)).
apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption.
assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y).
intros m n cond1 cond2 cond3.
case cond2.
intro cond. apply Rlt_le ; apply f_incr_interv ; assumption.
intro cond ; right ; rewrite cond ; reflexivity.
assert (Hyp2:forall x, lb <= x <= ub -> f (g (f x)) = f x).
intros ; apply Hyp. apply f_incr_interv2 ; intuition.
apply f_incr_interv2 ; intuition.
unfold comp ; unfold comp in Hyp.
apply f_inj.
apply g_wf ; apply f_incr_interv2 ; intuition.
unfold id ; assumption.
apply Hyp2 ; unfold id ; assumption.
Qed.
(** Intermediate Value Theorem on an Interval (Proof mainly taken from Reals.Rsqrt_def) and its corollary *)
Lemma IVT_interv_prelim0 : forall (x y:R) (P:R->bool) (N:nat),
x < y ->
x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y.
Proof.
assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+y) / 2 <= ub).
intros x y lb ub Hyp.
lra.
intros x y P N x_lt_y.
induction N.
simpl ; intuition.
simpl.
case (P ((Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2)).
split. apply Sublemma ; intuition.
intuition.
split. intuition.
apply Sublemma ; intuition.
Qed.
Lemma IVT_interv_prelim1 : forall (x y x0:R) (D : R -> bool),
x < y ->
Un_cv (dicho_up x y D) x0 ->
x <= x0 <= y.
Proof.
intros x y x0 D x_lt_y bnd.
assert (Main : forall n, x <= dicho_up x y D n <= y).
intro n. unfold dicho_up.
apply (proj1 (IVT_interv_prelim0 x y D n x_lt_y)).
split.
apply Rle_cv_lim with (Vn:=dicho_up x y D) (Un:=fun n => x).
intro n ; exact (proj1 (Main n)).
unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (x -x) with 0 by field ; rewrite Rabs_R0 ; assumption.
assumption.
apply Rle_cv_lim with (Un:=dicho_up x y D) (Vn:=fun n => y).
intro n ; exact (proj2 (Main n)).
assumption.
unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (y -y) with 0 by field ; rewrite Rabs_R0 ; assumption.
Qed.
Lemma IVT_interv : forall (f : R -> R) (x y : R),
(forall a, x <= a <= y -> continuity_pt f a) ->
x < y ->
f x < 0 ->
0 < f y ->
{z : R | x <= z <= y /\ f z = 0}.
Proof.
intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
cut (x <= y).
intro.
generalize (dicho_lb_cv x y (fun z:R => cond_positivity (f z)) H3).
generalize (dicho_up_cv x y (fun z:R => cond_positivity (f z)) H3).
intros X X0.
elim X; intros x0 p.
elim X0; intros x1 p0.
assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p).
rewrite H4 in p0.
exists x0.
split.
split.
apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0).
simpl in |- *.
right; reflexivity.
apply growing_ineq.
apply dicho_lb_growing; assumption.
assumption.
apply Rle_trans with (dicho_up x y (fun z:R => cond_positivity (f z)) 0).
apply decreasing_ineq.
apply dicho_up_decreasing; assumption.
assumption.
right; reflexivity.
2: left; assumption.
set (Vn := fun n:nat => dicho_lb x y (fun z:R => cond_positivity (f z)) n).
set (Wn := fun n:nat => dicho_up x y (fun z:R => cond_positivity (f z)) n).
cut ((forall n:nat, f (Vn n) <= 0) -> f x0 <= 0).
cut ((forall n:nat, 0 <= f (Wn n)) -> 0 <= f x0).
intros.
cut (forall n:nat, f (Vn n) <= 0).
cut (forall n:nat, 0 <= f (Wn n)).
intros.
assert (H9 := H6 H8).
assert (H10 := H5 H7).
apply Rle_antisym; assumption.
intro.
unfold Wn in |- *.
cut (forall z:R, cond_positivity z = true <-> 0 <= z).
intro.
assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n).
elim (H7 (f (dicho_up x y (fun z:R => cond_positivity (f z)) n))); intros.
apply H9.
apply H8.
elim (H7 (f y)); intros.
apply H12.
left; assumption.
intro.
unfold cond_positivity in |- *.
destruct (Rle_dec 0 z) as [|Hnotle].
split.
intro; assumption.
intro; reflexivity.
split.
intro feqt;discriminate feqt.
intro.
elim Hnotle; assumption.
unfold Vn in |- *.
cut (forall z:R, cond_positivity z = false <-> z < 0).
intros.
assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n).
left.
elim (H7 (f (dicho_lb x y (fun z:R => cond_positivity (f z)) n))); intros.
apply H9.
apply H8.
elim (H7 (f x)); intros.
apply H12.
assumption.
intro.
unfold cond_positivity in |- *.
destruct (Rle_dec 0 z) as [Hle|].
split.
intro feqt; discriminate feqt.
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H7)).
split.
intro; auto with real.
intro; reflexivity.
cut (Un_cv Wn x0).
intros.
assert (Temp : x <= x0 <= y).
apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
assert (H7 := continuity_seq f Wn x0 (H x0 Temp) H5).
destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt].
left; assumption.
right; reflexivity.
unfold Un_cv in H7; unfold R_dist in H7.
cut (0 < - f x0).
intro.
elim (H7 (- f x0) H8); intros.
cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
assert (H11 := H9 x2 H10).
rewrite Rabs_right in H11.
pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11.
unfold Rminus in H11; rewrite (Rplus_comm (f (Wn x2))) in H11.
assert (H12 := Rplus_lt_reg_l _ _ _ H11).
assert (H13 := H6 x2).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)).
apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat.
apply H6.
exact H8.
apply Ropp_0_gt_lt_contravar; assumption.
unfold Wn in |- *; assumption.
cut (Un_cv Vn x0).
intros.
assert (Temp : x <= x0 <= y).
apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
assert (H7 := continuity_seq f Vn x0 (H x0 Temp) H5).
destruct (total_order_T 0 (f x0)) as [[Hlt|Heq]|].
unfold Un_cv in H7; unfold R_dist in H7.
elim (H7 (f x0) Hlt); intros.
cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H10 := H8 x2 H9).
rewrite Rabs_left in H10.
pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10.
rewrite Ropp_minus_distr' in H10.
unfold Rminus in H10.
assert (H11 := Rplus_lt_reg_l _ _ _ H10).
assert (H12 := H6 x2).
cut (0 < f (Vn x2)).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H13 H12)).
rewrite <- (Ropp_involutive (f (Vn x2))).
apply Ropp_0_gt_lt_contravar; assumption.
apply Rplus_lt_reg_l with (f x0 - f (Vn x2)).
rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0;
[ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ].
assumption.
apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
right; rewrite <- Heq; reflexivity.
left; assumption.
unfold Vn in |- *; assumption.
Qed.
(* begin hide *)
Ltac case_le H :=
let t := type of H in
let h' := fresh in
match t with ?x <= ?y => case (total_order_T x y);
[intros h'; case h'; clear h' |
intros h'; clear -H h'; elimtype False; fourier ] end.
(* end hide *)
Lemma f_interv_is_interv : forall (f:R->R) (lb ub y:R),
lb < ub ->
f lb <= y <= f ub ->
(forall x, lb <= x <= ub -> continuity_pt f x) ->
{x | lb <= x <= ub /\ f x = y}.
Proof.
intros f lb ub y lb_lt_ub y_encad f_cont_interv.
case y_encad ; intro y_encad1.
case_le y_encad1 ; intros y_encad2 y_encad3 ; case_le y_encad3.
intro y_encad4.
clear y_encad y_encad1 y_encad3.
assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => f x - y) a).
intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist.
intros eps eps_pos. elim (f_cont_interv a a_encad eps eps_pos).
intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp).
exists alpha. split.
assumption. intros x x_cond.
replace (f x - y - (f a - y)) with (f x - f a) by field.
exact (Temp x x_cond).
assert (H1 : (fun x : R => f x - y) lb < 0).
apply Rlt_minus. assumption.
assert (H2 : 0 < (fun x : R => f x - y) ub).
apply Rgt_minus ; assumption.
destruct (IVT_interv (fun x => f x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx).
exists x.
destruct Hx as (Hyp,Result).
intuition.
intro H ; exists ub ; intuition.
intro H ; exists lb ; intuition.
intro H ; exists ub ; intuition.
Qed.
(** ** The derivative of a reciprocal function *)
(** * Continuity of the reciprocal function *)
Lemma continuity_pt_recip_prelim : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub),
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x, lb <= x <= ub -> (comp g f) x = id x) ->
(forall a, lb <= a <= ub -> continuity_pt f a) ->
forall b,
f lb < b < f ub ->
continuity_pt g b.
Proof.
assert (Sublemma : forall x y z, Rmax x y < z <-> x < z /\ y < z).
intros x y z. split.
unfold Rmax. case (Rle_dec x y) ; intros Hyp Hyp2.
split. apply Rle_lt_trans with (r2:=y) ; assumption. assumption.
split. assumption. apply Rlt_trans with (r2:=x).
assert (Temp : forall x y, ~ x <= y -> x > y).
intros m n Hypmn. intuition.
apply Temp ; clear Temp ; assumption.
assumption.
intros Hyp.
unfold Rmax. case (Rle_dec x y).
intro ; exact (proj2 Hyp).
intro ; exact (proj1 Hyp).
assert (Sublemma2 : forall x y z, Rmin x y > z <-> x > z /\ y > z).
intros x y z. split.
unfold Rmin. case (Rle_dec x y) ; intros Hyp Hyp2.
split. assumption.
apply Rlt_le_trans with (r2:=x) ; intuition.
split.
apply Rlt_trans with (r2:=y). intuition.
assert (Temp : forall x y, ~ x <= y -> x > y).
intros m n Hypmn. intuition.
apply Temp ; clear Temp ; assumption.
assumption.
intros Hyp.
unfold Rmin. case (Rle_dec x y).
intro ; exact (proj1 Hyp).
intro ; exact (proj2 Hyp).
assert (Sublemma3 : forall x y, x <= y /\ x <> y -> x < y).
intros m n Hyp. unfold Rle in Hyp.
destruct Hyp as (Hyp1,Hyp2).
case Hyp1.
intuition.
intro Hfalse ; apply False_ind ; apply Hyp2 ; exact Hfalse.
intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad.
assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y).
intros m n cond1 cond2 cond3.
case cond2.
intro cond. apply Rlt_le ; apply f_incr_interv ; assumption.
intro cond ; right ; rewrite cond ; reflexivity.
unfold continuity_pt, continue_in, limit1_in, limit_in ; intros eps eps_pos.
unfold dist ; simpl ; unfold R_dist.
assert (b_encad_e : f lb <= b <= f ub) by intuition.
elim (f_interv_is_interv f lb ub b lb_lt_ub b_encad_e f_cont_interv) ; intros x Temp.
destruct Temp as (x_encad,f_x_b).
assert (lb_lt_x : lb < x).
assert (Temp : x <> lb).
intro Hfalse.
assert (Temp' : b = f lb).
rewrite <- f_x_b ; rewrite Hfalse ; reflexivity.
assert (Temp'' : b <> f lb).
apply Rgt_not_eq ; exact (proj1 b_encad).
apply Temp'' ; exact Temp'.
apply Sublemma3.
split. exact (proj1 x_encad).
assert (Temp2 : forall x y:R, x <> y <-> y <> x).
intros m n. split ; intuition.
rewrite Temp2 ; assumption.
assert (x_lt_ub : x < ub).
assert (Temp : x <> ub).
intro Hfalse.
assert (Temp' : b = f ub).
rewrite <- f_x_b ; rewrite Hfalse ; reflexivity.
assert (Temp'' : b <> f ub).
apply Rlt_not_eq ; exact (proj2 b_encad).
apply Temp'' ; exact Temp'.
apply Sublemma3.
split ; [exact (proj2 x_encad) | assumption].
pose (x1 := Rmax (x - eps) lb).
pose (x2 := Rmin (x + eps) ub).
assert (Hx1 : x1 = Rmax (x - eps) lb) by intuition.
assert (Hx2 : x2 = Rmin (x + eps) ub) by intuition.
assert (x1_encad : lb <= x1 <= ub).
split. apply RmaxLess2.
apply Rlt_le. rewrite Hx1. rewrite Sublemma.
split. apply Rlt_trans with (r2:=x) ; fourier.
assumption.
assert (x2_encad : lb <= x2 <= ub).
split. apply Rlt_le ; rewrite Hx2 ; apply Rgt_lt ; rewrite Sublemma2.
split. apply Rgt_trans with (r2:=x) ; fourier.
assumption.
apply Rmin_r.
assert (x_lt_x2 : x < x2).
rewrite Hx2.
apply Rgt_lt. rewrite Sublemma2.
split ; fourier.
assert (x1_lt_x : x1 < x).
rewrite Hx1.
rewrite Sublemma.
split ; fourier.
exists (Rmin (f x - f x1) (f x2 - f x)).
split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; fourier.
apply f_incr_interv ; intuition.
intros y Temp.
destruct Temp as (_,y_cond).
rewrite <- f_x_b in y_cond.
assert (Temp : forall x y d1 d2, d1 > 0 -> d2 > 0 -> Rabs (y - x) < Rmin d1 d2 -> x - d1 <= y <= x + d2).
intros.
split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. fourier.
apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)).
replace (Rabs (y0 - x0)) with (Rabs (x0 - y0)). apply RRle_abs.
rewrite <- Rabs_Ropp. unfold Rminus ; rewrite Ropp_plus_distr. rewrite Ropp_involutive.
intuition.
apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
apply Rmin_l.
assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. fourier.
apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). apply RRle_abs.
apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
apply Rmin_r.
assert (Temp' := Temp (f x) y (f x - f x1) (f x2 - f x)).
replace (f x - (f x - f x1)) with (f x1) in Temp' by field.
replace (f x + (f x2 - f x)) with (f x2) in Temp' by field.
assert (T : f x - f x1 > 0).
apply Rgt_minus. apply f_incr_interv ; intuition.
assert (T' : f x2 - f x > 0).
apply Rgt_minus. apply f_incr_interv ; intuition.
assert (Main := Temp' T T' y_cond).
clear Temp Temp' T T'.
assert (x1_lt_x2 : x1 < x2).
apply Rlt_trans with (r2:=x) ; assumption.
assert (f_cont_myinterv : forall a : R, x1 <= a <= x2 -> continuity_pt f a).
intros ; apply f_cont_interv ; split.
apply Rle_trans with (r2 := x1) ; intuition.
apply Rle_trans with (r2 := x2) ; intuition.
elim (f_interv_is_interv f x1 x2 y x1_lt_x2 Main f_cont_myinterv) ; intros x' Temp.
destruct Temp as (x'_encad,f_x'_y).
rewrite <- f_x_b ; rewrite <- f_x'_y.
unfold comp in f_eq_g. rewrite f_eq_g. rewrite f_eq_g.
unfold id.
assert (x'_encad2 : x - eps <= x' <= x + eps).
split.
apply Rle_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition.
apply Rle_trans with (r2:=x2) ; [ | apply Rmin_l] ; intuition.
assert (x1_lt_x' : x1 < x').
apply Sublemma3.
assert (x1_neq_x' : x1 <> x').
intro Hfalse. rewrite Hfalse, f_x'_y in y_cond.
assert (Hf : Rabs (y - f x) < f x - y).
apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). fourier.
apply Rmin_l.
assert(Hfin : f x - y < f x - y).
apply Rle_lt_trans with (r2:=Rabs (y - f x)).
replace (Rabs (y - f x)) with (Rabs (f x - y)). apply RRle_abs.
rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. fourier.
apply (Rlt_irrefl (f x - y)) ; assumption.
split ; intuition.
assert (x'_lb : x - eps < x').
apply Sublemma3.
split. intuition. apply Rlt_not_eq.
apply Rle_lt_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition.
assert (x'_lt_x2 : x' < x2).
apply Sublemma3.
assert (x1_neq_x' : x' <> x2).
intro Hfalse. rewrite <- Hfalse, f_x'_y in y_cond.
assert (Hf : Rabs (y - f x) < y - f x).
apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). fourier.
apply Rmin_r.
assert(Hfin : y - f x < y - f x).
apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. fourier.
apply (Rlt_irrefl (y - f x)) ; assumption.
split ; intuition.
assert (x'_ub : x' < x + eps).
apply Sublemma3.
split. intuition. apply Rlt_not_eq.
apply Rlt_le_trans with (r2:=x2) ; [ |rewrite Hx2 ; apply Rmin_l] ; intuition.
apply Rabs_def1 ; fourier.
assumption.
split. apply Rle_trans with (r2:=x1) ; intuition.
apply Rle_trans with (r2:=x2) ; intuition.
Qed.
Lemma continuity_pt_recip_interv : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub),
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
(forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall a, lb <= a <= ub -> continuity_pt f a) ->
forall b,
f lb < b < f ub ->
continuity_pt g b.
Proof.
intros f g lb ub lb_lt_ub f_incr_interv f_eq_g g_wf.
assert (g_eq_f_prelim := leftinv_is_rightinv_interv f g lb ub f_incr_interv f_eq_g).
assert (g_eq_f : forall x, lb <= x <= ub -> (comp g f) x = id x).
intro x ; apply g_eq_f_prelim ; assumption.
apply (continuity_pt_recip_prelim f g lb ub lb_lt_ub f_incr_interv g_eq_f).
Qed.
(** * Derivability of the reciprocal function *)
Lemma derivable_pt_lim_recip_interv : forall (f g:R->R) (lb ub x:R)
(Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a) (Prg : continuity_pt g x),
lb < ub ->
lb < x < ub ->
forall (Prg_incr:g lb <= g x <= g ub),
(forall x, lb <= x <= ub -> (comp f g) x = id x) ->
derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 ->
derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr)).
Proof.
intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq.
assert (x_encad2 : lb <= x <= ub).
split ; apply Rlt_le ; intuition.
elim (Prf (g x)); simpl; intros l Hl.
unfold derivable_pt_lim.
intros eps eps_pos.
pose (y := g x).
assert (Hlinv := limit_inv).
assert (Hf_deriv : forall eps:R,
0 < eps ->
exists delta : posreal,
(forall h:R,
h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps)).
intros eps0 eps0_pos.
red in Hl ; red in Hl. elim (Hl eps0 eps0_pos).
intros deltatemp Htemp.
exists deltatemp ; exact Htemp.
elim (Hf_deriv eps eps_pos).
intros deltatemp Htemp.
red in Hlinv ; red in Hlinv ; unfold dist in Hlinv ; unfold R_dist in Hlinv.
assert (Hlinv' := Hlinv (fun h => (f (y+h) - f y)/h) (fun h => h <>0) l 0).
unfold limit1_in, limit_in, dist in Hlinv' ; simpl in Hlinv'. unfold R_dist in Hlinv'.
assert (Premisse : (forall eps : R,
eps > 0 ->
exists alp : R,
alp > 0 /\
(forall x : R,
(fun h => h <>0) x /\ Rabs (x - 0) < alp ->
Rabs ((f (y + x) - f y) / x - l) < eps))).
intros eps0 eps0_pos.
elim (Hf_deriv eps0 eps0_pos).
intros deltatemp' Htemp'.
exists deltatemp'.
split.
exact deltatemp'.(cond_pos).
intros htemp cond.
apply (Htemp' htemp).
exact (proj1 cond).
replace (htemp) with (htemp - 0).
exact (proj2 cond).
intuition.
assert (Premisse2 : l <> 0).
intro l_null.
rewrite l_null in Hl.
apply df_neq.
rewrite derive_pt_eq.
exact Hl.
elim (Hlinv' Premisse Premisse2 eps eps_pos).
intros alpha cond.
assert (alpha_pos := proj1 cond) ; assert (inv_cont := proj2 cond) ; clear cond.
unfold derivable, derivable_pt, derivable_pt_abs, derivable_pt_lim in Prf.
elim (Hl eps eps_pos).
intros delta f_deriv.
assert (g_cont := g_cont_pur).
unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont.
pose (mydelta := Rmin delta alpha).
assert (mydelta_pos : mydelta > 0).
unfold mydelta, Rmin.
case (Rle_dec delta alpha).
intro ; exact (delta.(cond_pos)).
intro ; exact alpha_pos.
elim (g_cont mydelta mydelta_pos).
intros delta' new_g_cont.
assert(delta'_pos := proj1 (new_g_cont)).
clear g_cont ; assert (g_cont := proj2 (new_g_cont)) ; clear new_g_cont.
pose (mydelta'' := Rmin delta' (Rmin (x - lb) (ub - x))).
assert(mydelta''_pos : mydelta'' > 0).
unfold mydelta''.
apply Rmin_pos ; [intuition | apply Rmin_pos] ; apply Rgt_minus ; intuition.
pose (delta'' := mkposreal mydelta'' mydelta''_pos: posreal).
exists delta''.
intros h h_neq h_le_delta'.
assert (lb <= x +h <= ub).
assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
assert (lb <= x + h <= ub).
split.
assert (Sublemma : forall x y z, -z <= y - x -> x <= y + z).
intros ; fourier.
apply Sublemma.
apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))).
apply Rlt_le_trans with (r2:=delta''). assumption. intuition. apply Rmin_r.
apply Rgt_minus. intuition.
assert (Sublemma : forall x y z, y <= z - x -> x + y <= z).
intros ; fourier.
apply Sublemma.
apply Rlt_le ; apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-x) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=delta''). assumption.
apply Rle_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))). intuition.
apply Rle_trans with (r2:=Rmin (x - lb) (ub - x)). apply Rmin_r. apply Rmin_r.
replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))).
assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x).
rewrite f_eq_g. rewrite f_eq_g ; unfold id. rewrite Rplus_comm ;
unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r. intuition. intuition.
assumption.
split ; [|intuition].
assert (Sublemma : forall x y z, - z <= y - x -> x <= y + z).
intros ; fourier.
apply Sublemma ; apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption.
apply Rgt_minus. intuition.
field.
split. assumption.
intro Hfalse. assert (Hf : g (x+h) = g x) by intuition.
assert ((comp f g) (x+h) = (comp f g) x).
unfold comp ; rewrite Hf ; intuition.
assert (Main : x+h = x).
replace (x +h) with (id (x+h)) by intuition.
assert (Temp : x = id x) by intuition ; rewrite Temp at 2 ; clear Temp.
rewrite <- f_eq_g. rewrite <- f_eq_g. assumption.
intuition. assumption.
assert (h = 0).
apply Rplus_0_r_uniq with (r:=x) ; assumption.
apply h_neq ; assumption.
replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))).
assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x).
rewrite f_eq_g. rewrite f_eq_g. unfold id ; rewrite Rplus_comm ;
unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r ; intuition.
assumption. assumption.
rewrite Hrewr at 1.
unfold comp.
replace (g(x+h)) with (g x + (g (x+h) - g(x))) by field.
pose (h':=g (x+h) - g x).
replace (g (x+h) - g x) with h' by intuition.
replace (g x + h' - g x) with h' by field.
assert (h'_neq : h' <> 0).
unfold h'.
intro Hfalse.
unfold Rminus in Hfalse ; apply Rminus_diag_uniq in Hfalse.
assert (Hfalse' : (comp f g) (x+h) = (comp f g) x).
intros ; unfold comp ; rewrite Hfalse ; trivial.
rewrite f_eq_g in Hfalse' ; rewrite f_eq_g in Hfalse'.
unfold id in Hfalse'.
apply Rplus_0_r_uniq in Hfalse'.
apply h_neq ; exact Hfalse'. assumption. assumption. assumption.
unfold Rdiv at 1 3; rewrite Rmult_1_l ; rewrite Rmult_1_l.
apply inv_cont.
split.
exact h'_neq.
rewrite Rminus_0_r.
unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont_pur.
elim (g_cont_pur mydelta mydelta_pos).
intros delta3 cond3.
unfold dist in cond3 ; simpl in cond3 ; unfold R_dist in cond3.
unfold h'.
assert (mydelta_le_alpha : mydelta <= alpha).
unfold mydelta, Rmin ; case (Rle_dec delta alpha).
trivial.
intro ; intuition.
apply Rlt_le_trans with (r2:=mydelta).
unfold dist in g_cont ; simpl in g_cont ; unfold R_dist in g_cont ; apply g_cont.
split.
unfold D_x ; simpl.
split.
unfold no_cond ; trivial.
intro Hfalse ; apply h_neq.
apply (Rplus_0_r_uniq x).
symmetry ; assumption.
replace (x + h - x) with h by field.
apply Rlt_le_trans with (r2:=delta'').
assumption ; unfold delta''. intuition.
apply Rle_trans with (r2:=mydelta''). apply Req_le. unfold delta''. intuition.
apply Rmin_l. assumption.
field ; split.
assumption.
intro Hfalse ; apply h_neq.
apply (Rplus_0_r_uniq x).
assert (Hfin : (comp f g) (x+h) = (comp f g) x).
apply Rminus_diag_uniq in Hfalse.
unfold comp.
rewrite Hfalse ; reflexivity.
rewrite f_eq_g in Hfin. rewrite f_eq_g in Hfin. unfold id in Hfin. exact Hfin.
assumption. assumption.
Qed.
Lemma derivable_pt_recip_interv_prelim0 : forall (f g : R -> R) (lb ub x : R)
(Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a),
continuity_pt g x ->
lb < ub ->
lb < x < ub ->
forall Prg_incr : g lb <= g x <= g ub,
(forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) ->
derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 ->
derivable_pt g x.
Proof.
intros f g lb ub x Prf g_cont_pt lb_lt_ub x_encad Prg_incr f_eq_g Df_neq.
unfold derivable_pt, derivable_pt_abs.
exists (1 / derive_pt f (g x) (Prf (g x) Prg_incr)).
apply derivable_pt_lim_recip_interv ; assumption.
Qed.
Lemma derivable_pt_recip_interv_prelim1 :forall (f g:R->R) (lb ub x : R),
lb < ub ->
f lb < x < f ub ->
(forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) ->
(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall a : R, lb <= a <= ub -> derivable_pt f a) ->
derivable_pt f (g x).
Proof.
intros f g lb ub x lb_lt_ub x_encad f_eq_g g_ok f_incr f_derivable.
apply f_derivable.
assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_ok).
replace lb with ((comp g f) lb).
replace ub with ((comp g f) ub).
unfold comp.
assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_ok).
split ; apply Rlt_le ; apply Temp ; intuition.
apply Left_inv ; intuition.
apply Left_inv ; intuition.
Qed.
Lemma derivable_pt_recip_interv : forall (f g:R->R) (lb ub x : R)
(lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)
(f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x)
(g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)
(f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)
(f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a),
derive_pt f (g x)
(derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub
x_encad f_eq_g g_wf f_incr f_derivable)
<> 0 ->
derivable_pt g x.
Proof.
intros f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable Df_neq.
assert(g_incr : g (f lb) < g x < g (f ub)).
assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf).
split ; apply Temp ; intuition.
exact (proj1 x_encad). apply Rlt_le ; exact (proj2 x_encad).
apply Rlt_le ; exact (proj1 x_encad). exact (proj2 x_encad).
assert(g_incr2 : g (f lb) <= g x <= g (f ub)).
split ; apply Rlt_le ; intuition.
assert (g_eq_f := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf).
unfold comp, id in g_eq_f.
assert (f_derivable2 : forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a).
intros a a_encad ; apply f_derivable.
rewrite g_eq_f in a_encad ; rewrite g_eq_f in a_encad ; intuition.
apply derivable_pt_recip_interv_prelim0 with (f:=f) (lb:=f lb) (ub:=f ub)
(Prf:=f_derivable2) (Prg_incr:=g_incr2).
apply continuity_pt_recip_interv with (f:=f) (lb:=lb) (ub:=ub) ; intuition.
apply derivable_continuous_pt ; apply f_derivable ; intuition.
exact (proj1 x_encad). exact (proj2 x_encad). apply f_incr ; intuition.
assumption.
intros x0 x0_encad ; apply f_eq_g ; intuition.
rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub) (pr2:=derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad
f_eq_g g_wf f_incr f_derivable) ; [| |rewrite g_eq_f in g_incr ; rewrite g_eq_f in g_incr| ] ; intuition.
Qed.
(****************************************************)
(** * Value of the derivative of the reciprocal function *)
(****************************************************)
Lemma derive_pt_recip_interv_prelim0 : forall (f g:R->R) (lb ub x:R)
(Prf:derivable_pt f (g x)) (Prg:derivable_pt g x),
lb < ub ->
lb < x < ub ->
(forall x, lb < x < ub -> (comp f g) x = id x) ->
derive_pt f (g x) Prf <> 0 ->
derive_pt g x Prg = 1 / (derive_pt f (g x) Prf).
Proof.
intros f g lb ub x Prf Prg lb_lt_ub x_encad local_recip Df_neq.
replace (derive_pt g x Prg) with
((derive_pt g x Prg) * (derive_pt f (g x) Prf) * / (derive_pt f (g x) Prf)).
unfold Rdiv.
rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)).
rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)).
apply Rmult_eq_compat_l.
rewrite Rmult_comm.
rewrite <- derive_pt_comp.
assert (x_encad2 : lb <= x <= ub) by intuition.
rewrite pr_nu_var2_interv with (g:=id) (pr2:= derivable_pt_id_interv lb ub x x_encad2) (lb:=lb) (ub:=ub) ; [reg| | |] ; assumption.
rewrite Rmult_assoc, Rinv_r.
intuition.
assumption.
Qed.
Lemma derive_pt_recip_interv_prelim1_0 : forall (f g:R->R) (lb ub x:R),
lb < ub ->
f lb < x < f ub ->
(forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
lb < g x < ub.
Proof.
intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g.
assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf).
assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf).
unfold comp, id in Left_inv.
split ; [rewrite <- Left_inv with (x:=lb) | rewrite <- Left_inv ].
apply Temp ; intuition.
intuition.
apply Temp ; intuition.
intuition.
Qed.
Lemma derive_pt_recip_interv_prelim1_1 : forall (f g:R->R) (lb ub x:R),
lb < ub ->
f lb < x < f ub ->
(forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
lb <= g x <= ub.
Proof.
intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g.
assert (Temp := derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g).
split ; apply Rlt_le ; intuition.
Qed.
Lemma derive_pt_recip_interv : forall (f g:R->R) (lb ub x:R)
(lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)
(f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)
(g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)
(Prf:forall a : R, lb <= a <= ub -> derivable_pt f a)
(f_eq_g:forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x)
(Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x
lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0),
derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g
g_wf f_incr Prf Df_neq)
=
1 / (derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x
lb_lt_ub x_encad f_incr g_wf f_eq_g))).
Proof.
intros.
assert(g_incr := (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub
x_encad f_incr g_wf f_eq_g)).
apply derive_pt_recip_interv_prelim0 with (lb:=f lb) (ub:=f ub) ;
[intuition |assumption | intuition |].
intro Hfalse ; apply Df_neq. rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub)
(pr2:= (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad
f_incr g_wf f_eq_g))) ;
[intuition | intuition | | intuition].
exact (derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g).
Qed.
(****************************************************)
(** * Existence of the derivative of a function which is the limit of a sequence of functions *)
(****************************************************)
(* begin hide *)
Lemma ub_lt_2_pos : forall x ub lb, lb < x -> x < ub -> 0 < (ub-lb)/2.
Proof.
intros x ub lb lb_lt_x x_lt_ub.
lra.
Qed.
Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb<x) (x_lt_ub:x<ub) : posreal.
apply (mkposreal ((ub-lb)/2) (ub_lt_2_pos x ub lb lb_lt_x x_lt_ub)).
Defined.
(* end hide *)
Lemma derivable_pt_lim_CVU : forall (fn fn':nat -> R -> R) (f g:R->R)
(x:R) c r, Boule c r x ->
(forall y n, Boule c r y -> derivable_pt_lim (fn n) y (fn' n y)) ->
(forall y, Boule c r y -> Un_cv (fun n => fn n y) (f y)) ->
(CVU fn' g c r) ->
(forall y, Boule c r y -> continuity_pt g y) ->
derivable_pt_lim f x (g x).
Proof.
intros fn fn' f g x c' r xinb Dfn_eq_fn' fn_CV_f fn'_CVU_g g_cont eps eps_pos.
assert (eps_8_pos : 0 < eps / 8) by fourier.
elim (g_cont x xinb _ eps_8_pos) ; clear g_cont ;
intros delta1 (delta1_pos, g_cont).
destruct (Ball_in_inter _ _ _ _ _ xinb
(Boule_center x (mkposreal _ delta1_pos)))
as [delta Pdelta].
exists delta; intros h hpos hinbdelta.
assert (eps'_pos : 0 < (Rabs h) * eps / 4).
unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat.
apply Rabs_pos_lt ; assumption.
fourier.
destruct (fn_CV_f x xinb ((Rabs h) * eps / 4) eps'_pos) as [N2 fnx_CV_fx].
assert (xhinbxdelta : Boule x delta (x + h)).
clear -hinbdelta; apply Rabs_def2 in hinbdelta; unfold Boule; simpl.
destruct hinbdelta; apply Rabs_def1; fourier.
assert (t : Boule c' r (x + h)).
apply Pdelta in xhinbxdelta; tauto.
destruct (fn_CV_f (x+h) t ((Rabs h) * eps / 4) eps'_pos) as [N1 fnxh_CV_fxh].
clear fn_CV_f t.
destruct (fn'_CVU_g (eps/8) eps_8_pos) as [N3 fn'c_CVU_gc].
pose (N := ((N1 + N2) + N3)%nat).
assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn N x - h * (g x))) < (Rabs h)*eps).
apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs ((fn N (x + h) - fn N x - h * g x))).
solve[apply Rabs_triang].
apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x)).
solve[apply Rplus_le_compat_r ; apply Rabs_triang].
rewrite Rabs_Ropp.
case (Rlt_le_dec h 0) ; intro sgn_h.
assert (pr1 : forall c : R, x + h < c < x -> derivable_pt (fn N) c).
intros c c_encad ; unfold derivable_pt.
exists (fn' N c) ; apply Dfn_eq_fn'.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
assert (pr2 : forall c : R, x + h < c < x -> derivable_pt id c).
solve[intros; apply derivable_id].
assert (xh_x : x+h < x) by fourier.
assert (pr3 : forall c : R, x + h <= c <= x -> continuity_pt (fn N) c).
intros c c_encad ; apply derivable_continuous_pt.
exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
assert (pr4 : forall c : R, x + h <= c <= x -> continuity_pt id c).
solve[intros; apply derivable_continuous ; apply derivable_id].
destruct (MVT (fn N) id (x+h) x pr1 pr2 xh_x pr3 pr4) as [c [P Hc]].
assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = (fn N (x+h) - fn N x)).
apply Rmult_eq_reg_l with (-1).
replace (-1 * (h * derive_pt (fn N) c (pr1 c P))) with (-h * derive_pt (fn N) c (pr1 c P)) by field.
replace (-1 * (fn N (x + h) - fn N x)) with (- (fn N (x + h) - fn N x)) by field.
replace (-h) with (id x - id (x + h)) by (unfold id; field).
rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg.
replace (- (fn N (x + h) - fn N x)) with (fn N x - fn N (x + h)) by field.
assumption.
now apply Rlt_not_eq, IZR_lt.
rewrite <- Hc'; clear Hc Hc'.
replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c).
replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field.
rewrite Rabs_mult.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ;
rewrite Rabs_minus_sym ; apply fnxh_CV_fxh.
unfold N; omega.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l.
unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx.
unfold N ; omega.
replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field.
apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_le_compat_l ; apply Rplus_le_compat_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l.
solve[apply Rabs_pos].
solve[apply Rabs_triang].
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)).
apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
rewrite Rabs_minus_sym ; apply fn'c_CVU_gc.
unfold N ; omega.
assert (t : Boule x delta c).
destruct P.
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
Rabs h * (eps / 8)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |].
solve[unfold no_cond ; intuition].
apply Rgt_not_eq ; exact (proj2 P).
apply Rlt_trans with (Rabs h).
apply Rabs_def1.
apply Rlt_trans with 0.
destruct P; fourier.
apply Rabs_pos_lt ; assumption.
rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | fourier].
destruct P; fourier.
clear -Pdelta xhinbxdelta.
apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
apply Rabs_def2 in P'; simpl in P'; destruct P';
apply Rabs_def1; fourier.
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
(Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
fourier.
assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
assert (Temp : l = fn' N c).
assert (bc'rc : Boule c' r c).
assert (t : Boule x delta c).
clear - xhinbxdelta P.
destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
assert (Hl' := Dfn_eq_fn' c N bc'rc).
unfold derivable_pt_abs in Hl; clear -Hl Hl'.
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite <- Temp.
assert (Hl' : derivable_pt (fn N) c).
exists l ; apply Hl.
rewrite pr_nu_var with (g:= fn N) (pr2:=Hl').
elim Hl' ; clear Hl' ; intros l' Hl'.
assert (Main : l = l').
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite Main ; reflexivity.
reflexivity.
assert (h_pos : h > 0).
case sgn_h ; intro Hyp.
assumption.
apply False_ind ; apply hpos ; symmetry ; assumption.
clear sgn_h.
assert (pr1 : forall c : R, x < c < x + h -> derivable_pt (fn N) c).
intros c c_encad ; unfold derivable_pt.
exists (fn' N c) ; apply Dfn_eq_fn'.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
assert (pr2 : forall c : R, x < c < x + h -> derivable_pt id c).
solve[intros; apply derivable_id].
assert (xh_x : x < x + h) by fourier.
assert (pr3 : forall c : R, x <= c <= x + h -> continuity_pt (fn N) c).
intros c c_encad ; apply derivable_continuous_pt.
exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
assert (pr4 : forall c : R, x <= c <= x + h -> continuity_pt id c).
solve[intros; apply derivable_continuous ; apply derivable_id].
destruct (MVT (fn N) id x (x+h) pr1 pr2 xh_x pr3 pr4) as [c [P Hc]].
assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = fn N (x+h) - fn N x).
pattern h at 1; replace h with (id (x + h) - id x) by (unfold id; field).
rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg.
assumption.
rewrite <- Hc'; clear Hc Hc'.
replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c).
replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field.
rewrite Rabs_mult.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ;
rewrite Rabs_minus_sym ; apply fnxh_CV_fxh.
unfold N; omega.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l.
unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx.
unfold N ; omega.
replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field.
apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_le_compat_l ; apply Rplus_le_compat_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l.
solve[apply Rabs_pos].
solve[apply Rabs_triang].
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)).
apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
rewrite Rabs_minus_sym ; apply fn'c_CVU_gc.
unfold N ; omega.
assert (t : Boule x delta c).
destruct P.
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
Rabs h * (eps / 8)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |].
solve[unfold no_cond ; intuition].
apply Rlt_not_eq ; exact (proj1 P).
apply Rlt_trans with (Rabs h).
apply Rabs_def1.
destruct P; rewrite Rabs_pos_eq;fourier.
apply Rle_lt_trans with 0.
assert (t := Rabs_pos h); clear -t; fourier.
clear -P; destruct P; fourier.
clear -Pdelta xhinbxdelta.
apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
apply Rabs_def2 in P'; simpl in P'; destruct P';
apply Rabs_def1; fourier.
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
(Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
fourier.
assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
assert (Temp : l = fn' N c).
assert (bc'rc : Boule c' r c).
assert (t : Boule x delta c).
clear - xhinbxdelta P.
destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def1; fourier.
apply Pdelta in t; tauto.
assert (Hl' := Dfn_eq_fn' c N bc'rc).
unfold derivable_pt_abs in Hl; clear -Hl Hl'.
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite <- Temp.
assert (Hl' : derivable_pt (fn N) c).
exists l ; apply Hl.
rewrite pr_nu_var with (g:= fn N) (pr2:=Hl').
elim Hl' ; clear Hl' ; intros l' Hl'.
assert (Main : l = l').
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite Main ; reflexivity.
reflexivity.
replace ((f (x + h) - f x) / h - g x) with ((/h) * ((f (x + h) - f x) - h * g x)).
rewrite Rabs_mult ; rewrite Rabs_Rinv.
replace eps with (/ Rabs h * (Rabs h * eps)).
apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat ; apply Rabs_pos_lt ; assumption.
replace (f (x + h) - f x - h * g x) with (f (x + h) - fn N (x + h) - (f x - fn N x) +
(fn N (x + h) - fn N x - h * g x)) by field.
assumption.
field ; apply Rgt_not_eq ; apply Rabs_pos_lt ; assumption.
assumption.
field. assumption.
Qed.
|