1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import Rcomplete.
Require Import Max.
Open Local Scope R_scope.
Lemma tech1 :
forall (An:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H; apply le_n.
simpl in |- *; apply Rplus_lt_0_compat.
apply HrecN; intros; apply H; apply le_S; assumption.
apply H; apply le_n.
Qed.
(* Chasles' relation *)
Lemma tech2 :
forall (An:nat -> R) (m n:nat),
(m < n)%nat ->
sum_f_R0 An n =
sum_f_R0 An m + sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m).
Proof.
intros; induction n as [| n Hrecn].
elim (lt_n_O _ H).
cut ((m < n)%nat \/ m = n).
intro; elim H0; intro.
replace (sum_f_R0 An (S n)) with (sum_f_R0 An n + An (S n));
[ idtac | reflexivity ].
replace (S n - S m)%nat with (S (n - S m)).
replace (sum_f_R0 (fun i:nat => An (S m + i)%nat) (S (n - S m))) with
(sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m) +
An (S m + S (n - S m))%nat); [ idtac | reflexivity ].
replace (S m + S (n - S m))%nat with (S n).
rewrite (Hrecn H1).
ring.
apply INR_eq; rewrite S_INR; rewrite plus_INR; do 2 rewrite S_INR;
rewrite minus_INR.
rewrite S_INR; ring.
apply lt_le_S; assumption.
apply INR_eq; rewrite S_INR; repeat rewrite minus_INR.
repeat rewrite S_INR; ring.
apply le_n_S; apply lt_le_weak; assumption.
apply lt_le_S; assumption.
rewrite H1; rewrite <- minus_n_n; simpl in |- *.
replace (n + 0)%nat with n; [ reflexivity | ring ].
inversion H.
right; reflexivity.
left; apply lt_le_trans with (S m); [ apply lt_n_Sn | assumption ].
Qed.
(* Sum of geometric sequences *)
Lemma tech3 :
forall (k:R) (N:nat),
k <> 1 -> sum_f_R0 (fun i:nat => k ^ i) N = (1 - k ^ S N) / (1 - k).
Proof.
intros; cut (1 - k <> 0).
intro; induction N as [| N HrecN].
simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym.
reflexivity.
apply H0.
replace (sum_f_R0 (fun i:nat => k ^ i) (S N)) with
(sum_f_R0 (fun i:nat => k ^ i) N + k ^ S N); [ idtac | reflexivity ];
rewrite HrecN;
replace ((1 - k ^ S N) / (1 - k) + k ^ S N) with
((1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k)).
apply Rmult_eq_reg_l with (1 - k).
unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ (1 - k)));
repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ do 2 rewrite Rmult_1_l; simpl in |- *; ring | apply H0 ].
apply H0.
unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k));
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply H0.
apply Rminus_eq_contra; red in |- *; intro; elim H; symmetry in |- *;
assumption.
Qed.
Lemma tech4 :
forall (An:nat -> R) (k:R) (N:nat),
0 <= k -> (forall i:nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; right; ring.
apply Rle_trans with (k * An N).
left; apply (H0 N).
replace (S N) with (N + 1)%nat; [ idtac | ring ].
rewrite pow_add; simpl in |- *; rewrite Rmult_1_r;
replace (An 0%nat * (k ^ N * k)) with (k * (An 0%nat * k ^ N));
[ idtac | ring ]; apply Rmult_le_compat_l.
assumption.
apply HrecN.
Qed.
Lemma tech5 :
forall (An:nat -> R) (N:nat), sum_f_R0 An (S N) = sum_f_R0 An N + An (S N).
Proof.
intros; reflexivity.
Qed.
Lemma tech6 :
forall (An:nat -> R) (k:R) (N:nat),
0 <= k ->
(forall i:nat, An (S i) < k * An i) ->
sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; right; ring.
apply Rle_trans with (An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N + An (S N)).
rewrite tech5; do 2 rewrite <- (Rplus_comm (An (S N)));
apply Rplus_le_compat_l.
apply HrecN.
rewrite tech5; rewrite Rmult_plus_distr_l; apply Rplus_le_compat_l.
apply tech4; assumption.
Qed.
Lemma tech7 : forall r1 r2:R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2.
Proof.
intros; red in |- *; intro.
assert (H3 := Rmult_eq_compat_l r1 _ _ H2).
rewrite <- Rinv_r_sym in H3; [ idtac | assumption ].
assert (H4 := Rmult_eq_compat_l r2 _ _ H3).
rewrite Rmult_1_r in H4; rewrite <- Rmult_assoc in H4.
rewrite Rinv_r_simpl_m in H4; [ idtac | assumption ].
elim H1; symmetry in |- *; assumption.
Qed.
Lemma tech11 :
forall (An Bn Cn:nat -> R) (N:nat),
(forall i:nat, An i = Bn i - Cn i) ->
sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H.
do 3 rewrite tech5; rewrite HrecN; rewrite (H (S N)); ring.
Qed.
Lemma tech12 :
forall (An:nat -> R) (x l:R),
Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l ->
Pser An x l.
Proof.
intros; unfold Pser in |- *; unfold infinit_sum in |- *; unfold Un_cv in H;
assumption.
Qed.
Lemma scal_sum :
forall (An:nat -> R) (N:nat) (x:R),
x * sum_f_R0 An N = sum_f_R0 (fun i:nat => An i * x) N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; ring.
do 2 rewrite tech5.
rewrite Rmult_plus_distr_l; rewrite <- HrecN; ring.
Qed.
Lemma decomp_sum :
forall (An:nat -> R) (N:nat),
(0 < N)%nat ->
sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i:nat => An (S i)) (pred N).
Proof.
intros; induction N as [| N HrecN].
elim (lt_irrefl _ H).
cut ((0 < N)%nat \/ N = 0%nat).
intro; elim H0; intro.
cut (S (pred N) = pred (S N)).
intro; rewrite <- H2.
do 2 rewrite tech5.
replace (S (S (pred N))) with (S N).
rewrite (HrecN H1); ring.
rewrite H2; simpl in |- *; reflexivity.
assert (H2 := O_or_S N).
elim H2; intros.
elim a; intros.
rewrite <- p.
simpl in |- *; reflexivity.
rewrite <- b in H1; elim (lt_irrefl _ H1).
rewrite H1; simpl in |- *; reflexivity.
inversion H.
right; reflexivity.
left; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
Qed.
Lemma plus_sum :
forall (An Bn:nat -> R) (N:nat),
sum_f_R0 (fun i:nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
Lemma sum_eq :
forall (An Bn:nat -> R) (N:nat),
(forall i:nat, (i <= N)%nat -> An i = Bn i) ->
sum_f_R0 An N = sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H; apply le_n.
do 2 rewrite tech5; rewrite HrecN.
rewrite (H (S N)); [ reflexivity | apply le_n ].
intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ].
Qed.
(* Unicity of the limit defined by convergent series *)
Lemma uniqueness_sum :
forall (An:nat -> R) (l1 l2:R),
infinit_sum An l1 -> infinit_sum An l2 -> l1 = l2.
Proof.
unfold infinit_sum in |- *; intros.
case (Req_dec l1 l2); intro.
assumption.
cut (0 < Rabs ((l1 - l2) / 2)); [ intro | apply Rabs_pos_lt ].
elim (H (Rabs ((l1 - l2) / 2)) H2); intros.
elim (H0 (Rabs ((l1 - l2) / 2)) H2); intros.
set (N := max x0 x); cut (N >= x0)%nat.
cut (N >= x)%nat.
intros; assert (H7 := H3 N H5); assert (H8 := H4 N H6).
cut (Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2).
intro; assert (H10 := Rplus_lt_compat _ _ _ _ H7 H8);
assert (H11 := Rle_lt_trans _ _ _ H9 H10); unfold Rdiv in H11;
rewrite Rabs_mult in H11.
cut (Rabs (/ 2) = / 2).
intro; rewrite H12 in H11; assert (H13 := double_var); unfold Rdiv in H13;
rewrite <- H13 in H11.
elim (Rlt_irrefl _ H11).
apply Rabs_right; left; change (0 < / 2) in |- *; apply Rinv_0_lt_compat;
cut (0%nat <> 2%nat);
[ intro H20; generalize (lt_INR_0 2 (neq_O_lt 2 H20)); unfold INR in |- *;
intro; assumption
| discriminate ].
unfold R_dist in |- *; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1));
rewrite Ropp_minus_distr'.
replace (l1 - l2) with (l1 - sum_f_R0 An N + (sum_f_R0 An N - l2));
[ idtac | ring ].
apply Rabs_triang.
unfold ge in |- *; unfold N in |- *; apply le_max_r.
unfold ge in |- *; unfold N in |- *; apply le_max_l.
unfold Rdiv in |- *; apply prod_neq_R0.
apply Rminus_eq_contra; assumption.
apply Rinv_neq_0_compat; discrR.
Qed.
Lemma minus_sum :
forall (An Bn:nat -> R) (N:nat),
sum_f_R0 (fun i:nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
Lemma sum_decomposition :
forall (An:nat -> R) (N:nat),
sum_f_R0 (fun l:nat => An (2 * l)%nat) (S N) +
sum_f_R0 (fun l:nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N).
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; ring.
rewrite tech5.
rewrite (tech5 (fun l:nat => An (S (2 * l))) N).
replace (2 * S (S N))%nat with (S (S (2 * S N))).
rewrite (tech5 An (S (2 * S N))).
rewrite (tech5 An (2 * S N)).
rewrite <- HrecN.
ring.
ring.
Qed.
Lemma sum_Rle :
forall (An Bn:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> An n <= Bn n) ->
sum_f_R0 An N <= sum_f_R0 Bn N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; apply H.
apply le_n.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
apply Rplus_le_compat_l.
apply H.
apply le_n.
do 2 rewrite <- (Rplus_comm (Bn (S N))).
apply Rplus_le_compat_l.
apply HrecN.
intros; apply H.
apply le_trans with N; [ assumption | apply le_n_Sn ].
Qed.
Lemma Rsum_abs :
forall (An:nat -> R) (N:nat),
Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l:nat => Rabs (An l)) N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
apply Rabs_triang.
do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
apply Rplus_le_compat_l.
apply HrecN.
Qed.
Lemma sum_cte :
forall (x:R) (N:nat), sum_f_R0 (fun _:nat => x) N = x * INR (S N).
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; ring.
rewrite tech5.
rewrite HrecN; repeat rewrite S_INR; ring.
Qed.
(**********)
Lemma sum_growing :
forall (An Bn:nat -> R) (N:nat),
(forall n:nat, An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; apply H.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
apply Rplus_le_compat_l; apply H.
do 2 rewrite <- (Rplus_comm (Bn (S N))).
apply Rplus_le_compat_l; apply HrecN.
Qed.
(**********)
Lemma Rabs_triang_gen :
forall (An:nat -> R) (N:nat),
Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i:nat => Rabs (An i)) N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
apply Rabs_triang.
do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
apply Rplus_le_compat_l; apply HrecN.
Qed.
(**********)
Lemma cond_pos_sum :
forall (An:nat -> R) (N:nat),
(forall n:nat, 0 <= An n) -> 0 <= sum_f_R0 An N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; apply H.
rewrite tech5.
apply Rplus_le_le_0_compat.
apply HrecN.
apply H.
Qed.
(* Cauchy's criterion for series *)
Definition Cauchy_crit_series (An:nat -> R) : Prop :=
Cauchy_crit (fun N:nat => sum_f_R0 An N).
(* If (|An|) satisfies the Cauchy's criterion for series, then (An) too *)
Lemma cauchy_abs :
forall An:nat -> R,
Cauchy_crit_series (fun i:nat => Rabs (An i)) -> Cauchy_crit_series An.
Proof.
unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
intros.
elim (H eps H0); intros.
exists x.
intros.
cut
(R_dist (sum_f_R0 An n) (sum_f_R0 An m) <=
R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
(sum_f_R0 (fun i:nat => Rabs (An i)) m)).
intro.
apply Rle_lt_trans with
(R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
(sum_f_R0 (fun i:nat => Rabs (An i)) m)).
assumption.
apply H1; assumption.
assert (H4 := lt_eq_lt_dec n m).
elim H4; intro.
elim a; intro.
rewrite (tech2 An n m); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) n m); [ idtac | assumption ].
unfold R_dist in |- *.
unfold Rminus in |- *.
do 2 rewrite Ropp_plus_distr.
do 2 rewrite <- Rplus_assoc.
do 2 rewrite Rplus_opp_r.
do 2 rewrite Rplus_0_l.
do 2 rewrite Rabs_Ropp.
rewrite
(Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S n + i)%nat)) (m - S n)))
.
set (Bn := fun i:nat => An (S n + i)%nat).
replace (fun i:nat => Rabs (An (S n + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
unfold Bn in |- *; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
rewrite b.
unfold R_dist in |- *.
unfold Rminus in |- *; do 2 rewrite Rplus_opp_r.
rewrite Rabs_R0; right; reflexivity.
rewrite (tech2 An m n); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) m n); [ idtac | assumption ].
unfold R_dist in |- *.
unfold Rminus in |- *.
do 2 rewrite Rplus_assoc.
rewrite (Rplus_comm (sum_f_R0 An m)).
rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (An i)) m)).
do 2 rewrite Rplus_assoc.
do 2 rewrite Rplus_opp_l.
do 2 rewrite Rplus_0_r.
rewrite
(Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S m + i)%nat)) (n - S m)))
.
set (Bn := fun i:nat => An (S m + i)%nat).
replace (fun i:nat => Rabs (An (S m + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
unfold Bn in |- *; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
Qed.
(**********)
Lemma cv_cauchy_1 :
forall An:nat -> R,
sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l) ->
Cauchy_crit_series An.
Proof.
intros An X.
elim X; intros.
unfold Un_cv in p.
unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
intros.
cut (0 < eps / 2).
intro.
elim (p (eps / 2) H0); intros.
exists x0.
intros.
apply Rle_lt_trans with (R_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x).
unfold R_dist in |- *.
replace (sum_f_R0 An n - sum_f_R0 An m) with
(sum_f_R0 An n - x + - (sum_f_R0 An m - x)); [ idtac | ring ].
rewrite <- (Rabs_Ropp (sum_f_R0 An m - x)).
apply Rabs_triang.
apply Rlt_le_trans with (eps / 2 + eps / 2).
apply Rplus_lt_compat.
apply H1; assumption.
apply H1; assumption.
right; symmetry in |- *; apply double_var.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
Lemma cv_cauchy_2 :
forall An:nat -> R,
Cauchy_crit_series An ->
sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
Proof.
intros.
apply R_complete.
unfold Cauchy_crit_series in H.
exact H.
Qed.
(**********)
Lemma sum_eq_R0 :
forall (An:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H; apply le_n.
rewrite tech5; rewrite HrecN;
[ rewrite Rplus_0_l; apply H; apply le_n
| intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ] ].
Qed.
Definition SP (fn:nat -> R -> R) (N:nat) (x:R) : R :=
sum_f_R0 (fun k:nat => fn k x) N.
(**********)
Lemma sum_incr :
forall (An:nat -> R) (N:nat) (l:R),
Un_cv (fun n:nat => sum_f_R0 An n) l ->
(forall n:nat, 0 <= An n) -> sum_f_R0 An N <= l.
Proof.
intros; case (total_order_T (sum_f_R0 An N) l); intro.
elim s; intro.
left; apply a.
right; apply b.
cut (Un_growing (fun n:nat => sum_f_R0 An n)).
intro; set (l1 := sum_f_R0 An N) in r.
unfold Un_cv in H; cut (0 < l1 - l).
intro; elim (H _ H2); intros.
set (N0 := max x N); cut (N0 >= x)%nat.
intro; assert (H5 := H3 N0 H4).
cut (l1 <= sum_f_R0 An N0).
intro; unfold R_dist in H5; rewrite Rabs_right in H5.
cut (sum_f_R0 An N0 < l1).
intro; elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H7 H6)).
apply Rplus_lt_reg_r with (- l).
do 2 rewrite (Rplus_comm (- l)).
apply H5.
apply Rle_ge; apply Rplus_le_reg_l with l.
rewrite Rplus_0_r; replace (l + (sum_f_R0 An N0 - l)) with (sum_f_R0 An N0);
[ idtac | ring ]; apply Rle_trans with l1.
left; apply r.
apply H6.
unfold l1 in |- *; apply Rge_le;
apply (growing_prop (fun k:nat => sum_f_R0 An k)).
apply H1.
unfold ge, N0 in |- *; apply le_max_r.
unfold ge, N0 in |- *; apply le_max_l.
apply Rplus_lt_reg_r with l; rewrite Rplus_0_r;
replace (l + (l1 - l)) with l1; [ apply r | ring ].
unfold Un_growing in |- *; intro; simpl in |- *;
pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; apply H0.
Qed.
(**********)
Lemma sum_cv_maj :
forall (An:nat -> R) (fn:nat -> R -> R) (x l1 l2:R),
Un_cv (fun n:nat => SP fn n x) l1 ->
Un_cv (fun n:nat => sum_f_R0 An n) l2 ->
(forall n:nat, Rabs (fn n x) <= An n) -> Rabs l1 <= l2.
Proof.
intros; case (total_order_T (Rabs l1) l2); intro.
elim s; intro.
left; apply a.
right; apply b.
cut (forall n0:nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0).
intro; cut (0 < (Rabs l1 - l2) / 2).
intro; unfold Un_cv in H, H0.
elim (H _ H3); intros Na H4.
elim (H0 _ H3); intros Nb H5.
set (N := max Na Nb).
unfold R_dist in H4, H5.
cut (Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2).
intro; cut (Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2).
intro; cut (sum_f_R0 An N < (Rabs l1 + l2) / 2).
intro; cut ((Rabs l1 + l2) / 2 < Rabs (SP fn N x)).
intro; cut (sum_f_R0 An N < Rabs (SP fn N x)).
intro; assert (H11 := H2 N).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H10)).
apply Rlt_trans with ((Rabs l1 + l2) / 2); assumption.
case (Rcase_abs (Rabs l1 - Rabs (SP fn N x))); intro.
apply Rlt_trans with (Rabs l1).
apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply r.
discrR.
apply (Rminus_lt _ _ r0).
rewrite (Rabs_right _ r0) in H7.
apply Rplus_lt_reg_r with ((Rabs l1 - l2) / 2 - Rabs (SP fn N x)).
replace ((Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2) with
(Rabs l1 - Rabs (SP fn N x)).
unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r; apply H7.
unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l;
repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1 in |- *;
rewrite double_var; unfold Rdiv in |- *; ring.
case (Rcase_abs (sum_f_R0 An N - l2)); intro.
apply Rlt_trans with l2.
apply (Rminus_lt _ _ r0).
apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (double l2); unfold Rdiv in |- *; rewrite (Rmult_comm 2);
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite (Rplus_comm (Rabs l1)); apply Rplus_lt_compat_l;
apply r.
discrR.
rewrite (Rabs_right _ r0) in H6; apply Rplus_lt_reg_r with (- l2).
replace (- l2 + (Rabs l1 + l2) / 2) with ((Rabs l1 - l2) / 2).
rewrite Rplus_comm; apply H6.
unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_r;
pattern l2 at 2 in |- *; rewrite double_var;
repeat rewrite (Rmult_comm (/ 2)); rewrite Ropp_plus_distr;
unfold Rdiv in |- *; ring.
apply Rle_lt_trans with (Rabs (SP fn N x - l1)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply Rabs_triang_inv2.
apply H4; unfold ge, N in |- *; apply le_max_l.
apply H5; unfold ge, N in |- *; apply le_max_r.
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_r with l2.
rewrite Rplus_0_r; replace (l2 + (Rabs l1 - l2)) with (Rabs l1);
[ apply r | ring ].
apply Rinv_0_lt_compat; prove_sup0.
intros; induction n0 as [| n0 Hrecn0].
unfold SP in |- *; simpl in |- *; apply H1.
unfold SP in |- *; simpl in |- *.
apply Rle_trans with
(Rabs (sum_f_R0 (fun k:nat => fn k x) n0) + Rabs (fn (S n0) x)).
apply Rabs_triang.
apply Rle_trans with (sum_f_R0 An n0 + Rabs (fn (S n0) x)).
do 2 rewrite <- (Rplus_comm (Rabs (fn (S n0) x))).
apply Rplus_le_compat_l; apply Hrecn0.
apply Rplus_le_compat_l; apply H1.
Qed.
|