1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
(*********************************************************)
(** * Basic lemmas for the classical real numbers *)
(*********************************************************)
Require Export Raxioms.
Require Import Rpow_def.
Require Import Zpower.
Require Export ZArithRing.
Require Import Omega.
Require Export RealField.
Local Open Scope Z_scope.
Local Open Scope R_scope.
Implicit Type r : R.
(*********************************************************)
(** ** Relation between orders and equality *)
(*********************************************************)
(** Reflexivity of the large order *)
Lemma Rle_refl : forall r, r <= r.
Proof.
intro; right; reflexivity.
Qed.
Hint Immediate Rle_refl: rorders.
Lemma Rge_refl : forall r, r <= r.
Proof. exact Rle_refl. Qed.
Hint Immediate Rge_refl: rorders.
(** Irreflexivity of the strict order *)
Lemma Rlt_irrefl : forall r, ~ r < r.
Proof.
intros r H; eapply Rlt_asym; eauto.
Qed.
Hint Resolve Rlt_irrefl: real.
Lemma Rgt_irrefl : forall r, ~ r > r.
Proof. exact Rlt_irrefl. Qed.
Lemma Rlt_not_eq : forall r1 r2, r1 < r2 -> r1 <> r2.
Proof.
red; intros r1 r2 H H0; apply (Rlt_irrefl r1).
pattern r1 at 2; rewrite H0; trivial.
Qed.
Lemma Rgt_not_eq : forall r1 r2, r1 > r2 -> r1 <> r2.
Proof.
intros; apply not_eq_sym; apply Rlt_not_eq; auto with real.
Qed.
(**********)
Lemma Rlt_dichotomy_converse : forall r1 r2, r1 < r2 \/ r1 > r2 -> r1 <> r2.
Proof.
intuition.
- apply Rlt_not_eq in H1. eauto.
- apply Rgt_not_eq in H1. eauto.
Qed.
Hint Resolve Rlt_dichotomy_converse: real.
(** Reasoning by case on equality and order *)
(**********)
Lemma Req_dec : forall r1 r2, r1 = r2 \/ r1 <> r2.
Proof.
intros; generalize (total_order_T r1 r2) Rlt_dichotomy_converse;
unfold not; intuition eauto 3.
Qed.
Hint Resolve Req_dec: real.
(**********)
Lemma Rtotal_order : forall r1 r2, r1 < r2 \/ r1 = r2 \/ r1 > r2.
Proof.
intros; generalize (total_order_T r1 r2); tauto.
Qed.
(**********)
Lemma Rdichotomy : forall r1 r2, r1 <> r2 -> r1 < r2 \/ r1 > r2.
Proof.
intros; generalize (total_order_T r1 r2); tauto.
Qed.
(*********************************************************)
(** ** Relating [<], [>], [<=] and [>=] *)
(*********************************************************)
(*********************************************************)
(** ** Order *)
(*********************************************************)
(** *** Relating strict and large orders *)
Lemma Rlt_le : forall r1 r2, r1 < r2 -> r1 <= r2.
Proof.
intros; red; tauto.
Qed.
Hint Resolve Rlt_le: real.
Lemma Rgt_ge : forall r1 r2, r1 > r2 -> r1 >= r2.
Proof.
intros; red; tauto.
Qed.
(**********)
Lemma Rle_ge : forall r1 r2, r1 <= r2 -> r2 >= r1.
Proof.
destruct 1; red; auto with real.
Qed.
Hint Immediate Rle_ge: real.
Hint Resolve Rle_ge: rorders.
Lemma Rge_le : forall r1 r2, r1 >= r2 -> r2 <= r1.
Proof.
destruct 1; red; auto with real.
Qed.
Hint Resolve Rge_le: real.
Hint Immediate Rge_le: rorders.
(**********)
Lemma Rlt_gt : forall r1 r2, r1 < r2 -> r2 > r1.
Proof.
trivial.
Qed.
Hint Resolve Rlt_gt: rorders.
Lemma Rgt_lt : forall r1 r2, r1 > r2 -> r2 < r1.
Proof.
trivial.
Qed.
Hint Immediate Rgt_lt: rorders.
(**********)
Lemma Rnot_le_lt : forall r1 r2, ~ r1 <= r2 -> r2 < r1.
Proof.
intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rle; tauto.
Qed.
Hint Immediate Rnot_le_lt: real.
Lemma Rnot_ge_gt : forall r1 r2, ~ r1 >= r2 -> r2 > r1.
Proof. intros; red; apply Rnot_le_lt. auto with real. Qed.
Lemma Rnot_le_gt : forall r1 r2, ~ r1 <= r2 -> r1 > r2.
Proof. intros; red; apply Rnot_le_lt. auto with real. Qed.
Lemma Rnot_ge_lt : forall r1 r2, ~ r1 >= r2 -> r1 < r2.
Proof. intros; apply Rnot_le_lt. auto with real. Qed.
Lemma Rnot_lt_le : forall r1 r2, ~ r1 < r2 -> r2 <= r1.
Proof.
intros r1 r2 H; destruct (Rtotal_order r1 r2) as [ | [ H0 | H0 ] ].
contradiction. subst; auto with rorders. auto with real.
Qed.
Lemma Rnot_gt_le : forall r1 r2, ~ r1 > r2 -> r1 <= r2.
Proof. auto using Rnot_lt_le with real. Qed.
Lemma Rnot_gt_ge : forall r1 r2, ~ r1 > r2 -> r2 >= r1.
Proof. intros; eauto using Rnot_lt_le with rorders. Qed.
Lemma Rnot_lt_ge : forall r1 r2, ~ r1 < r2 -> r1 >= r2.
Proof. eauto using Rnot_gt_ge with rorders. Qed.
(**********)
Lemma Rlt_not_le : forall r1 r2, r2 < r1 -> ~ r1 <= r2.
Proof.
generalize Rlt_asym Rlt_dichotomy_converse; unfold Rle.
unfold not; intuition eauto 3.
Qed.
Hint Immediate Rlt_not_le: real.
Lemma Rgt_not_le : forall r1 r2, r1 > r2 -> ~ r1 <= r2.
Proof. exact Rlt_not_le. Qed.
Lemma Rlt_not_ge : forall r1 r2, r1 < r2 -> ~ r1 >= r2.
Proof. red; intros; eapply Rlt_not_le; eauto with real. Qed.
Hint Immediate Rlt_not_ge: real.
Lemma Rgt_not_ge : forall r1 r2, r2 > r1 -> ~ r1 >= r2.
Proof. exact Rlt_not_ge. Qed.
Lemma Rle_not_lt : forall r1 r2, r2 <= r1 -> ~ r1 < r2.
Proof.
intros r1 r2. generalize (Rlt_asym r1 r2) (Rlt_dichotomy_converse r1 r2).
unfold Rle; intuition.
Qed.
Lemma Rge_not_lt : forall r1 r2, r1 >= r2 -> ~ r1 < r2.
Proof. intros; apply Rle_not_lt; auto with real. Qed.
Lemma Rle_not_gt : forall r1 r2, r1 <= r2 -> ~ r1 > r2.
Proof. do 2 intro; apply Rle_not_lt. Qed.
Lemma Rge_not_gt : forall r1 r2, r2 >= r1 -> ~ r1 > r2.
Proof. do 2 intro; apply Rge_not_lt. Qed.
(**********)
Lemma Req_le : forall r1 r2, r1 = r2 -> r1 <= r2.
Proof.
unfold Rle; tauto.
Qed.
Hint Immediate Req_le: real.
Lemma Req_ge : forall r1 r2, r1 = r2 -> r1 >= r2.
Proof.
unfold Rge; tauto.
Qed.
Hint Immediate Req_ge: real.
Lemma Req_le_sym : forall r1 r2, r2 = r1 -> r1 <= r2.
Proof.
unfold Rle; auto.
Qed.
Hint Immediate Req_le_sym: real.
Lemma Req_ge_sym : forall r1 r2, r2 = r1 -> r1 >= r2.
Proof.
unfold Rge; auto.
Qed.
Hint Immediate Req_ge_sym: real.
(** *** Asymmetry *)
(** Remark: [Rlt_asym] is an axiom *)
Lemma Rgt_asym : forall r1 r2:R, r1 > r2 -> ~ r2 > r1.
Proof. do 2 intro; apply Rlt_asym. Qed.
(** *** Antisymmetry *)
Lemma Rle_antisym : forall r1 r2, r1 <= r2 -> r2 <= r1 -> r1 = r2.
Proof.
intros r1 r2; generalize (Rlt_asym r1 r2); unfold Rle; intuition.
Qed.
Hint Resolve Rle_antisym: real.
Lemma Rge_antisym : forall r1 r2, r1 >= r2 -> r2 >= r1 -> r1 = r2.
Proof. auto with real. Qed.
(**********)
Lemma Rle_le_eq : forall r1 r2, r1 <= r2 /\ r2 <= r1 <-> r1 = r2.
Proof.
intuition.
Qed.
Lemma Rge_ge_eq : forall r1 r2, r1 >= r2 /\ r2 >= r1 <-> r1 = r2.
Proof.
intuition.
Qed.
(** *** Compatibility with equality *)
Lemma Rlt_eq_compat :
forall r1 r2 r3 r4, r1 = r2 -> r2 < r4 -> r4 = r3 -> r1 < r3.
Proof.
intros x x' y y'; intros; replace x with x'; replace y with y'; assumption.
Qed.
Lemma Rgt_eq_compat :
forall r1 r2 r3 r4, r1 = r2 -> r2 > r4 -> r4 = r3 -> r1 > r3.
Proof. intros; red; apply Rlt_eq_compat with (r2:=r4) (r4:=r2); auto. Qed.
(** *** Transitivity *)
(** Remark: [Rlt_trans] is an axiom *)
Lemma Rle_trans : forall r1 r2 r3, r1 <= r2 -> r2 <= r3 -> r1 <= r3.
Proof.
generalize eq_trans Rlt_trans Rlt_eq_compat.
unfold Rle.
intuition eauto 2.
Qed.
Lemma Rge_trans : forall r1 r2 r3, r1 >= r2 -> r2 >= r3 -> r1 >= r3.
Proof. eauto using Rle_trans with rorders. Qed.
Lemma Rgt_trans : forall r1 r2 r3, r1 > r2 -> r2 > r3 -> r1 > r3.
Proof. eauto using Rlt_trans with rorders. Qed.
(**********)
Lemma Rle_lt_trans : forall r1 r2 r3, r1 <= r2 -> r2 < r3 -> r1 < r3.
Proof.
generalize Rlt_trans Rlt_eq_compat.
unfold Rle.
intuition eauto 2.
Qed.
Lemma Rlt_le_trans : forall r1 r2 r3, r1 < r2 -> r2 <= r3 -> r1 < r3.
Proof.
generalize Rlt_trans Rlt_eq_compat; unfold Rle; intuition eauto 2.
Qed.
Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3.
Proof. eauto using Rlt_le_trans with rorders. Qed.
Lemma Rgt_ge_trans : forall r1 r2 r3, r1 > r2 -> r2 >= r3 -> r1 > r3.
Proof. eauto using Rle_lt_trans with rorders. Qed.
(** *** (Classical) decidability *)
Lemma Rlt_dec : forall r1 r2, {r1 < r2} + {~ r1 < r2}.
Proof.
intros; generalize (total_order_T r1 r2) (Rlt_dichotomy_converse r1 r2);
intuition.
Qed.
Lemma Rle_dec : forall r1 r2, {r1 <= r2} + {~ r1 <= r2}.
Proof.
intros r1 r2.
generalize (total_order_T r1 r2) (Rlt_dichotomy_converse r1 r2).
intuition eauto 4 with real.
Qed.
Lemma Rgt_dec : forall r1 r2, {r1 > r2} + {~ r1 > r2}.
Proof. do 2 intro; apply Rlt_dec. Qed.
Lemma Rge_dec : forall r1 r2, {r1 >= r2} + {~ r1 >= r2}.
Proof. intros; edestruct Rle_dec; [left|right]; eauto with rorders. Qed.
Lemma Rlt_le_dec : forall r1 r2, {r1 < r2} + {r2 <= r1}.
Proof.
intros; generalize (total_order_T r1 r2); intuition.
Qed.
Lemma Rgt_ge_dec : forall r1 r2, {r1 > r2} + {r2 >= r1}.
Proof. intros; edestruct Rlt_le_dec; [left|right]; eauto with rorders. Qed.
Lemma Rle_lt_dec : forall r1 r2, {r1 <= r2} + {r2 < r1}.
Proof.
intros; generalize (total_order_T r1 r2); intuition.
Qed.
Lemma Rge_gt_dec : forall r1 r2, {r1 >= r2} + {r2 > r1}.
Proof. intros; edestruct Rle_lt_dec; [left|right]; eauto with rorders. Qed.
Lemma Rlt_or_le : forall r1 r2, r1 < r2 \/ r2 <= r1.
Proof.
intros n m; elim (Rle_lt_dec m n); auto with real.
Qed.
Lemma Rgt_or_ge : forall r1 r2, r1 > r2 \/ r2 >= r1.
Proof. intros; edestruct Rlt_or_le; [left|right]; eauto with rorders. Qed.
Lemma Rle_or_lt : forall r1 r2, r1 <= r2 \/ r2 < r1.
Proof.
intros n m; elim (Rlt_le_dec m n); auto with real.
Qed.
Lemma Rge_or_gt : forall r1 r2, r1 >= r2 \/ r2 > r1.
Proof. intros; edestruct Rle_or_lt; [left|right]; eauto with rorders. Qed.
Lemma Rle_lt_or_eq_dec : forall r1 r2, r1 <= r2 -> {r1 < r2} + {r1 = r2}.
Proof.
intros r1 r2 H; generalize (total_order_T r1 r2); intuition.
Qed.
(**********)
Lemma inser_trans_R :
forall r1 r2 r3 r4, r1 <= r2 < r3 -> {r1 <= r2 < r4} + {r4 <= r2 < r3}.
Proof.
intros n m p q; intros; generalize (Rlt_le_dec m q); intuition.
Qed.
(*********************************************************)
(** ** Addition *)
(*********************************************************)
(** Remark: [Rplus_0_l] is an axiom *)
Lemma Rplus_0_r : forall r, r + 0 = r.
Proof.
intro; ring.
Qed.
Hint Resolve Rplus_0_r: real.
Lemma Rplus_ne : forall r, r + 0 = r /\ 0 + r = r.
Proof.
split; ring.
Qed.
Hint Resolve Rplus_ne: real.
(**********)
(** Remark: [Rplus_opp_r] is an axiom *)
Lemma Rplus_opp_l : forall r, - r + r = 0.
Proof.
intro; ring.
Qed.
Hint Resolve Rplus_opp_l: real.
(**********)
Lemma Rplus_opp_r_uniq : forall r1 r2, r1 + r2 = 0 -> r2 = - r1.
Proof.
intros x y H;
replace y with (- x + x + y) by ring.
rewrite Rplus_assoc; rewrite H; ring.
Qed.
Definition f_equal_R := (f_equal (A:=R)).
Hint Resolve f_equal_R : real.
Lemma Rplus_eq_compat_l : forall r r1 r2, r1 = r2 -> r + r1 = r + r2.
Proof.
intros r r1 r2.
apply f_equal.
Qed.
Lemma Rplus_eq_compat_r : forall r r1 r2, r1 = r2 -> r1 + r = r2 + r.
Proof.
intros r r1 r2.
apply (f_equal (fun v => v + r)).
Qed.
(**********)
Lemma Rplus_eq_reg_l : forall r r1 r2, r + r1 = r + r2 -> r1 = r2.
Proof.
intros; transitivity (- r + r + r1).
ring.
transitivity (- r + r + r2).
repeat rewrite Rplus_assoc; rewrite <- H; reflexivity.
ring.
Qed.
Hint Resolve Rplus_eq_reg_l: real.
Lemma Rplus_eq_reg_r : forall r r1 r2, r1 + r = r2 + r -> r1 = r2.
Proof.
intros r r1 r2 H.
apply Rplus_eq_reg_l with r.
now rewrite 2!(Rplus_comm r).
Qed.
(**********)
Lemma Rplus_0_r_uniq : forall r r1, r + r1 = r -> r1 = 0.
Proof.
intros r b; pattern r at 2; replace r with (r + 0); eauto with real.
Qed.
(***********)
Lemma Rplus_eq_0_l :
forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0.
Proof.
intros a b H [H0| H0] H1; auto with real.
absurd (0 < a + b).
rewrite H1; auto with real.
apply Rle_lt_trans with (a + 0).
rewrite Rplus_0_r; assumption.
auto using Rplus_lt_compat_l with real.
rewrite <- H0, Rplus_0_r in H1; assumption.
Qed.
Lemma Rplus_eq_R0 :
forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0 /\ r2 = 0.
Proof.
intros a b; split.
apply Rplus_eq_0_l with b; auto with real.
apply Rplus_eq_0_l with a; auto with real.
rewrite Rplus_comm; auto with real.
Qed.
(*********************************************************)
(** ** Multiplication *)
(*********************************************************)
(**********)
Lemma Rinv_r : forall r, r <> 0 -> r * / r = 1.
Proof.
intros; field; trivial.
Qed.
Hint Resolve Rinv_r: real.
Lemma Rinv_l_sym : forall r, r <> 0 -> 1 = / r * r.
Proof.
intros; field; trivial.
Qed.
Hint Resolve Rinv_l_sym: real.
Lemma Rinv_r_sym : forall r, r <> 0 -> 1 = r * / r.
Proof.
intros; field; trivial.
Qed.
Hint Resolve Rinv_r_sym: real.
(**********)
Lemma Rmult_0_r : forall r, r * 0 = 0.
Proof.
intro; ring.
Qed.
Hint Resolve Rmult_0_r: real.
(**********)
Lemma Rmult_0_l : forall r, 0 * r = 0.
Proof.
intro; ring.
Qed.
Hint Resolve Rmult_0_l: real.
(**********)
Lemma Rmult_ne : forall r, r * 1 = r /\ 1 * r = r.
Proof.
intro; split; ring.
Qed.
Hint Resolve Rmult_ne: real.
(**********)
Lemma Rmult_1_r : forall r, r * 1 = r.
Proof.
intro; ring.
Qed.
Hint Resolve Rmult_1_r: real.
(**********)
Lemma Rmult_eq_compat_l : forall r r1 r2, r1 = r2 -> r * r1 = r * r2.
Proof.
auto with real.
Qed.
Lemma Rmult_eq_compat_r : forall r r1 r2, r1 = r2 -> r1 * r = r2 * r.
Proof.
intros.
rewrite <- 2!(Rmult_comm r).
now apply Rmult_eq_compat_l.
Qed.
(**********)
Lemma Rmult_eq_reg_l : forall r r1 r2, r * r1 = r * r2 -> r <> 0 -> r1 = r2.
Proof.
intros; transitivity (/ r * r * r1).
field; trivial.
transitivity (/ r * r * r2).
repeat rewrite Rmult_assoc; rewrite H; trivial.
field; trivial.
Qed.
Lemma Rmult_eq_reg_r : forall r r1 r2, r1 * r = r2 * r -> r <> 0 -> r1 = r2.
Proof.
intros.
apply Rmult_eq_reg_l with (2 := H0).
now rewrite 2!(Rmult_comm r).
Qed.
(**********)
Lemma Rmult_integral : forall r1 r2, r1 * r2 = 0 -> r1 = 0 \/ r2 = 0.
Proof.
intros; case (Req_dec r1 0); [ intro Hz | intro Hnotz ].
auto.
right; apply Rmult_eq_reg_l with r1; trivial.
rewrite H; auto with real.
Qed.
(**********)
Lemma Rmult_eq_0_compat : forall r1 r2, r1 = 0 \/ r2 = 0 -> r1 * r2 = 0.
Proof.
intros r1 r2 [H| H]; rewrite H; auto with real.
Qed.
Hint Resolve Rmult_eq_0_compat: real.
(**********)
Lemma Rmult_eq_0_compat_r : forall r1 r2, r1 = 0 -> r1 * r2 = 0.
Proof.
auto with real.
Qed.
(**********)
Lemma Rmult_eq_0_compat_l : forall r1 r2, r2 = 0 -> r1 * r2 = 0.
Proof.
auto with real.
Qed.
(**********)
Lemma Rmult_neq_0_reg : forall r1 r2, r1 * r2 <> 0 -> r1 <> 0 /\ r2 <> 0.
Proof.
intros r1 r2 H; split; red; intro; apply H; auto with real.
Qed.
(**********)
Lemma Rmult_integral_contrapositive :
forall r1 r2, r1 <> 0 /\ r2 <> 0 -> r1 * r2 <> 0.
Proof.
red; intros r1 r2 [H1 H2] H.
case (Rmult_integral r1 r2); auto with real.
Qed.
Hint Resolve Rmult_integral_contrapositive: real.
Lemma Rmult_integral_contrapositive_currified :
forall r1 r2, r1 <> 0 -> r2 <> 0 -> r1 * r2 <> 0.
Proof. auto using Rmult_integral_contrapositive. Qed.
(**********)
Lemma Rmult_plus_distr_r :
forall r1 r2 r3, (r1 + r2) * r3 = r1 * r3 + r2 * r3.
Proof.
intros; ring.
Qed.
(*********************************************************)
(** ** Square function *)
(*********************************************************)
(***********)
Definition Rsqr r : R := r * r.
Notation "r ²" := (Rsqr r) (at level 1, format "r ²") : R_scope.
(***********)
Lemma Rsqr_0 : Rsqr 0 = 0.
unfold Rsqr; auto with real.
Qed.
(***********)
Lemma Rsqr_0_uniq : forall r, Rsqr r = 0 -> r = 0.
unfold Rsqr; intros; elim (Rmult_integral r r H); trivial.
Qed.
(*********************************************************)
(** ** Opposite *)
(*********************************************************)
(**********)
Lemma Ropp_eq_compat : forall r1 r2, r1 = r2 -> - r1 = - r2.
Proof.
auto with real.
Qed.
Hint Resolve Ropp_eq_compat: real.
(**********)
Lemma Ropp_0 : -0 = 0.
Proof.
ring.
Qed.
Hint Resolve Ropp_0: real.
(**********)
Lemma Ropp_eq_0_compat : forall r, r = 0 -> - r = 0.
Proof.
intros; rewrite H; auto with real.
Qed.
Hint Resolve Ropp_eq_0_compat: real.
(**********)
Lemma Ropp_involutive : forall r, - - r = r.
Proof.
intro; ring.
Qed.
Hint Resolve Ropp_involutive: real.
(*********)
Lemma Ropp_neq_0_compat : forall r, r <> 0 -> - r <> 0.
Proof.
red; intros r H H0.
apply H.
transitivity (- - r); auto with real.
Qed.
Hint Resolve Ropp_neq_0_compat: real.
(**********)
Lemma Ropp_plus_distr : forall r1 r2, - (r1 + r2) = - r1 + - r2.
Proof.
intros; ring.
Qed.
Hint Resolve Ropp_plus_distr: real.
(*********************************************************)
(** ** Opposite and multiplication *)
(*********************************************************)
Lemma Ropp_mult_distr_l : forall r1 r2, - (r1 * r2) = - r1 * r2.
Proof.
intros; ring.
Qed.
Lemma Ropp_mult_distr_l_reverse : forall r1 r2, - r1 * r2 = - (r1 * r2).
Proof.
intros; ring.
Qed.
Hint Resolve Ropp_mult_distr_l_reverse: real.
(**********)
Lemma Rmult_opp_opp : forall r1 r2, - r1 * - r2 = r1 * r2.
Proof.
intros; ring.
Qed.
Hint Resolve Rmult_opp_opp: real.
Lemma Ropp_mult_distr_r : forall r1 r2, - (r1 * r2) = r1 * - r2.
Proof.
intros; ring.
Qed.
Lemma Ropp_mult_distr_r_reverse : forall r1 r2, r1 * - r2 = - (r1 * r2).
Proof.
intros; ring.
Qed.
(*********************************************************)
(** ** Subtraction *)
(*********************************************************)
Lemma Rminus_0_r : forall r, r - 0 = r.
Proof.
intro; ring.
Qed.
Hint Resolve Rminus_0_r: real.
Lemma Rminus_0_l : forall r, 0 - r = - r.
Proof.
intro; ring.
Qed.
Hint Resolve Rminus_0_l: real.
(**********)
Lemma Ropp_minus_distr : forall r1 r2, - (r1 - r2) = r2 - r1.
Proof.
intros; ring.
Qed.
Hint Resolve Ropp_minus_distr: real.
Lemma Ropp_minus_distr' : forall r1 r2, - (r2 - r1) = r1 - r2.
Proof.
intros; ring.
Qed.
(**********)
Lemma Rminus_diag_eq : forall r1 r2, r1 = r2 -> r1 - r2 = 0.
Proof.
intros; rewrite H; ring.
Qed.
Hint Resolve Rminus_diag_eq: real.
(**********)
Lemma Rminus_diag_uniq : forall r1 r2, r1 - r2 = 0 -> r1 = r2.
Proof.
intros r1 r2; unfold Rminus; rewrite Rplus_comm; intro.
rewrite <- (Ropp_involutive r2); apply (Rplus_opp_r_uniq (- r2) r1 H).
Qed.
Hint Immediate Rminus_diag_uniq: real.
Lemma Rminus_diag_uniq_sym : forall r1 r2, r2 - r1 = 0 -> r1 = r2.
Proof.
intros; generalize (Rminus_diag_uniq r2 r1 H); clear H; intro H; rewrite H;
ring.
Qed.
Hint Immediate Rminus_diag_uniq_sym: real.
Lemma Rplus_minus : forall r1 r2, r1 + (r2 - r1) = r2.
Proof.
intros; ring.
Qed.
Hint Resolve Rplus_minus: real.
(**********)
Lemma Rminus_eq_contra : forall r1 r2, r1 <> r2 -> r1 - r2 <> 0.
Proof.
red; intros r1 r2 H H0.
apply H; auto with real.
Qed.
Hint Resolve Rminus_eq_contra: real.
Lemma Rminus_not_eq : forall r1 r2, r1 - r2 <> 0 -> r1 <> r2.
Proof.
red; intros; elim H; apply Rminus_diag_eq; auto.
Qed.
Hint Resolve Rminus_not_eq: real.
Lemma Rminus_not_eq_right : forall r1 r2, r2 - r1 <> 0 -> r1 <> r2.
Proof.
red; intros; elim H; rewrite H0; ring.
Qed.
Hint Resolve Rminus_not_eq_right: real.
(**********)
Lemma Rmult_minus_distr_l :
forall r1 r2 r3, r1 * (r2 - r3) = r1 * r2 - r1 * r3.
Proof.
intros; ring.
Qed.
(*********************************************************)
(** ** Inverse *)
(*********************************************************)
Lemma Rinv_1 : / 1 = 1.
Proof.
field.
Qed.
Hint Resolve Rinv_1: real.
(*********)
Lemma Rinv_neq_0_compat : forall r, r <> 0 -> / r <> 0.
Proof.
red; intros; apply R1_neq_R0.
replace 1 with (/ r * r); auto with real.
Qed.
Hint Resolve Rinv_neq_0_compat: real.
(*********)
Lemma Rinv_involutive : forall r, r <> 0 -> / / r = r.
Proof.
intros; field; trivial.
Qed.
Hint Resolve Rinv_involutive: real.
(*********)
Lemma Rinv_mult_distr :
forall r1 r2, r1 <> 0 -> r2 <> 0 -> / (r1 * r2) = / r1 * / r2.
Proof.
intros; field; auto.
Qed.
(*********)
Lemma Ropp_inv_permute : forall r, r <> 0 -> - / r = / - r.
Proof.
intros; field; trivial.
Qed.
Lemma Rinv_r_simpl_r : forall r1 r2, r1 <> 0 -> r1 * / r1 * r2 = r2.
Proof.
intros; transitivity (1 * r2); auto with real.
rewrite Rinv_r; auto with real.
Qed.
Lemma Rinv_r_simpl_l : forall r1 r2, r1 <> 0 -> r2 * r1 * / r1 = r2.
Proof.
intros; transitivity (r2 * 1); auto with real.
transitivity (r2 * (r1 * / r1)); auto with real.
Qed.
Lemma Rinv_r_simpl_m : forall r1 r2, r1 <> 0 -> r1 * r2 * / r1 = r2.
Proof.
intros; transitivity (r2 * 1); auto with real.
transitivity (r2 * (r1 * / r1)); auto with real.
ring.
Qed.
Hint Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m: real.
(*********)
Lemma Rinv_mult_simpl :
forall r1 r2 r3, r1 <> 0 -> r1 * / r2 * (r3 * / r1) = r3 * / r2.
Proof.
intros a b c; intros.
transitivity (a * / a * (c * / b)); auto with real.
ring.
Qed.
(*********************************************************)
(** ** Order and addition *)
(*********************************************************)
(** *** Compatibility *)
(** Remark: [Rplus_lt_compat_l] is an axiom *)
Lemma Rplus_gt_compat_l : forall r r1 r2, r1 > r2 -> r + r1 > r + r2.
Proof. eauto using Rplus_lt_compat_l with rorders. Qed.
Hint Resolve Rplus_gt_compat_l: real.
(**********)
Lemma Rplus_lt_compat_r : forall r r1 r2, r1 < r2 -> r1 + r < r2 + r.
Proof.
intros.
rewrite (Rplus_comm r1 r); rewrite (Rplus_comm r2 r); auto with real.
Qed.
Hint Resolve Rplus_lt_compat_r: real.
Lemma Rplus_gt_compat_r : forall r r1 r2, r1 > r2 -> r1 + r > r2 + r.
Proof. do 3 intro; apply Rplus_lt_compat_r. Qed.
(**********)
Lemma Rplus_le_compat_l : forall r r1 r2, r1 <= r2 -> r + r1 <= r + r2.
Proof.
unfold Rle; intros; elim H; intro.
left; apply (Rplus_lt_compat_l r r1 r2 H0).
right; rewrite <- H0; auto with zarith real.
Qed.
Lemma Rplus_ge_compat_l : forall r r1 r2, r1 >= r2 -> r + r1 >= r + r2.
Proof. auto using Rplus_le_compat_l with rorders. Qed.
Hint Resolve Rplus_ge_compat_l: real.
(**********)
Lemma Rplus_le_compat_r : forall r r1 r2, r1 <= r2 -> r1 + r <= r2 + r.
Proof.
unfold Rle; intros; elim H; intro.
left; apply (Rplus_lt_compat_r r r1 r2 H0).
right; rewrite <- H0; auto with real.
Qed.
Hint Resolve Rplus_le_compat_l Rplus_le_compat_r: real.
Lemma Rplus_ge_compat_r : forall r r1 r2, r1 >= r2 -> r1 + r >= r2 + r.
Proof. auto using Rplus_le_compat_r with rorders. Qed.
(*********)
Lemma Rplus_lt_compat :
forall r1 r2 r3 r4, r1 < r2 -> r3 < r4 -> r1 + r3 < r2 + r4.
Proof.
intros; apply Rlt_trans with (r2 + r3); auto with real.
Qed.
Hint Immediate Rplus_lt_compat: real.
Lemma Rplus_le_compat :
forall r1 r2 r3 r4, r1 <= r2 -> r3 <= r4 -> r1 + r3 <= r2 + r4.
Proof.
intros; apply Rle_trans with (r2 + r3); auto with real.
Qed.
Hint Immediate Rplus_le_compat: real.
Lemma Rplus_gt_compat :
forall r1 r2 r3 r4, r1 > r2 -> r3 > r4 -> r1 + r3 > r2 + r4.
Proof. auto using Rplus_lt_compat with rorders. Qed.
Lemma Rplus_ge_compat :
forall r1 r2 r3 r4, r1 >= r2 -> r3 >= r4 -> r1 + r3 >= r2 + r4.
Proof. auto using Rplus_le_compat with rorders. Qed.
(*********)
Lemma Rplus_lt_le_compat :
forall r1 r2 r3 r4, r1 < r2 -> r3 <= r4 -> r1 + r3 < r2 + r4.
Proof.
intros; apply Rlt_le_trans with (r2 + r3); auto with real.
Qed.
Lemma Rplus_le_lt_compat :
forall r1 r2 r3 r4, r1 <= r2 -> r3 < r4 -> r1 + r3 < r2 + r4.
Proof.
intros; apply Rle_lt_trans with (r2 + r3); auto with real.
Qed.
Hint Immediate Rplus_lt_le_compat Rplus_le_lt_compat: real.
Lemma Rplus_gt_ge_compat :
forall r1 r2 r3 r4, r1 > r2 -> r3 >= r4 -> r1 + r3 > r2 + r4.
Proof. auto using Rplus_lt_le_compat with rorders. Qed.
Lemma Rplus_ge_gt_compat :
forall r1 r2 r3 r4, r1 >= r2 -> r3 > r4 -> r1 + r3 > r2 + r4.
Proof. auto using Rplus_le_lt_compat with rorders. Qed.
(**********)
Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2.
Proof.
intros x y; intros; apply Rlt_trans with x;
[ assumption
| pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
assumption ].
Qed.
Lemma Rplus_le_lt_0_compat : forall r1 r2, 0 <= r1 -> 0 < r2 -> 0 < r1 + r2.
Proof.
intros x y; intros; apply Rle_lt_trans with x;
[ assumption
| pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
assumption ].
Qed.
Lemma Rplus_lt_le_0_compat : forall r1 r2, 0 < r1 -> 0 <= r2 -> 0 < r1 + r2.
Proof.
intros x y; intros; rewrite <- Rplus_comm; apply Rplus_le_lt_0_compat;
assumption.
Qed.
Lemma Rplus_le_le_0_compat : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 + r2.
Proof.
intros x y; intros; apply Rle_trans with x;
[ assumption
| pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
assumption ].
Qed.
(**********)
Lemma sum_inequa_Rle_lt :
forall a x b c y d:R,
a <= x -> x < b -> c < y -> y <= d -> a + c < x + y < b + d.
Proof.
intros; split.
apply Rlt_le_trans with (a + y); auto with real.
apply Rlt_le_trans with (b + y); auto with real.
Qed.
(** *** Cancellation *)
Lemma Rplus_lt_reg_l : forall r r1 r2, r + r1 < r + r2 -> r1 < r2.
Proof.
intros; cut (- r + r + r1 < - r + r + r2).
rewrite Rplus_opp_l.
elim (Rplus_ne r1); elim (Rplus_ne r2); intros; rewrite <- H3; rewrite <- H1;
auto with zarith real.
rewrite Rplus_assoc; rewrite Rplus_assoc;
apply (Rplus_lt_compat_l (- r) (r + r1) (r + r2) H).
Qed.
Lemma Rplus_lt_reg_r : forall r r1 r2, r1 + r < r2 + r -> r1 < r2.
Proof.
intros.
apply (Rplus_lt_reg_l r).
now rewrite 2!(Rplus_comm r).
Qed.
Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2.
Proof.
unfold Rle; intros; elim H; intro.
left; apply (Rplus_lt_reg_l r r1 r2 H0).
right; apply (Rplus_eq_reg_l r r1 r2 H0).
Qed.
Lemma Rplus_le_reg_r : forall r r1 r2, r1 + r <= r2 + r -> r1 <= r2.
Proof.
intros.
apply (Rplus_le_reg_l r).
now rewrite 2!(Rplus_comm r).
Qed.
Lemma Rplus_gt_reg_l : forall r r1 r2, r + r1 > r + r2 -> r1 > r2.
Proof.
unfold Rgt; intros; apply (Rplus_lt_reg_l r r2 r1 H).
Qed.
Lemma Rplus_ge_reg_l : forall r r1 r2, r + r1 >= r + r2 -> r1 >= r2.
Proof.
intros; apply Rle_ge; apply Rplus_le_reg_l with r; auto with real.
Qed.
(**********)
Lemma Rplus_le_reg_pos_r :
forall r1 r2 r3, 0 <= r2 -> r1 + r2 <= r3 -> r1 <= r3.
Proof.
intros x y z; intros; apply Rle_trans with (x + y);
[ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
assumption
| assumption ].
Qed.
Lemma Rplus_lt_reg_pos_r : forall r1 r2 r3, 0 <= r2 -> r1 + r2 < r3 -> r1 < r3.
Proof.
intros x y z; intros; apply Rle_lt_trans with (x + y);
[ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
assumption
| assumption ].
Qed.
Lemma Rplus_ge_reg_neg_r :
forall r1 r2 r3, 0 >= r2 -> r1 + r2 >= r3 -> r1 >= r3.
Proof.
intros x y z; intros; apply Rge_trans with (x + y);
[ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_ge_compat_l;
assumption
| assumption ].
Qed.
Lemma Rplus_gt_reg_neg_r : forall r1 r2 r3, 0 >= r2 -> r1 + r2 > r3 -> r1 > r3.
Proof.
intros x y z; intros; apply Rge_gt_trans with (x + y);
[ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_ge_compat_l;
assumption
| assumption ].
Qed.
(*********************************************************)
(** ** Order and opposite *)
(*********************************************************)
(** *** Contravariant compatibility *)
Lemma Ropp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2.
Proof.
unfold Rgt; intros.
apply (Rplus_lt_reg_l (r2 + r1)).
replace (r2 + r1 + - r1) with r2 by ring.
replace (r2 + r1 + - r2) with r1 by ring.
exact H.
Qed.
Hint Resolve Ropp_gt_lt_contravar.
Lemma Ropp_lt_gt_contravar : forall r1 r2, r1 < r2 -> - r1 > - r2.
Proof.
unfold Rgt; auto with real.
Qed.
Hint Resolve Ropp_lt_gt_contravar: real.
(**********)
Lemma Ropp_lt_contravar : forall r1 r2, r2 < r1 -> - r1 < - r2.
Proof.
auto with real.
Qed.
Hint Resolve Ropp_lt_contravar: real.
Lemma Ropp_gt_contravar : forall r1 r2, r2 > r1 -> - r1 > - r2.
Proof. auto with real. Qed.
(**********)
Lemma Ropp_le_ge_contravar : forall r1 r2, r1 <= r2 -> - r1 >= - r2.
Proof.
unfold Rge; intros r1 r2 [H| H]; auto with real.
Qed.
Hint Resolve Ropp_le_ge_contravar: real.
Lemma Ropp_ge_le_contravar : forall r1 r2, r1 >= r2 -> - r1 <= - r2.
Proof.
unfold Rle; intros r1 r2 [H| H]; auto with real.
Qed.
Hint Resolve Ropp_ge_le_contravar: real.
(**********)
Lemma Ropp_le_contravar : forall r1 r2, r2 <= r1 -> - r1 <= - r2.
Proof.
intros r1 r2 H; elim H; auto with real.
Qed.
Hint Resolve Ropp_le_contravar: real.
Lemma Ropp_ge_contravar : forall r1 r2, r2 >= r1 -> - r1 >= - r2.
Proof. auto using Ropp_le_contravar with real. Qed.
(**********)
Lemma Ropp_0_lt_gt_contravar : forall r, 0 < r -> 0 > - r.
Proof.
intros; replace 0 with (-0); auto with real.
Qed.
Hint Resolve Ropp_0_lt_gt_contravar: real.
Lemma Ropp_0_gt_lt_contravar : forall r, 0 > r -> 0 < - r.
Proof.
intros; replace 0 with (-0); auto with real.
Qed.
Hint Resolve Ropp_0_gt_lt_contravar: real.
(**********)
Lemma Ropp_lt_gt_0_contravar : forall r, r > 0 -> - r < 0.
Proof.
intros; rewrite <- Ropp_0; auto with real.
Qed.
Hint Resolve Ropp_lt_gt_0_contravar: real.
Lemma Ropp_gt_lt_0_contravar : forall r, r < 0 -> - r > 0.
Proof.
intros; rewrite <- Ropp_0; auto with real.
Qed.
Hint Resolve Ropp_gt_lt_0_contravar: real.
(**********)
Lemma Ropp_0_le_ge_contravar : forall r, 0 <= r -> 0 >= - r.
Proof.
intros; replace 0 with (-0); auto with real.
Qed.
Hint Resolve Ropp_0_le_ge_contravar: real.
Lemma Ropp_0_ge_le_contravar : forall r, 0 >= r -> 0 <= - r.
Proof.
intros; replace 0 with (-0); auto with real.
Qed.
Hint Resolve Ropp_0_ge_le_contravar: real.
(** *** Cancellation *)
Lemma Ropp_lt_cancel : forall r1 r2, - r2 < - r1 -> r1 < r2.
Proof.
intros x y H'.
rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y);
auto with real.
Qed.
Hint Immediate Ropp_lt_cancel: real.
Lemma Ropp_gt_cancel : forall r1 r2, - r2 > - r1 -> r1 > r2.
Proof. auto using Ropp_lt_cancel with rorders. Qed.
Lemma Ropp_le_cancel : forall r1 r2, - r2 <= - r1 -> r1 <= r2.
Proof.
intros x y H.
elim H; auto with real.
intro H1; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y);
rewrite H1; auto with real.
Qed.
Hint Immediate Ropp_le_cancel: real.
Lemma Ropp_ge_cancel : forall r1 r2, - r2 >= - r1 -> r1 >= r2.
Proof. auto using Ropp_le_cancel with rorders. Qed.
(*********************************************************)
(** ** Order and multiplication *)
(*********************************************************)
(** Remark: [Rmult_lt_compat_l] is an axiom *)
(** *** Covariant compatibility *)
Lemma Rmult_lt_compat_r : forall r r1 r2, 0 < r -> r1 < r2 -> r1 * r < r2 * r.
Proof.
intros; rewrite (Rmult_comm r1 r); rewrite (Rmult_comm r2 r); auto with real.
Qed.
Hint Resolve Rmult_lt_compat_r.
Lemma Rmult_gt_compat_r : forall r r1 r2, r > 0 -> r1 > r2 -> r1 * r > r2 * r.
Proof. eauto using Rmult_lt_compat_r with rorders. Qed.
Lemma Rmult_gt_compat_l : forall r r1 r2, r > 0 -> r1 > r2 -> r * r1 > r * r2.
Proof. eauto using Rmult_lt_compat_l with rorders. Qed.
(**********)
Lemma Rmult_le_compat_l :
forall r r1 r2, 0 <= r -> r1 <= r2 -> r * r1 <= r * r2.
Proof.
intros r r1 r2 H H0; destruct H; destruct H0; unfold Rle;
auto with real.
right; rewrite <- H; do 2 rewrite Rmult_0_l; reflexivity.
Qed.
Hint Resolve Rmult_le_compat_l: real.
Lemma Rmult_le_compat_r :
forall r r1 r2, 0 <= r -> r1 <= r2 -> r1 * r <= r2 * r.
Proof.
intros r r1 r2 H; rewrite (Rmult_comm r1 r); rewrite (Rmult_comm r2 r);
auto with real.
Qed.
Hint Resolve Rmult_le_compat_r: real.
Lemma Rmult_ge_compat_l :
forall r r1 r2, r >= 0 -> r1 >= r2 -> r * r1 >= r * r2.
Proof. eauto using Rmult_le_compat_l with rorders. Qed.
Lemma Rmult_ge_compat_r :
forall r r1 r2, r >= 0 -> r1 >= r2 -> r1 * r >= r2 * r.
Proof. eauto using Rmult_le_compat_r with rorders. Qed.
(**********)
Lemma Rmult_le_compat :
forall r1 r2 r3 r4,
0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4.
Proof.
intros x y z t H' H'0 H'1 H'2.
apply Rle_trans with (r2 := x * t); auto with real.
repeat rewrite (fun x => Rmult_comm x t).
apply Rmult_le_compat_l; auto.
apply Rle_trans with z; auto.
Qed.
Hint Resolve Rmult_le_compat: real.
Lemma Rmult_ge_compat :
forall r1 r2 r3 r4,
r2 >= 0 -> r4 >= 0 -> r1 >= r2 -> r3 >= r4 -> r1 * r3 >= r2 * r4.
Proof. auto with real rorders. Qed.
Lemma Rmult_gt_0_lt_compat :
forall r1 r2 r3 r4,
r3 > 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
Proof.
intros; apply Rlt_trans with (r2 * r3); auto with real.
Qed.
(*********)
Lemma Rmult_le_0_lt_compat :
forall r1 r2 r3 r4,
0 <= r1 -> 0 <= r3 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
Proof.
intros; apply Rle_lt_trans with (r2 * r3);
[ apply Rmult_le_compat_r; [ assumption | left; assumption ]
| apply Rmult_lt_compat_l;
[ apply Rle_lt_trans with r1; assumption | assumption ] ].
Qed.
(*********)
Lemma Rmult_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 * r2.
Proof. intros; replace 0 with (0 * r2); auto with real. Qed.
Lemma Rmult_gt_0_compat : forall r1 r2, r1 > 0 -> r2 > 0 -> r1 * r2 > 0.
Proof Rmult_lt_0_compat.
(** *** Contravariant compatibility *)
Lemma Rmult_le_compat_neg_l :
forall r r1 r2, r <= 0 -> r1 <= r2 -> r * r2 <= r * r1.
Proof.
intros; replace r with (- - r); auto with real.
do 2 rewrite (Ropp_mult_distr_l_reverse (- r)).
apply Ropp_le_contravar; auto with real.
Qed.
Hint Resolve Rmult_le_compat_neg_l: real.
Lemma Rmult_le_ge_compat_neg_l :
forall r r1 r2, r <= 0 -> r1 <= r2 -> r * r1 >= r * r2.
Proof.
intros; apply Rle_ge; auto with real.
Qed.
Hint Resolve Rmult_le_ge_compat_neg_l: real.
Lemma Rmult_lt_gt_compat_neg_l :
forall r r1 r2, r < 0 -> r1 < r2 -> r * r1 > r * r2.
Proof.
intros; replace r with (- - r); auto with real.
rewrite (Ropp_mult_distr_l_reverse (- r));
rewrite (Ropp_mult_distr_l_reverse (- r)).
apply Ropp_lt_gt_contravar; auto with real.
Qed.
(** *** Cancellation *)
Lemma Rmult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
Proof.
intros z x y H H0.
case (Rtotal_order x y); intros Eq0; auto; elim Eq0; clear Eq0; intros Eq0.
rewrite Eq0 in H0; exfalso; apply (Rlt_irrefl (z * y)); auto.
generalize (Rmult_lt_compat_l z y x H Eq0); intro; exfalso;
generalize (Rlt_trans (z * x) (z * y) (z * x) H0 H1);
intro; apply (Rlt_irrefl (z * x)); auto.
Qed.
Lemma Rmult_lt_reg_r : forall r r1 r2 : R, 0 < r -> r1 * r < r2 * r -> r1 < r2.
Proof.
intros.
apply Rmult_lt_reg_l with r.
exact H.
now rewrite 2!(Rmult_comm r).
Qed.
Lemma Rmult_gt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
Proof. eauto using Rmult_lt_reg_l with rorders. Qed.
Lemma Rmult_le_reg_l : forall r r1 r2, 0 < r -> r * r1 <= r * r2 -> r1 <= r2.
Proof.
intros z x y H H0; case H0; auto with real.
intros H1; apply Rlt_le.
apply Rmult_lt_reg_l with (r := z); auto.
intros H1; replace x with (/ z * (z * x)); auto with real.
replace y with (/ z * (z * y)).
rewrite H1; auto with real.
rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
Qed.
Lemma Rmult_le_reg_r : forall r r1 r2, 0 < r -> r1 * r <= r2 * r -> r1 <= r2.
Proof.
intros.
apply Rmult_le_reg_l with r.
exact H.
now rewrite 2!(Rmult_comm r).
Qed.
(*********************************************************)
(** ** Order and substraction *)
(*********************************************************)
Lemma Rlt_minus : forall r1 r2, r1 < r2 -> r1 - r2 < 0.
Proof.
intros; apply (Rplus_lt_reg_l r2).
replace (r2 + (r1 - r2)) with r1 by ring.
now rewrite Rplus_0_r.
Qed.
Hint Resolve Rlt_minus: real.
Lemma Rgt_minus : forall r1 r2, r1 > r2 -> r1 - r2 > 0.
Proof.
intros; apply (Rplus_lt_reg_l r2).
replace (r2 + (r1 - r2)) with r1 by ring.
now rewrite Rplus_0_r.
Qed.
Lemma Rlt_Rminus : forall a b:R, a < b -> 0 < b - a.
Proof.
intros a b; apply Rgt_minus.
Qed.
(**********)
Lemma Rle_minus : forall r1 r2, r1 <= r2 -> r1 - r2 <= 0.
Proof.
destruct 1; unfold Rle; auto with real.
Qed.
Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0.
Proof.
destruct 1.
auto using Rgt_minus, Rgt_ge.
right; auto using Rminus_diag_eq with rorders.
Qed.
(**********)
Lemma Rminus_lt : forall r1 r2, r1 - r2 < 0 -> r1 < r2.
Proof.
intros; replace r1 with (r1 - r2 + r2).
pattern r2 at 3; replace r2 with (0 + r2); auto with real.
ring.
Qed.
Lemma Rminus_gt : forall r1 r2, r1 - r2 > 0 -> r1 > r2.
Proof.
intros; replace r2 with (0 + r2); auto with real.
replace r1 with (r1 - r2 + r2).
apply Rplus_gt_compat_r; assumption.
ring.
Qed.
Lemma Rminus_gt_0_lt : forall a b, 0 < b - a -> a < b.
Proof. intro; intro; apply Rminus_gt. Qed.
(**********)
Lemma Rminus_le : forall r1 r2, r1 - r2 <= 0 -> r1 <= r2.
Proof.
intros; replace r1 with (r1 - r2 + r2).
pattern r2 at 3; replace r2 with (0 + r2); auto with real.
ring.
Qed.
Lemma Rminus_ge : forall r1 r2, r1 - r2 >= 0 -> r1 >= r2.
Proof.
intros; replace r2 with (0 + r2); auto with real.
replace r1 with (r1 - r2 + r2).
apply Rplus_ge_compat_r; assumption.
ring.
Qed.
(**********)
Lemma tech_Rplus : forall r (s:R), 0 <= r -> 0 < s -> r + s <> 0.
Proof.
intros; apply not_eq_sym; apply Rlt_not_eq.
rewrite Rplus_comm; replace 0 with (0 + 0); auto with real.
Qed.
Hint Immediate tech_Rplus: real.
(*********************************************************)
(** ** Order and square function *)
(*********************************************************)
Lemma Rle_0_sqr : forall r, 0 <= Rsqr r.
Proof.
intro; case (Rlt_le_dec r 0); unfold Rsqr; intro.
replace (r * r) with (- r * - r); auto with real.
replace 0 with (- r * 0); auto with real.
replace 0 with (0 * r); auto with real.
Qed.
(***********)
Lemma Rlt_0_sqr : forall r, r <> 0 -> 0 < Rsqr r.
Proof.
intros; case (Rdichotomy r 0); trivial; unfold Rsqr; intro.
replace (r * r) with (- r * - r); auto with real.
replace 0 with (- r * 0); auto with real.
replace 0 with (0 * r); auto with real.
Qed.
Hint Resolve Rle_0_sqr Rlt_0_sqr: real.
(***********)
Lemma Rplus_sqr_eq_0_l : forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0.
Proof.
intros a b; intros; apply Rsqr_0_uniq; apply Rplus_eq_0_l with (Rsqr b);
auto with real.
Qed.
Lemma Rplus_sqr_eq_0 :
forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0 /\ r2 = 0.
Proof.
intros a b; split.
apply Rplus_sqr_eq_0_l with b; auto with real.
apply Rplus_sqr_eq_0_l with a; auto with real.
rewrite Rplus_comm; auto with real.
Qed.
(*********************************************************)
(** ** Zero is less than one *)
(*********************************************************)
Lemma Rlt_0_1 : 0 < 1.
Proof.
replace 1 with (Rsqr 1); auto with real.
unfold Rsqr; auto with real.
Qed.
Hint Resolve Rlt_0_1: real.
Lemma Rle_0_1 : 0 <= 1.
Proof.
left.
exact Rlt_0_1.
Qed.
(*********************************************************)
(** ** Order and inverse *)
(*********************************************************)
Lemma Rinv_0_lt_compat : forall r, 0 < r -> 0 < / r.
Proof.
intros; apply Rnot_le_lt; red; intros.
absurd (1 <= 0); auto with real.
replace 1 with (r * / r); auto with real.
replace 0 with (r * 0); auto with real.
Qed.
Hint Resolve Rinv_0_lt_compat: real.
(*********)
Lemma Rinv_lt_0_compat : forall r, r < 0 -> / r < 0.
Proof.
intros; apply Rnot_le_lt; red; intros.
absurd (1 <= 0); auto with real.
replace 1 with (r * / r); auto with real.
replace 0 with (r * 0); auto with real.
Qed.
Hint Resolve Rinv_lt_0_compat: real.
(*********)
Lemma Rinv_lt_contravar : forall r1 r2, 0 < r1 * r2 -> r1 < r2 -> / r2 < / r1.
Proof.
intros; apply Rmult_lt_reg_l with (r1 * r2); auto with real.
case (Rmult_neq_0_reg r1 r2); intros; auto with real.
replace (r1 * r2 * / r2) with r1.
replace (r1 * r2 * / r1) with r2; trivial.
symmetry ; auto with real.
symmetry ; auto with real.
Qed.
Lemma Rinv_1_lt_contravar : forall r1 r2, 1 <= r1 -> r1 < r2 -> / r2 < / r1.
Proof.
intros x y H' H'0.
cut (0 < x); [ intros Lt0 | apply Rlt_le_trans with (r2 := 1) ];
auto with real.
apply Rmult_lt_reg_l with (r := x); auto with real.
rewrite (Rmult_comm x (/ x)); rewrite Rinv_l; auto with real.
apply Rmult_lt_reg_l with (r := y); auto with real.
apply Rlt_trans with (r2 := x); auto.
cut (y * (x * / y) = x).
intro H1; rewrite H1; rewrite (Rmult_1_r y); auto.
rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite (Rmult_comm y (/ y));
rewrite Rinv_l; auto with real.
apply Rlt_dichotomy_converse; right.
red; apply Rlt_trans with (r2 := x); auto with real.
Qed.
Hint Resolve Rinv_1_lt_contravar: real.
(*********************************************************)
(** ** Miscellaneous *)
(*********************************************************)
(**********)
Lemma Rle_lt_0_plus_1 : forall r, 0 <= r -> 0 < r + 1.
Proof.
intros.
apply Rlt_le_trans with 1; auto with real.
pattern 1 at 1; replace 1 with (0 + 1); auto with real.
Qed.
Hint Resolve Rle_lt_0_plus_1: real.
(**********)
Lemma Rlt_plus_1 : forall r, r < r + 1.
Proof.
intros.
pattern r at 1; replace r with (r + 0); auto with real.
Qed.
Hint Resolve Rlt_plus_1: real.
(**********)
Lemma tech_Rgt_minus : forall r1 r2, 0 < r2 -> r1 > r1 - r2.
Proof.
red; unfold Rminus; intros.
pattern r1 at 2; replace r1 with (r1 + 0); auto with real.
Qed.
(*********************************************************)
(** ** Injection from [N] to [R] *)
(*********************************************************)
(**********)
Lemma S_INR : forall n:nat, INR (S n) = INR n + 1.
Proof.
intro; case n; auto with real.
Qed.
(**********)
Lemma S_O_plus_INR : forall n:nat, INR (1 + n) = INR 1 + INR n.
Proof.
intro; simpl; case n; intros; auto with real.
Qed.
(**********)
Lemma plus_INR : forall n m:nat, INR (n + m) = INR n + INR m.
Proof.
intros n m; induction n as [| n Hrecn].
simpl; auto with real.
replace (S n + m)%nat with (S (n + m)); auto with arith.
repeat rewrite S_INR.
rewrite Hrecn; ring.
Qed.
Hint Resolve plus_INR: real.
(**********)
Lemma minus_INR : forall n m:nat, (m <= n)%nat -> INR (n - m) = INR n - INR m.
Proof.
intros n m le; pattern m, n; apply le_elim_rel; auto with real.
intros; rewrite <- minus_n_O; auto with real.
intros; repeat rewrite S_INR; simpl.
rewrite H0; ring.
Qed.
Hint Resolve minus_INR: real.
(*********)
Lemma mult_INR : forall n m:nat, INR (n * m) = INR n * INR m.
Proof.
intros n m; induction n as [| n Hrecn].
simpl; auto with real.
intros; repeat rewrite S_INR; simpl.
rewrite plus_INR; rewrite Hrecn; ring.
Qed.
Hint Resolve mult_INR: real.
Lemma pow_INR (m n: nat) : INR (m ^ n) = pow (INR m) n.
Proof. now induction n as [|n IHn];[ | simpl; rewrite mult_INR, IHn]. Qed.
(*********)
Lemma lt_0_INR : forall n:nat, (0 < n)%nat -> 0 < INR n.
Proof.
simple induction 1; intros; auto with real.
rewrite S_INR; auto with real.
Qed.
Hint Resolve lt_0_INR: real.
Lemma lt_INR : forall n m:nat, (n < m)%nat -> INR n < INR m.
Proof.
simple induction 1; intros; auto with real.
rewrite S_INR; auto with real.
rewrite S_INR; apply Rlt_trans with (INR m0); auto with real.
Qed.
Hint Resolve lt_INR: real.
Lemma lt_1_INR : forall n:nat, (1 < n)%nat -> 1 < INR n.
Proof.
apply lt_INR.
Qed.
Hint Resolve lt_1_INR: real.
(**********)
Lemma pos_INR_nat_of_P : forall p:positive, 0 < INR (Pos.to_nat p).
Proof.
intro; apply lt_0_INR.
simpl; auto with real.
apply Pos2Nat.is_pos.
Qed.
Hint Resolve pos_INR_nat_of_P: real.
(**********)
Lemma pos_INR : forall n:nat, 0 <= INR n.
Proof.
intro n; case n.
simpl; auto with real.
auto with arith real.
Qed.
Hint Resolve pos_INR: real.
Lemma INR_lt : forall n m:nat, INR n < INR m -> (n < m)%nat.
Proof.
intros n m. revert n.
induction m ; intros n H.
- elim (Rlt_irrefl 0).
apply Rle_lt_trans with (2 := H).
apply pos_INR.
- destruct n as [|n].
apply Nat.lt_0_succ.
apply lt_n_S, IHm.
rewrite 2!S_INR in H.
apply Rplus_lt_reg_r with (1 := H).
Qed.
Hint Resolve INR_lt: real.
(*********)
Lemma le_INR : forall n m:nat, (n <= m)%nat -> INR n <= INR m.
Proof.
simple induction 1; intros; auto with real.
rewrite S_INR.
apply Rle_trans with (INR m0); auto with real.
Qed.
Hint Resolve le_INR: real.
(**********)
Lemma INR_not_0 : forall n:nat, INR n <> 0 -> n <> 0%nat.
Proof.
red; intros n H H1.
apply H.
rewrite H1; trivial.
Qed.
Hint Immediate INR_not_0: real.
(**********)
Lemma not_0_INR : forall n:nat, n <> 0%nat -> INR n <> 0.
Proof.
intro n; case n.
intro; absurd (0%nat = 0%nat); trivial.
intros; rewrite S_INR.
apply Rgt_not_eq; red; auto with real.
Qed.
Hint Resolve not_0_INR: real.
Lemma not_INR : forall n m:nat, n <> m -> INR n <> INR m.
Proof.
intros n m H; case (le_or_lt n m); intros H1.
case (le_lt_or_eq _ _ H1); intros H2.
apply Rlt_dichotomy_converse; auto with real.
exfalso; auto.
apply not_eq_sym; apply Rlt_dichotomy_converse; auto with real.
Qed.
Hint Resolve not_INR: real.
Lemma INR_eq : forall n m:nat, INR n = INR m -> n = m.
Proof.
intros n m HR.
destruct (dec_eq_nat n m) as [H|H].
exact H.
now apply not_INR in H.
Qed.
Hint Resolve INR_eq: real.
Lemma INR_le : forall n m:nat, INR n <= INR m -> (n <= m)%nat.
Proof.
intros; elim H; intro.
generalize (INR_lt n m H0); intro; auto with arith.
generalize (INR_eq n m H0); intro; rewrite H1; auto.
Qed.
Hint Resolve INR_le: real.
Lemma not_1_INR : forall n:nat, n <> 1%nat -> INR n <> 1.
Proof.
intros n.
apply not_INR.
Qed.
Hint Resolve not_1_INR: real.
(*********************************************************)
(** ** Injection from [Z] to [R] *)
(*********************************************************)
(**********)
Lemma IZN : forall n:Z, (0 <= n)%Z -> exists m : nat, n = Z.of_nat m.
Proof.
intros z; idtac; apply Z_of_nat_complete; assumption.
Qed.
Lemma INR_IPR : forall p, INR (Pos.to_nat p) = IPR p.
Proof.
assert (H: forall p, 2 * INR (Pos.to_nat p) = IPR_2 p).
induction p as [p|p|] ; simpl IPR_2.
rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- IHp.
now rewrite (Rplus_comm (2 * _)).
now rewrite Pos2Nat.inj_xO, mult_INR, <- IHp.
apply Rmult_1_r.
intros [p|p|] ; unfold IPR.
rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- H.
apply Rplus_comm.
now rewrite Pos2Nat.inj_xO, mult_INR, <- H.
easy.
Qed.
(**********)
Lemma INR_IZR_INZ : forall n:nat, INR n = IZR (Z.of_nat n).
Proof.
intros [|n].
easy.
simpl Z.of_nat. unfold IZR.
now rewrite <- INR_IPR, SuccNat2Pos.id_succ.
Qed.
Lemma plus_IZR_NEG_POS :
forall p q:positive, IZR (Zpos p + Zneg q) = IZR (Zpos p) + IZR (Zneg q).
Proof.
intros p q; simpl. rewrite Z.pos_sub_spec.
case Pos.compare_spec; intros H; unfold IZR.
subst. ring.
rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial.
rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt).
ring.
rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial.
rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt).
ring.
Qed.
(**********)
Lemma plus_IZR : forall n m:Z, IZR (n + m) = IZR n + IZR m.
Proof.
intro z; destruct z; intro t; destruct t; intros; auto with real.
simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add. apply plus_INR.
apply plus_IZR_NEG_POS.
rewrite Z.add_comm; rewrite Rplus_comm; apply plus_IZR_NEG_POS.
simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add, plus_INR.
apply Ropp_plus_distr.
Qed.
(**********)
Lemma mult_IZR : forall n m:Z, IZR (n * m) = IZR n * IZR m.
Proof.
intros z t; case z; case t; simpl; auto with real;
unfold IZR; intros m n; rewrite <- 3!INR_IPR, Pos2Nat.inj_mul, mult_INR; ring.
Qed.
Lemma pow_IZR : forall z n, pow (IZR z) n = IZR (Z.pow z (Z.of_nat n)).
Proof.
intros z [|n];simpl;trivial.
rewrite Zpower_pos_nat.
rewrite SuccNat2Pos.id_succ. unfold Zpower_nat;simpl.
rewrite mult_IZR.
induction n;simpl;trivial.
rewrite mult_IZR;ring[IHn].
Qed.
(**********)
Lemma succ_IZR : forall n:Z, IZR (Z.succ n) = IZR n + 1.
Proof.
intro; unfold Z.succ; apply plus_IZR.
Qed.
(**********)
Lemma opp_IZR : forall n:Z, IZR (- n) = - IZR n.
Proof.
intros [|z|z]; unfold IZR; simpl; auto with real.
Qed.
Definition Ropp_Ropp_IZR := opp_IZR.
Lemma minus_IZR : forall n m:Z, IZR (n - m) = IZR n - IZR m.
Proof.
intros; unfold Z.sub, Rminus.
rewrite <- opp_IZR.
apply plus_IZR.
Qed.
(**********)
Lemma Z_R_minus : forall n m:Z, IZR n - IZR m = IZR (n - m).
Proof.
intros z1 z2; unfold Rminus; unfold Z.sub.
rewrite <- (Ropp_Ropp_IZR z2); symmetry ; apply plus_IZR.
Qed.
(**********)
Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z.
Proof.
intro z; case z; simpl; intros.
elim (Rlt_irrefl _ H).
easy.
elim (Rlt_not_le _ _ H).
unfold IZR.
rewrite <- INR_IPR.
auto with real.
Qed.
(**********)
Lemma lt_IZR : forall n m:Z, IZR n < IZR m -> (n < m)%Z.
Proof.
intros z1 z2 H; apply Z.lt_0_sub.
apply lt_0_IZR.
rewrite <- Z_R_minus.
exact (Rgt_minus (IZR z2) (IZR z1) H).
Qed.
(**********)
Lemma eq_IZR_R0 : forall n:Z, IZR n = 0 -> n = 0%Z.
Proof.
intro z; destruct z; simpl; intros; auto with zarith.
elim Rgt_not_eq with (2 := H).
unfold IZR. rewrite <- INR_IPR.
apply lt_0_INR, Pos2Nat.is_pos.
elim Rlt_not_eq with (2 := H).
unfold IZR. rewrite <- INR_IPR.
apply Ropp_lt_gt_0_contravar, lt_0_INR, Pos2Nat.is_pos.
Qed.
(**********)
Lemma eq_IZR : forall n m:Z, IZR n = IZR m -> n = m.
Proof.
intros z1 z2 H; generalize (Rminus_diag_eq (IZR z1) (IZR z2) H);
rewrite (Z_R_minus z1 z2); intro; generalize (eq_IZR_R0 (z1 - z2) H0);
intro; omega.
Qed.
(**********)
Lemma not_0_IZR : forall n:Z, n <> 0%Z -> IZR n <> 0.
Proof.
intros z H; red; intros H0; case H.
apply eq_IZR; auto.
Qed.
(*********)
Lemma le_0_IZR : forall n:Z, 0 <= IZR n -> (0 <= n)%Z.
Proof.
unfold Rle; intros z [H| H].
red; intro; apply (Z.lt_le_incl 0 z (lt_0_IZR z H)); assumption.
rewrite (eq_IZR_R0 z); auto with zarith real.
Qed.
(**********)
Lemma le_IZR : forall n m:Z, IZR n <= IZR m -> (n <= m)%Z.
Proof.
unfold Rle; intros z1 z2 [H| H].
apply (Z.lt_le_incl z1 z2); auto with real.
apply lt_IZR; trivial.
rewrite (eq_IZR z1 z2); auto with zarith real.
Qed.
(**********)
Lemma le_IZR_R1 : forall n:Z, IZR n <= 1 -> (n <= 1)%Z.
Proof.
intros n.
apply le_IZR.
Qed.
(**********)
Lemma IZR_ge : forall n m:Z, (n >= m)%Z -> IZR n >= IZR m.
Proof.
intros m n H; apply Rnot_lt_ge; red; intro.
generalize (lt_IZR m n H0); intro; omega.
Qed.
Lemma IZR_le : forall n m:Z, (n <= m)%Z -> IZR n <= IZR m.
Proof.
intros m n H; apply Rnot_gt_le; red; intro.
unfold Rgt in H0; generalize (lt_IZR n m H0); intro; omega.
Qed.
Lemma IZR_lt : forall n m:Z, (n < m)%Z -> IZR n < IZR m.
Proof.
intros m n H; cut (m <= n)%Z.
intro H0; elim (IZR_le m n H0); intro; auto.
generalize (eq_IZR m n H1); intro; exfalso; omega.
omega.
Qed.
Lemma IZR_neq : forall z1 z2:Z, z1 <> z2 -> IZR z1 <> IZR z2.
Proof.
intros; red; intro; elim H; apply eq_IZR; assumption.
Qed.
Hint Extern 0 (IZR _ <= IZR _) => apply IZR_le, Zle_bool_imp_le, eq_refl : real.
Hint Extern 0 (IZR _ >= IZR _) => apply Rle_ge, IZR_le, Zle_bool_imp_le, eq_refl : real.
Hint Extern 0 (IZR _ < IZR _) => apply IZR_lt, eq_refl : real.
Hint Extern 0 (IZR _ > IZR _) => apply IZR_lt, eq_refl : real.
Hint Extern 0 (IZR _ <> IZR _) => apply IZR_neq, Zeq_bool_neq, eq_refl : real.
Lemma one_IZR_lt1 : forall n:Z, -1 < IZR n < 1 -> n = 0%Z.
Proof.
intros z [H1 H2].
apply Z.le_antisymm.
apply Z.lt_succ_r; apply lt_IZR; trivial.
change 0%Z with (Z.succ (-1)).
apply Z.le_succ_l; apply lt_IZR; trivial.
Qed.
Lemma one_IZR_r_R1 :
forall r (n m:Z), r < IZR n <= r + 1 -> r < IZR m <= r + 1 -> n = m.
Proof.
intros r z x [H1 H2] [H3 H4].
cut ((z - x)%Z = 0%Z); auto with zarith.
apply one_IZR_lt1.
rewrite <- Z_R_minus; split.
replace (-1) with (r - (r + 1)).
unfold Rminus; apply Rplus_lt_le_compat; auto with real.
ring.
replace 1 with (r + 1 - r).
unfold Rminus; apply Rplus_le_lt_compat; auto with real.
ring.
Qed.
(**********)
Lemma single_z_r_R1 :
forall r (n m:Z),
r < IZR n -> IZR n <= r + 1 -> r < IZR m -> IZR m <= r + 1 -> n = m.
Proof.
intros; apply one_IZR_r_R1 with r; auto.
Qed.
(**********)
Lemma tech_single_z_r_R1 :
forall r (n:Z),
r < IZR n ->
IZR n <= r + 1 ->
(exists s : Z, s <> n /\ r < IZR s /\ IZR s <= r + 1) -> False.
Proof.
intros r z H1 H2 [s [H3 [H4 H5]]].
apply H3; apply single_z_r_R1 with r; trivial.
Qed.
(*********)
Lemma Rmult_le_pos : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 * r2.
Proof.
intros x y H H0; rewrite <- (Rmult_0_l x); rewrite <- (Rmult_comm x);
apply (Rmult_le_compat_l x 0 y H H0).
Qed.
Lemma Rinv_le_contravar :
forall x y, 0 < x -> x <= y -> / y <= / x.
Proof.
intros x y H1 [H2|H2].
apply Rlt_le.
apply Rinv_lt_contravar with (2 := H2).
apply Rmult_lt_0_compat with (1 := H1).
now apply Rlt_trans with x.
rewrite H2.
apply Rle_refl.
Qed.
Lemma Rle_Rinv : forall x y:R, 0 < x -> 0 < y -> x <= y -> / y <= / x.
Proof.
intros x y H _.
apply Rinv_le_contravar with (1 := H).
Qed.
Lemma Ropp_div : forall x y, -x/y = - (x / y).
intros x y; unfold Rdiv; ring.
Qed.
Lemma double : forall r1, 2 * r1 = r1 + r1.
Proof.
intro; ring.
Qed.
Lemma double_var : forall r1, r1 = r1 / 2 + r1 / 2.
Proof.
intro; rewrite <- double; unfold Rdiv; rewrite <- Rmult_assoc;
symmetry ; apply Rinv_r_simpl_m.
now apply not_0_IZR.
Qed.
Lemma R_rm : ring_morph
0%R 1%R Rplus Rmult Rminus Ropp eq
0%Z 1%Z Zplus Zmult Zminus Z.opp Zeq_bool IZR.
Proof.
constructor ; try easy.
exact plus_IZR.
exact minus_IZR.
exact mult_IZR.
exact opp_IZR.
intros x y H.
apply f_equal.
now apply Zeq_bool_eq.
Qed.
Lemma Zeq_bool_IZR x y :
IZR x = IZR y -> Zeq_bool x y = true.
Proof.
intros H.
apply Zeq_is_eq_bool.
now apply eq_IZR.
Qed.
Add Field RField : Rfield
(completeness Zeq_bool_IZR, morphism R_rm, constants [IZR_tac], power_tac R_power_theory [Rpow_tac]).
(*********************************************************)
(** ** Other rules about < and <= *)
(*********************************************************)
Lemma Rmult_ge_0_gt_0_lt_compat :
forall r1 r2 r3 r4,
r3 >= 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
Proof.
intros; apply Rle_lt_trans with (r2 * r3); auto with real.
Qed.
Lemma le_epsilon :
forall r1 r2, (forall eps:R, 0 < eps -> r1 <= r2 + eps) -> r1 <= r2.
Proof.
intros x y H.
destruct (Rle_or_lt x y) as [H1|H1].
exact H1.
apply Rplus_le_reg_r with x.
replace (y + x) with (2 * (y + (x - y) * / 2)) by field.
replace (x + x) with (2 * x) by ring.
apply Rmult_le_compat_l.
now apply (IZR_le 0 2).
apply H.
apply Rmult_lt_0_compat.
now apply Rgt_minus.
apply Rinv_0_lt_compat, Rlt_0_2.
Qed.
(**********)
Lemma completeness_weak :
forall E:R -> Prop,
bound E -> (exists x : R, E x) -> exists m : R, is_lub E m.
Proof.
intros; elim (completeness E H H0); intros; split with x; assumption.
Qed.
Lemma Rdiv_lt_0_compat : forall a b, 0 < a -> 0 < b -> 0 < a/b.
Proof.
intros; apply Rmult_lt_0_compat;[|apply Rinv_0_lt_compat]; assumption.
Qed.
Lemma Rdiv_plus_distr : forall a b c, (a + b)/c = a/c + b/c.
intros a b c; apply Rmult_plus_distr_r.
Qed.
Lemma Rdiv_minus_distr : forall a b c, (a - b)/c = a/c - b/c.
intros a b c; unfold Rminus, Rdiv; rewrite Rmult_plus_distr_r; ring.
Qed.
(* A test for equality function. *)
Lemma Req_EM_T : forall r1 r2:R, {r1 = r2} + {r1 <> r2}.
Proof.
intros; destruct (total_order_T r1 r2) as [[H|]|H].
- right; red; intros ->; elim (Rlt_irrefl r2 H).
- left; assumption.
- right; red; intros ->; elim (Rlt_irrefl r2 H).
Qed.
(*********************************************************)
(** * Definitions of new types *)
(*********************************************************)
Record nonnegreal : Type := mknonnegreal
{nonneg :> R; cond_nonneg : 0 <= nonneg}.
Record posreal : Type := mkposreal {pos :> R; cond_pos : 0 < pos}.
Record nonposreal : Type := mknonposreal
{nonpos :> R; cond_nonpos : nonpos <= 0}.
Record negreal : Type := mknegreal {neg :> R; cond_neg : neg < 0}.
Record nonzeroreal : Type := mknonzeroreal
{nonzero :> R; cond_nonzero : nonzero <> 0}.
(** Compatibility *)
Notation prod_neq_R0 := Rmult_integral_contrapositive_currified (only parsing).
Notation minus_Rgt := Rminus_gt (only parsing).
Notation minus_Rge := Rminus_ge (only parsing).
Notation plus_le_is_le := Rplus_le_reg_pos_r (only parsing).
Notation plus_lt_is_lt := Rplus_lt_reg_pos_r (only parsing).
Notation INR_lt_1 := lt_1_INR (only parsing).
Notation lt_INR_0 := lt_0_INR (only parsing).
Notation not_nm_INR := not_INR (only parsing).
Notation INR_pos := pos_INR_nat_of_P (only parsing).
Notation not_INR_O := INR_not_0 (only parsing).
Notation not_O_INR := not_0_INR (only parsing).
Notation not_O_IZR := not_0_IZR (only parsing).
Notation le_O_IZR := le_0_IZR (only parsing).
Notation lt_O_IZR := lt_0_IZR (only parsing).
|