1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import Omega.
Local Open Scope R_scope.
(**********)
Lemma formule :
forall (x h l1 l2:R) (f1 f2:R -> R),
h <> 0 ->
f2 x <> 0 ->
f2 (x + h) <> 0 ->
(f1 (x + h) / f2 (x + h) - f1 x / f2 x) / h -
(l1 * f2 x - l2 * f1 x) / Rsqr (f2 x) =
/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1) +
l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h)) -
f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2) +
l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x).
Proof.
intros; unfold Rdiv, Rminus, Rsqr.
repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
repeat rewrite Rinv_mult_distr; try assumption.
replace (l1 * f2 x * (/ f2 x * / f2 x)) with (l1 * / f2 x * (f2 x * / f2 x));
[ idtac | ring ].
replace (l1 * (/ f2 x * / f2 (x + h)) * f2 x) with
(l1 * / f2 (x + h) * (f2 x * / f2 x)); [ idtac | ring ].
replace (l1 * (/ f2 x * / f2 (x + h)) * - f2 (x + h)) with
(- (l1 * / f2 x * (f2 (x + h) * / f2 (x + h)))); [ idtac | ring ].
replace (f1 x * (/ f2 x * / f2 (x + h)) * (f2 (x + h) * / h)) with
(f1 x * / f2 x * / h * (f2 (x + h) * / f2 (x + h)));
[ idtac | ring ].
replace (f1 x * (/ f2 x * / f2 (x + h)) * (- f2 x * / h)) with
(- (f1 x * / f2 (x + h) * / h * (f2 x * / f2 x)));
[ idtac | ring ].
replace (l2 * f1 x * (/ f2 x * / f2 x * / f2 (x + h)) * f2 (x + h)) with
(l2 * f1 x * / f2 x * / f2 x * (f2 (x + h) * / f2 (x + h)));
[ idtac | ring ].
replace (l2 * f1 x * (/ f2 x * / f2 x * / f2 (x + h)) * - f2 x) with
(- (l2 * f1 x * / f2 x * / f2 (x + h) * (f2 x * / f2 x)));
[ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try assumption || ring.
apply prod_neq_R0; assumption.
Qed.
(* begin hide *)
Notation Rmin_pos := Rmin_pos (only parsing). (* compat *)
(* end hide *)
Lemma maj_term1 :
forall (x h eps l1 alp_f2:R) (eps_f2 alp_f1d:posreal)
(f1 f2:R -> R),
0 < eps ->
f2 x <> 0 ->
f2 (x + h) <> 0 ->
(forall h:R,
h <> 0 ->
Rabs h < alp_f1d ->
Rabs ((f1 (x + h) - f1 x) / h - l1) < Rabs (eps * f2 x / 8)) ->
(forall a:R,
Rabs a < Rmin eps_f2 alp_f2 -> / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)) ->
h <> 0 ->
Rabs h < alp_f1d ->
Rabs h < Rmin eps_f2 alp_f2 ->
Rabs (/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1)) < eps / 4.
Proof.
intros.
assert (H7 := H3 h H6).
assert (H8 := H2 h H4 H5).
apply Rle_lt_trans with
(2 / Rabs (f2 x) * Rabs ((f1 (x + h) - f1 x) / h - l1)).
rewrite Rabs_mult.
apply Rmult_le_compat_r.
apply Rabs_pos.
rewrite Rabs_Rinv; [ left; exact H7 | assumption ].
apply Rlt_le_trans with (2 / Rabs (f2 x) * Rabs (eps * f2 x / 8)).
apply Rmult_lt_compat_l.
unfold Rdiv; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
exact H8.
right; unfold Rdiv.
repeat rewrite Rabs_mult.
rewrite Rabs_Rinv; discrR.
replace (Rabs 8) with 8.
replace 8 with 8; [ idtac | ring ].
rewrite Rinv_mult_distr; [ idtac | discrR | discrR ].
replace (2 * / Rabs (f2 x) * (Rabs eps * Rabs (f2 x) * (/ 2 * / 4))) with
(Rabs eps * / 4 * (2 * / 2) * (Rabs (f2 x) * / Rabs (f2 x)));
[ idtac | ring ].
replace (Rabs eps) with eps.
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
symmetry ; apply Rabs_right; left; assumption.
symmetry ; apply Rabs_right; left; prove_sup.
Qed.
Lemma maj_term2 :
forall (x h eps l1 alp_f2 alp_f2t2:R) (eps_f2:posreal)
(f2:R -> R),
0 < eps ->
f2 x <> 0 ->
f2 (x + h) <> 0 ->
(forall a:R,
Rabs a < alp_f2t2 ->
Rabs (f2 (x + a) - f2 x) < Rabs (eps * Rsqr (f2 x) / (8 * l1))) ->
(forall a:R,
Rabs a < Rmin eps_f2 alp_f2 -> / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)) ->
h <> 0 ->
Rabs h < alp_f2t2 ->
Rabs h < Rmin eps_f2 alp_f2 ->
l1 <> 0 -> Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) < eps / 4.
Proof.
intros.
assert (H8 := H3 h H6).
assert (H9 := H2 h H5).
apply Rle_lt_trans with
(Rabs (l1 / (f2 x * f2 (x + h))) * Rabs (eps * Rsqr (f2 x) / (8 * l1))).
rewrite Rabs_mult; apply Rmult_le_compat_l.
apply Rabs_pos.
rewrite <- (Rabs_Ropp (f2 x - f2 (x + h))); rewrite Ropp_minus_distr.
left; apply H9.
apply Rlt_le_trans with
(Rabs (2 * (l1 / (f2 x * f2 x))) * Rabs (eps * Rsqr (f2 x) / (8 * l1))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
try assumption || discrR.
red; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0; try assumption || discrR.
unfold Rdiv.
repeat rewrite Rinv_mult_distr; try assumption.
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
rewrite (Rmult_comm 2).
replace (Rabs l1 * (Rabs (/ f2 x) * Rabs (/ f2 x)) * 2) with
(Rabs l1 * (Rabs (/ f2 x) * (Rabs (/ f2 x) * 2)));
[ idtac | ring ].
repeat apply Rmult_lt_compat_l.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; apply Rinv_neq_0_compat; assumption.
repeat rewrite Rabs_Rinv; try assumption.
rewrite <- (Rmult_comm 2).
unfold Rdiv in H8; exact H8.
symmetry ; apply Rabs_right; left; prove_sup0.
right.
unfold Rsqr, Rdiv.
do 1 rewrite Rinv_mult_distr; try assumption || discrR.
do 1 rewrite Rinv_mult_distr; try assumption || discrR.
repeat rewrite Rabs_mult.
repeat rewrite Rabs_Rinv; try assumption || discrR.
replace (Rabs eps) with eps.
replace (Rabs 8) with 8.
replace (Rabs 2) with 2.
replace 8 with (4 * 2); [ idtac | ring ].
rewrite Rinv_mult_distr; discrR.
replace
(2 * (Rabs l1 * (/ Rabs (f2 x) * / Rabs (f2 x))) *
(eps * (Rabs (f2 x) * Rabs (f2 x)) * (/ 4 * / 2 * / Rabs l1))) with
(eps * / 4 * (Rabs l1 * / Rabs l1) * (Rabs (f2 x) * / Rabs (f2 x)) *
(Rabs (f2 x) * / Rabs (f2 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try (apply Rabs_no_R0; assumption) || discrR.
ring.
symmetry ; apply Rabs_right; left; prove_sup0.
symmetry ; apply Rabs_right; left; prove_sup.
symmetry ; apply Rabs_right; left; assumption.
Qed.
Lemma maj_term3 :
forall (x h eps l2 alp_f2:R) (eps_f2 alp_f2d:posreal)
(f1 f2:R -> R),
0 < eps ->
f2 x <> 0 ->
f2 (x + h) <> 0 ->
(forall h:R,
h <> 0 ->
Rabs h < alp_f2d ->
Rabs ((f2 (x + h) - f2 x) / h - l2) <
Rabs (Rsqr (f2 x) * eps / (8 * f1 x))) ->
(forall a:R,
Rabs a < Rmin eps_f2 alp_f2 -> / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)) ->
h <> 0 ->
Rabs h < alp_f2d ->
Rabs h < Rmin eps_f2 alp_f2 ->
f1 x <> 0 ->
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) <
eps / 4.
Proof.
intros.
assert (H8 := H2 h H4 H5).
assert (H9 := H3 h H6).
apply Rle_lt_trans with
(Rabs (f1 x / (f2 x * f2 (x + h))) * Rabs (Rsqr (f2 x) * eps / (8 * f1 x))).
rewrite Rabs_mult.
apply Rmult_le_compat_l.
apply Rabs_pos.
left; apply H8.
apply Rlt_le_trans with
(Rabs (2 * (f1 x / (f2 x * f2 x))) * Rabs (Rsqr (f2 x) * eps / (8 * f1 x))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
try assumption.
red; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0; discrR || assumption.
unfold Rdiv.
repeat rewrite Rinv_mult_distr; try assumption.
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
rewrite (Rmult_comm 2).
replace (Rabs (f1 x) * (Rabs (/ f2 x) * Rabs (/ f2 x)) * 2) with
(Rabs (f1 x) * (Rabs (/ f2 x) * (Rabs (/ f2 x) * 2)));
[ idtac | ring ].
repeat apply Rmult_lt_compat_l.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; apply Rinv_neq_0_compat; assumption.
repeat rewrite Rabs_Rinv; assumption || idtac.
rewrite <- (Rmult_comm 2).
unfold Rdiv in H9; exact H9.
symmetry ; apply Rabs_right; left; prove_sup0.
right.
unfold Rsqr, Rdiv.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
repeat rewrite Rabs_mult.
repeat rewrite Rabs_Rinv; try assumption || discrR.
replace (Rabs eps) with eps.
replace (Rabs 8) with 8.
replace (Rabs 2) with 2.
replace 8 with (4 * 2); [ idtac | ring ].
rewrite Rinv_mult_distr; discrR.
replace
(2 * (Rabs (f1 x) * (/ Rabs (f2 x) * / Rabs (f2 x))) *
(Rabs (f2 x) * Rabs (f2 x) * eps * (/ 4 * / 2 * / Rabs (f1 x)))) with
(eps * / 4 * (Rabs (f2 x) * / Rabs (f2 x)) * (Rabs (f2 x) * / Rabs (f2 x)) *
(Rabs (f1 x) * / Rabs (f1 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
symmetry ; apply Rabs_right; left; prove_sup0.
symmetry ; apply Rabs_right; left; prove_sup.
symmetry ; apply Rabs_right; left; assumption.
Qed.
Lemma maj_term4 :
forall (x h eps l2 alp_f2 alp_f2c:R) (eps_f2:posreal)
(f1 f2:R -> R),
0 < eps ->
f2 x <> 0 ->
f2 (x + h) <> 0 ->
(forall a:R,
Rabs a < alp_f2c ->
Rabs (f2 (x + a) - f2 x) <
Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))) ->
(forall a:R,
Rabs a < Rmin eps_f2 alp_f2 -> / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)) ->
h <> 0 ->
Rabs h < alp_f2c ->
Rabs h < Rmin eps_f2 alp_f2 ->
f1 x <> 0 ->
l2 <> 0 ->
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x)) <
eps / 4.
Proof.
intros.
assert (H9 := H2 h H5).
assert (H10 := H3 h H6).
apply Rle_lt_trans with
(Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h))) *
Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
rewrite Rabs_mult.
apply Rmult_le_compat_l.
apply Rabs_pos.
left; apply H9.
apply Rlt_le_trans with
(Rabs (2 * l2 * (f1 x / (Rsqr (f2 x) * f2 x))) *
Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
assumption || idtac.
red; intro H11; rewrite H11 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0.
apply prod_neq_R0.
discrR.
assumption.
assumption.
unfold Rdiv.
repeat rewrite Rinv_mult_distr;
try assumption || (unfold Rsqr; apply prod_neq_R0; assumption).
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
replace
(2 * Rabs l2 * (Rabs (f1 x) * (Rabs (/ Rsqr (f2 x)) * Rabs (/ f2 x)))) with
(Rabs l2 * (Rabs (f1 x) * (Rabs (/ Rsqr (f2 x)) * (Rabs (/ f2 x) * 2))));
[ idtac | ring ].
replace
(Rabs l2 * Rabs (f1 x) * (Rabs (/ Rsqr (f2 x)) * Rabs (/ f2 (x + h)))) with
(Rabs l2 * (Rabs (f1 x) * (Rabs (/ Rsqr (f2 x)) * Rabs (/ f2 (x + h)))));
[ idtac | ring ].
repeat apply Rmult_lt_compat_l.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; apply Rinv_neq_0_compat; unfold Rsqr;
apply prod_neq_R0; assumption.
repeat rewrite Rabs_Rinv; [ idtac | assumption | assumption ].
rewrite <- (Rmult_comm 2).
unfold Rdiv in H10; exact H10.
symmetry ; apply Rabs_right; left; prove_sup0.
right; unfold Rsqr, Rdiv.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
repeat rewrite Rabs_mult.
repeat rewrite Rabs_Rinv; try assumption || discrR.
replace (Rabs eps) with eps.
replace (Rabs 8) with 8.
replace (Rabs 2) with 2.
replace 8 with (4 * 2); [ idtac | ring ].
rewrite Rinv_mult_distr; discrR.
replace
(2 * Rabs l2 *
(Rabs (f1 x) * (/ Rabs (f2 x) * / Rabs (f2 x) * / Rabs (f2 x))) *
(Rabs (f2 x) * Rabs (f2 x) * Rabs (f2 x) * eps *
(/ 4 * / 2 * / Rabs (f1 x) * / Rabs l2))) with
(eps * / 4 * (Rabs l2 * / Rabs l2) * (Rabs (f1 x) * / Rabs (f1 x)) *
(Rabs (f2 x) * / Rabs (f2 x)) * (Rabs (f2 x) * / Rabs (f2 x)) *
(Rabs (f2 x) * / Rabs (f2 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
symmetry ; apply Rabs_right; left; prove_sup0.
symmetry ; apply Rabs_right; left; prove_sup.
symmetry ; apply Rabs_right; left; assumption.
apply prod_neq_R0; assumption || discrR.
apply prod_neq_R0; assumption.
Qed.
Lemma D_x_no_cond : forall x a:R, a <> 0 -> D_x no_cond x (x + a).
Proof.
intros.
unfold D_x, no_cond.
split.
trivial.
apply Rminus_not_eq.
unfold Rminus.
rewrite Ropp_plus_distr.
rewrite <- Rplus_assoc.
rewrite Rplus_opp_r.
rewrite Rplus_0_l.
apply Ropp_neq_0_compat; assumption.
Qed.
Lemma Rabs_4 :
forall a b c d:R, Rabs (a + b + c + d) <= Rabs a + Rabs b + Rabs c + Rabs d.
Proof.
intros.
apply Rle_trans with (Rabs (a + b) + Rabs (c + d)).
replace (a + b + c + d) with (a + b + (c + d)); [ apply Rabs_triang | ring ].
apply Rle_trans with (Rabs a + Rabs b + Rabs (c + d)).
apply Rplus_le_compat_r.
apply Rabs_triang.
repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l.
apply Rabs_triang.
Qed.
Lemma Rlt_4 :
forall a b c d e f g h:R,
a < b -> c < d -> e < f -> g < h -> a + c + e + g < b + d + f + h.
Proof.
intros; apply Rlt_trans with (b + c + e + g).
repeat apply Rplus_lt_compat_r; assumption.
repeat rewrite Rplus_assoc; apply Rplus_lt_compat_l.
apply Rlt_trans with (d + e + g).
rewrite Rplus_assoc; apply Rplus_lt_compat_r; assumption.
rewrite Rplus_assoc; apply Rplus_lt_compat_l; apply Rlt_trans with (f + g).
apply Rplus_lt_compat_r; assumption.
apply Rplus_lt_compat_l; assumption.
Qed.
(* begin hide *)
Notation Rmin_2 := Rmin_glb_lt (only parsing).
(* end hide *)
Lemma quadruple : forall x:R, 4 * x = x + x + x + x.
Proof.
intro; ring.
Qed.
Lemma quadruple_var : forall x:R, x = x / 4 + x / 4 + x / 4 + x / 4.
Proof.
intro; rewrite <- quadruple.
unfold Rdiv; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; discrR.
reflexivity.
Qed.
(**********)
Lemma continuous_neq_0 :
forall (f:R -> R) (x0:R),
continuity_pt f x0 ->
f x0 <> 0 ->
exists eps : posreal, (forall h:R, Rabs h < eps -> f (x0 + h) <> 0).
Proof.
intros; unfold continuity_pt in H; unfold continue_in in H;
unfold limit1_in in H; unfold limit_in in H; elim (H (Rabs (f x0 / 2))).
intros; elim H1; intros.
exists (mkposreal x H2).
intros; assert (H5 := H3 (x0 + h)).
cut
(dist R_met (x0 + h) x0 < x ->
dist R_met (f (x0 + h)) (f x0) < Rabs (f x0 / 2)).
unfold dist; simpl; unfold R_dist;
replace (x0 + h - x0) with h.
intros; assert (H7 := H6 H4).
red; intro.
rewrite H8 in H7; unfold Rminus in H7; rewrite Rplus_0_l in H7;
rewrite Rabs_Ropp in H7; unfold Rdiv in H7; rewrite Rabs_mult in H7;
pattern (Rabs (f x0)) at 1 in H7; rewrite <- Rmult_1_r in H7.
cut (0 < Rabs (f x0)).
intro; assert (H10 := Rmult_lt_reg_l _ _ _ H9 H7).
cut (Rabs (/ 2) = / 2).
assert (Hyp : 0 < 2).
prove_sup0.
intro; rewrite H11 in H10; assert (H12 := Rmult_lt_compat_l 2 _ _ Hyp H10);
rewrite Rmult_1_r in H12; rewrite <- Rinv_r_sym in H12;
[ idtac | discrR ].
cut (IZR 1 < IZR 2).
unfold IZR; unfold INR, Pos.to_nat; simpl; intro;
elim (Rlt_irrefl 1 (Rlt_trans _ _ _ H13 H12)).
apply IZR_lt; omega.
unfold Rabs; case (Rcase_abs (/ 2)) as [Hlt|Hge].
assert (Hyp : 0 < 2).
prove_sup0.
assert (H11 := Rmult_lt_compat_l 2 _ _ Hyp Hlt); rewrite Rmult_0_r in H11;
rewrite <- Rinv_r_sym in H11; [ idtac | discrR ].
elim (Rlt_irrefl 0 (Rlt_trans _ _ _ Rlt_0_1 H11)).
reflexivity.
apply (Rabs_pos_lt _ H0).
ring.
assert (H6 := Req_dec x0 (x0 + h)); elim H6; intro.
intro; rewrite <- H7. unfold R_met, dist; unfold R_dist;
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rabs_pos_lt.
unfold Rdiv; apply prod_neq_R0;
[ assumption | apply Rinv_neq_0_compat; discrR ].
intro; apply H5.
split.
unfold D_x, no_cond.
split; trivial || assumption.
assumption.
change (0 < Rabs (f x0 / 2)).
apply Rabs_pos_lt; unfold Rdiv; apply prod_neq_R0.
assumption.
apply Rinv_neq_0_compat; discrR.
Qed.
|