aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/R_sqrt.v
blob: d4035fad624169402f032845962c459c4488cf99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Rsqrt_def.
Local Open Scope R_scope.

(** * Continuous extension of Rsqrt on R *)
Definition sqrt (x:R) : R :=
  match Rcase_abs x with
    | left _ => 0
    | right a => Rsqrt (mknonnegreal x (Rge_le _ _ a))
  end.

Lemma sqrt_pos : forall x : R, 0 <= sqrt x.
Proof.
  intros x.
  unfold sqrt.
  destruct (Rcase_abs x) as [H|H].
  apply Rle_refl.
  apply Rsqrt_positivity.
Qed.

Lemma sqrt_positivity : forall x:R, 0 <= x -> 0 <= sqrt x.
Proof.
  intros x _.
  apply sqrt_pos.
Qed.

Lemma sqrt_sqrt : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
  intros.
  unfold sqrt.
  case (Rcase_abs x) as [Hlt|Hge].
  elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ Hlt H)).
  rewrite Rsqrt_Rsqrt; reflexivity.
Qed.

Lemma sqrt_0 : sqrt 0 = 0.
Proof.
  apply Rsqr_eq_0; unfold Rsqr; apply sqrt_sqrt; right; reflexivity.
Qed.

Lemma sqrt_1 : sqrt 1 = 1.
Proof.
  apply (Rsqr_inj (sqrt 1) 1);
    [ apply sqrt_positivity; left
      | left
      | unfold Rsqr; rewrite sqrt_sqrt; [ ring | left ] ];
    apply Rlt_0_1.
Qed.

Lemma sqrt_eq_0 : forall x:R, 0 <= x -> sqrt x = 0 -> x = 0.
Proof.
  intros; cut (Rsqr (sqrt x) = 0).
  intro; unfold Rsqr in H1; rewrite sqrt_sqrt in H1; assumption.
  rewrite H0; apply Rsqr_0.
Qed.

Lemma sqrt_lem_0 : forall x y:R, 0 <= x -> 0 <= y -> sqrt x = y -> y * y = x.
Proof.
  intros; rewrite <- H1; apply (sqrt_sqrt x H).
Qed.

Lemma sqrt_lem_1 : forall x y:R, 0 <= x -> 0 <= y -> y * y = x -> sqrt x = y.
Proof.
  intros; apply Rsqr_inj;
    [ apply (sqrt_positivity x H)
      | assumption
      | unfold Rsqr; rewrite H1; apply (sqrt_sqrt x H) ].
Qed.

Lemma sqrt_def : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
  intros; apply (sqrt_sqrt x H).
Qed.

Lemma sqrt_square : forall x:R, 0 <= x -> sqrt (x * x) = x.
Proof.
  intros;
    apply
      (Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (Rle_0_sqr x)) H);
      unfold Rsqr; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)).
Qed.

Lemma sqrt_Rsqr : forall x:R, 0 <= x -> sqrt (Rsqr x) = x.
Proof.
  intros; unfold Rsqr; apply sqrt_square; assumption.
Qed.

Lemma sqrt_pow2 : forall x, 0 <= x -> sqrt (x ^ 2) = x.
intros; simpl; rewrite Rmult_1_r, sqrt_square; auto.
Qed.

Lemma sqrt_Rsqr_abs : forall x:R, sqrt (Rsqr x) = Rabs x.
Proof.
  intro x; rewrite Rsqr_abs; apply sqrt_Rsqr; apply Rabs_pos.
Qed.

Lemma Rsqr_sqrt : forall x:R, 0 <= x -> Rsqr (sqrt x) = x.
Proof.
  intros x H1; unfold Rsqr; apply (sqrt_sqrt x H1).
Qed.

Lemma sqrt_mult_alt :
  forall x y : R, 0 <= x -> sqrt (x * y) = sqrt x * sqrt y.
Proof.
  intros x y Hx.
  unfold sqrt at 3.
  destruct (Rcase_abs y) as [Hy|Hy].
  rewrite Rmult_0_r.
  destruct Hx as [Hx'|Hx'].
  unfold sqrt.
  destruct (Rcase_abs (x * y)) as [Hxy|Hxy].
  apply eq_refl.
  elim Rge_not_lt with (1 := Hxy).
  rewrite <- (Rmult_0_r x).
  now apply Rmult_lt_compat_l.
  rewrite <- Hx', Rmult_0_l.
  exact sqrt_0.
  apply Rsqr_inj.
  apply sqrt_pos.
  apply Rmult_le_pos.
  apply sqrt_pos.
  apply Rsqrt_positivity.
  rewrite Rsqr_mult, 2!Rsqr_sqrt.
  unfold Rsqr.
  now rewrite Rsqrt_Rsqrt.
  exact Hx.
  apply Rmult_le_pos.
  exact Hx.
  now apply Rge_le.
Qed.

Lemma sqrt_mult :
  forall x y:R, 0 <= x -> 0 <= y -> sqrt (x * y) = sqrt x * sqrt y.
Proof.
  intros x y Hx _.
  now apply sqrt_mult_alt.
Qed.

Lemma sqrt_lt_R0 : forall x:R, 0 < x -> 0 < sqrt x.
Proof.
  intros x H1; apply Rsqr_incrst_0;
    [ rewrite Rsqr_0; rewrite Rsqr_sqrt; [ assumption | left; assumption ]
      | right; reflexivity
      | apply (sqrt_positivity x (Rlt_le 0 x H1)) ].
Qed.

Lemma sqrt_div_alt :
  forall x y : R, 0 < y -> sqrt (x / y) = sqrt x / sqrt y.
Proof.
  intros x y Hy.
  unfold sqrt at 2.
  destruct (Rcase_abs x) as [Hx|Hx].
  unfold Rdiv.
  rewrite Rmult_0_l.
  unfold sqrt.
  destruct (Rcase_abs (x * / y)) as [Hxy|Hxy].
  apply eq_refl.
  elim Rge_not_lt with (1 := Hxy).
  apply Rmult_lt_reg_r with y.
  exact Hy.
  rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_0_l.
  exact Hx.
  now apply Rgt_not_eq.
  set (Hx' := Rge_le x 0 Hx).
  clearbody Hx'. clear Hx.
  apply Rsqr_inj.
  apply sqrt_pos.
  apply Fourier_util.Rle_mult_inv_pos.
  apply Rsqrt_positivity.
  now apply sqrt_lt_R0.
  rewrite Rsqr_div, 2!Rsqr_sqrt.
  unfold Rsqr.
  now rewrite Rsqrt_Rsqrt.
  now apply Rlt_le.
  now apply Fourier_util.Rle_mult_inv_pos.
  apply Rgt_not_eq.
  now apply sqrt_lt_R0.
Qed.

Lemma sqrt_div :
  forall x y:R, 0 <= x -> 0 < y -> sqrt (x / y) = sqrt x / sqrt y.
Proof.
  intros x y _ H.
  now apply sqrt_div_alt.
Qed.

Lemma sqrt_lt_0_alt :
  forall x y : R, sqrt x < sqrt y -> x < y.
Proof.
  intros x y.
  unfold sqrt at 2.
  destruct (Rcase_abs y) as [Hy|Hy].
  intros Hx.
  elim Rlt_not_le with (1 := Hx).
  apply sqrt_pos.
  set (Hy' := Rge_le y 0 Hy).
  clearbody Hy'. clear Hy.
  unfold sqrt.
  destruct (Rcase_abs x) as [Hx|Hx].
  intros _.
  now apply Rlt_le_trans with R0.
  intros Hxy.
  apply Rsqr_incrst_1 in Hxy ; try apply Rsqrt_positivity.
  unfold Rsqr in Hxy.
  now rewrite 2!Rsqrt_Rsqrt in Hxy.
Qed.

Lemma sqrt_lt_0 : forall x y:R, 0 <= x -> 0 <= y -> sqrt x < sqrt y -> x < y.
Proof.
  intros x y _ _.
  apply sqrt_lt_0_alt.
Qed.

Lemma sqrt_lt_1_alt :
  forall x y : R, 0 <= x < y -> sqrt x < sqrt y.
Proof.
  intros x y (Hx, Hxy).
  apply Rsqr_incrst_0 ; try apply sqrt_pos.
  rewrite 2!Rsqr_sqrt.
  exact Hxy.
  apply Rlt_le.
  now apply Rle_lt_trans with x.
  exact Hx.
Qed.

Lemma sqrt_lt_1 : forall x y:R, 0 <= x -> 0 <= y -> x < y -> sqrt x < sqrt y.
Proof.
  intros x y Hx _ Hxy.
  apply sqrt_lt_1_alt.
  now split.
Qed.

Lemma sqrt_le_0 :
  forall x y:R, 0 <= x -> 0 <= y -> sqrt x <= sqrt y -> x <= y.
Proof.
  intros x y H1 H2 H3;
    generalize
      (Rsqr_incr_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1)
        (sqrt_positivity y H2)); intro H4; rewrite (Rsqr_sqrt x H1) in H4;
      rewrite (Rsqr_sqrt y H2) in H4; assumption.
Qed.

Lemma sqrt_le_1_alt :
  forall x y : R, x <= y -> sqrt x <= sqrt y.
Proof.
  intros x y [Hxy|Hxy].
  destruct (Rle_or_lt 0 x) as [Hx|Hx].
  apply Rlt_le.
  apply sqrt_lt_1_alt.
  now split.
  unfold sqrt at 1.
  destruct (Rcase_abs x) as [Hx'|Hx'].
  apply sqrt_pos.
  now elim Rge_not_lt with (1 := Hx').
  rewrite Hxy.
  apply Rle_refl.
Qed.

Lemma sqrt_le_1 :
  forall x y:R, 0 <= x -> 0 <= y -> x <= y -> sqrt x <= sqrt y.
Proof.
  intros x y _ _ Hxy.
  now apply sqrt_le_1_alt.
Qed.

Lemma sqrt_inj : forall x y:R, 0 <= x -> 0 <= y -> sqrt x = sqrt y -> x = y.
Proof.
  intros; cut (Rsqr (sqrt x) = Rsqr (sqrt y)).
  intro; rewrite (Rsqr_sqrt x H) in H2; rewrite (Rsqr_sqrt y H0) in H2;
    assumption.
  rewrite H1; reflexivity.
Qed.

Lemma sqrt_less_alt :
  forall x : R, 1 < x -> sqrt x < x.
Proof.
  intros x Hx.
  assert (Hx1 := Rle_lt_trans _ _ _ Rle_0_1 Hx).
  assert (Hx2 := Rlt_le _ _ Hx1).
  apply Rsqr_incrst_0 ; trivial.
  rewrite Rsqr_sqrt ; trivial.
  rewrite <- (Rmult_1_l x) at 1.
  now apply Rmult_lt_compat_r.
  apply sqrt_pos.
Qed.

Lemma sqrt_less : forall x:R, 0 <= x -> 1 < x -> sqrt x < x.
Proof.
  intros x _.
  apply sqrt_less_alt.
Qed.

Lemma sqrt_more : forall x:R, 0 < x -> x < 1 -> x < sqrt x.
Proof.
  intros x H1 H2;
    generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2);
      intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x));
        intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1;
          rewrite <- (sqrt_def x (Rlt_le 0 x H1));
            apply (Rmult_lt_compat_l (sqrt x) (sqrt x) 1 (sqrt_lt_R0 x H1) H3).
Qed.

Lemma sqrt_cauchy :
  forall a b c d:R,
    a * c + b * d <= sqrt (Rsqr a + Rsqr b) * sqrt (Rsqr c + Rsqr d).
Proof.
  intros a b c d; apply Rsqr_incr_0_var;
    [ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr;
      [ replace ((a * c + b * d) * (a * c + b * d)) with
        (a * a * c * c + b * b * d * d + 2 * a * b * c * d);
        [ replace ((a * a + b * b) * (c * c + d * d)) with
          (a * a * c * c + b * b * d * d + (a * a * d * d + b * b * c * c));
          [ apply Rplus_le_compat_l;
            replace (a * a * d * d + b * b * c * c) with
            (2 * a * b * c * d +
              (a * a * d * d + b * b * c * c - 2 * a * b * c * d));
            [ pattern (2 * a * b * c * d) at 1; rewrite <- Rplus_0_r;
              apply Rplus_le_compat_l;
                replace (a * a * d * d + b * b * c * c - 2 * a * b * c * d)
              with (Rsqr (a * d - b * c));
                [ apply Rle_0_sqr | unfold Rsqr; ring ]
              | ring ]
            | ring ]
          | ring ]
        | apply
          (Rplus_le_le_0_compat (Rsqr c) (Rsqr d) (Rle_0_sqr c) (Rle_0_sqr d))
        | apply
          (Rplus_le_le_0_compat (Rsqr a) (Rsqr b) (Rle_0_sqr a) (Rle_0_sqr b)) ]
      | apply Rmult_le_pos; apply sqrt_positivity; apply Rplus_le_le_0_compat;
        apply Rle_0_sqr ].
Qed.

(************************************************************)
(** * Resolution of [a*X^2+b*X+c=0]                         *)
(************************************************************)

Definition Delta (a:nonzeroreal) (b c:R) : R := Rsqr b - 4 * a * c.

Definition Delta_is_pos (a:nonzeroreal) (b c:R) : Prop := 0 <= Delta a b c.

Definition sol_x1 (a:nonzeroreal) (b c:R) : R :=
  (- b + sqrt (Delta a b c)) / (2 * a).

Definition sol_x2 (a:nonzeroreal) (b c:R) : R :=
  (- b - sqrt (Delta a b c)) / (2 * a).

Lemma Rsqr_sol_eq_0_1 :
  forall (a:nonzeroreal) (b c x:R),
    Delta_is_pos a b c ->
    x = sol_x1 a b c \/ x = sol_x2 a b c -> a * Rsqr x + b * x + c = 0.
Proof.
  intros; elim H0; intro.
  rewrite H1.
  unfold sol_x1, Delta, Rsqr.
  field_simplify.
  rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt.
  field.
  apply a.
  apply H.
  apply a.
  rewrite H1.
  unfold sol_x2, Delta, Rsqr.
  field_simplify.
  rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt.
  field.
  apply a.
  apply H.
  apply a.
Qed.

Lemma Rsqr_sol_eq_0_0 :
  forall (a:nonzeroreal) (b c x:R),
    Delta_is_pos a b c ->
    a * Rsqr x + b * x + c = 0 -> x = sol_x1 a b c \/ x = sol_x2 a b c.
Proof.
  intros; rewrite (canonical_Rsqr a b c x) in H0; rewrite Rplus_comm in H0;
    generalize
      (Rplus_opp_r_uniq ((4 * a * c - Rsqr b) / (4 * a))
        (a * Rsqr (x + b / (2 * a))) H0); cut (Rsqr b - 4 * a * c = Delta a b c).
  intro;
    replace (- ((4 * a * c - Rsqr b) / (4 * a))) with
    ((Rsqr b - 4 * a * c) / (4 * a)).
  rewrite H1; intro;
    generalize
      (Rmult_eq_compat_l (/ a) (a * Rsqr (x + b / (2 * a)))
        (Delta a b c / (4 * a)) H2);
      replace (/ a * (a * Rsqr (x + b / (2 * a)))) with (Rsqr (x + b / (2 * a))).
  replace (/ a * (Delta a b c / (4 * a))) with
  (Rsqr (sqrt (Delta a b c) / (2 * a))).
  intro;
    generalize (Rsqr_eq (x + b / (2 * a)) (sqrt (Delta a b c) / (2 * a)) H3);
      intro; elim H4; intro.
  left; unfold sol_x1;
    generalize
      (Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
        (sqrt (Delta a b c) / (2 * a)) H5);
      replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
  intro; rewrite H6; unfold Rdiv; ring.
  ring.
  right; unfold sol_x2;
    generalize
      (Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
        (- (sqrt (Delta a b c) / (2 * a))) H5);
      replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
  intro; rewrite H6; unfold Rdiv; ring.
  ring.
  rewrite Rsqr_div.
  rewrite Rsqr_sqrt.
  unfold Rdiv.
  repeat rewrite Rmult_assoc.
  rewrite (Rmult_comm (/ a)).
  rewrite Rmult_assoc.
  rewrite <- Rinv_mult_distr.
  replace (4 * a * a) with (Rsqr (2 * a)).
  reflexivity.
  ring_Rsqr.
  apply prod_neq_R0;
    [ discrR | apply (cond_nonzero a) ].
  apply (cond_nonzero a).
  assumption.
  apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
  rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  symmetry ; apply Rmult_1_l.
  apply (cond_nonzero a).
  unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse.
  rewrite Ropp_minus_distr.
  reflexivity.
  reflexivity.
Qed.