aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/PSeries_reg.v
blob: 61d1b5afeaf0f7b0465f9bcf7d78d9ba3fa4a3c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis1.
Require Import MVT.
Require Import Max.
Require Import Even.
Require Import Fourier.
Local Open Scope R_scope.

(* Boule is French for Ball *)

Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r.

(* General properties of balls. *)

Lemma Boule_convex : forall c d x y z,
  Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d z.
Proof.
intros c d x y z bx b_y intz.
unfold Boule in bx, b_y; apply Rabs_def2 in bx;
apply Rabs_def2 in b_y; apply Rabs_def1;
 [apply Rle_lt_trans with (y - c);[apply Rplus_le_compat_r|]|
  apply Rlt_le_trans with (x - c);[|apply Rplus_le_compat_r]];tauto.
Qed.

Definition boule_of_interval x y (h : x < y) :
  {c :R & {r : posreal | c - r = x /\ c + r = y}}.
Proof.
exists ((x + y)/2).
assert (radius : 0 < (y - x)/2).
 unfold Rdiv; apply Rmult_lt_0_compat.
  apply Rlt_Rminus; assumption.
 now apply Rinv_0_lt_compat, Rlt_0_2.
 exists (mkposreal _ radius).
 simpl; split; unfold Rdiv; field.
Qed.

Definition boule_in_interval x y z (h : x < z < y) :
  {c : R & {r | Boule c r z /\  x < c - r /\ c + r < y}}.
Proof.
assert (cmp : x * /2 + z * /2 < z * /2 + y * /2).
destruct h as [h1 h2].
rewrite Rplus_comm; apply Rplus_lt_compat_l, Rmult_lt_compat_r.
 apply Rinv_0_lt_compat, Rlt_0_2.
apply Rlt_trans with z; assumption.
destruct (boule_of_interval _ _ cmp) as [c [r [P1 P2]]].
assert (0 < /2) by (apply Rinv_0_lt_compat, Rlt_0_2).
exists c, r; split.
 destruct h; unfold Boule; simpl; apply Rabs_def1.
  apply Rplus_lt_reg_l with c; rewrite P2;
  replace (c + (z - c)) with (z * / 2 + z * / 2) by field.
  apply Rplus_lt_compat_l, Rmult_lt_compat_r;assumption.
 apply Rplus_lt_reg_l with c; change (c + - r) with (c - r);
 rewrite P1;
 replace (c + (z - c)) with (z * / 2 + z * / 2) by field.
 apply Rplus_lt_compat_r, Rmult_lt_compat_r;assumption.
destruct h; split.
 replace x with (x * / 2 + x * / 2) by field; rewrite P1.
 apply Rplus_lt_compat_l, Rmult_lt_compat_r;assumption.
replace y with (y * / 2 + y * /2) by field; rewrite P2.
apply Rplus_lt_compat_r, Rmult_lt_compat_r;assumption.
Qed.

Lemma Ball_in_inter : forall c1 c2 r1 r2 x,
  Boule c1 r1 x -> Boule c2 r2 x ->
  {r3 : posreal | forall y, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}.
Proof.
intros c1 c2 [r1 r1p] [r2 r2p] x; unfold Boule; simpl; intros in1 in2.
assert (Rmax (c1 - r1)(c2 - r2) < x).
 apply Rmax_lub_lt;[revert in1 | revert in2]; intros h;
  apply Rabs_def2 in h; destruct h as [_ u];
  apply (fun h => Rplus_lt_reg_r _ _ _ (Rle_lt_trans _ _ _ h u)), Req_le; ring.
assert (x < Rmin (c1 + r1) (c2 + r2)).
 apply Rmin_glb_lt;[revert in1 | revert in2]; intros h;
 apply Rabs_def2 in h; destruct h as [u _];
 apply (fun h => Rplus_lt_reg_r _ _ _ (Rlt_le_trans _ _ _ u h)), Req_le; ring.
assert (t: 0 < Rmin (x - Rmax (c1 - r1) (c2 - r2))
              (Rmin (c1 + r1) (c2 + r2) - x)).
 apply Rmin_glb_lt; apply Rlt_Rminus; assumption.
exists (mkposreal _ t).
apply Rabs_def2 in in1; destruct in1.
apply Rabs_def2 in in2; destruct in2.
assert (c1 - r1 <= Rmax (c1 - r1) (c2 - r2)) by apply Rmax_l.
assert (c2 - r2 <= Rmax (c1 - r1) (c2 - r2)) by apply Rmax_r.
assert (Rmin (c1 + r1) (c2 + r2) <= c1 + r1) by apply Rmin_l.
assert (Rmin (c1 + r1) (c2 + r2) <= c2 + r2) by apply Rmin_r.
assert (Rmin (x - Rmax (c1 - r1) (c2 - r2)) 
         (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2))
 by apply Rmin_l.
assert (Rmin (x - Rmax (c1 - r1) (c2 - r2)) 
         (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x)
 by apply Rmin_r.
simpl.
intros y h; apply Rabs_def2 in h; destruct h as [h h'].
apply Rmin_Rgt in h; destruct h as [cmp1 cmp2].
apply Rplus_lt_reg_r in cmp2; apply Rmin_Rgt in cmp2.
rewrite Ropp_Rmin, Ropp_minus_distr in h'.
apply Rmax_Rlt in h'; destruct h' as [cmp3 cmp4];
apply Rplus_lt_reg_r in cmp3; apply Rmax_Rlt in cmp3;
split; apply Rabs_def1.
apply (fun h => Rplus_lt_reg_l _ _ _ (Rle_lt_trans _ _ _ h (proj1 cmp2))), Req_le;
 ring.
apply (fun h => Rplus_lt_reg_l _ _ _ (Rlt_le_trans _ _ _ (proj1 cmp3) h)), Req_le;
 ring.
apply (fun h => Rplus_lt_reg_l _ _ _ (Rle_lt_trans _ _ _ h (proj2 cmp2))), Req_le;
 ring.
apply (fun h => Rplus_lt_reg_l _ _ _ (Rlt_le_trans _ _ _ (proj2 cmp3) h)), Req_le;
 ring.
Qed.

Lemma Boule_center : forall x r, Boule x r x.
Proof.
intros x [r rpos]; unfold Boule, Rminus; simpl; rewrite Rplus_opp_r.
rewrite Rabs_pos_eq;[assumption | apply Rle_refl].
Qed.

(** Uniform convergence *)
Definition CVU (fn:nat -> R -> R) (f:R -> R) (x:R)
  (r:posreal) : Prop :=
  forall eps:R,
    0 < eps ->
    exists N : nat,
      (forall (n:nat) (y:R),
        (N <= n)%nat -> Boule x r y -> Rabs (f y - fn n y) < eps).

(** Normal convergence *)
Definition CVN_r (fn:nat -> R -> R) (r:posreal) : Type :=
  { An:nat -> R &
    { l:R |
      Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n) l /\
      (forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n) } }.

Definition CVN_R (fn:nat -> R -> R) : Type := forall r:posreal, CVN_r fn r.

Definition SFL (fn:nat -> R -> R)
  (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
  (y:R) : R := let (a,_) := cv y in a.

(** In a complete space, normal convergence implies uniform convergence *)
Lemma CVN_CVU :
  forall (fn:nat -> R -> R)
    (cv:forall x:R, {l:R | Un_cv (fun N:nat => SP fn N x) l })
    (r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r.
Proof.
  intros; unfold CVU; intros.
  unfold CVN_r in X.
  elim X; intros An X0.
  elim X0; intros s H0.
  elim H0; intros.
  cut (Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n - s) 0).
  intro; unfold Un_cv in H3.
  elim (H3 eps H); intros N0 H4.
  exists N0; intros.
  apply Rle_lt_trans with (Rabs (sum_f_R0 (fun k:nat => Rabs (An k)) n - s)).
  rewrite <- (Rabs_Ropp (sum_f_R0 (fun k:nat => Rabs (An k)) n - s));
    rewrite Ropp_minus_distr';
      rewrite (Rabs_right (s - sum_f_R0 (fun k:nat => Rabs (An k)) n)).
  eapply sum_maj1.
  unfold SFL; case (cv y); intro.
  trivial.
  apply H1.
  intro; elim H0; intros.
  rewrite (Rabs_right (An n0)).
  apply H8; apply H6.
  apply Rle_ge; apply Rle_trans with (Rabs (fn n0 y)).
  apply Rabs_pos.
  apply H8; apply H6.
  apply Rle_ge;
    apply Rplus_le_reg_l with (sum_f_R0 (fun k:nat => Rabs (An k)) n).
  rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm s);
    rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l;
      apply sum_incr.
  apply H1.
  intro; apply Rabs_pos.
  unfold R_dist in H4; unfold Rminus in H4; rewrite Ropp_0 in H4.
  assert (H7 := H4 n H5).
  rewrite Rplus_0_r in H7; apply H7.
  unfold Un_cv in H1; unfold Un_cv; intros.
  elim (H1 _ H3); intros.
  exists x; intros.
  unfold R_dist; unfold R_dist in H4.
  rewrite Rminus_0_r; apply H4; assumption.
Qed.

(** Each limit of a sequence of functions which converges uniformly is continue *)
Lemma CVU_continuity :
  forall (fn:nat -> R -> R) (f:R -> R) (x:R) (r:posreal),
    CVU fn f x r ->
    (forall (n:nat) (y:R), Boule x r y -> continuity_pt (fn n) y) ->
    forall y:R, Boule x r y -> continuity_pt f y.
Proof.
  intros; unfold continuity_pt; unfold continue_in;
    unfold limit1_in; unfold limit_in;
      simpl; unfold R_dist; intros.
  unfold CVU in H.
  cut (0 < eps / 3);
    [ intro
      | unfold Rdiv; apply Rmult_lt_0_compat;
        [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
  elim (H _ H3); intros N0 H4.
  assert (H5 := H0 N0 y H1).
  cut (exists del : posreal, (forall h:R, Rabs h < del -> Boule x r (y + h))).
  intro.
  elim H6; intros del1 H7.
  unfold continuity_pt in H5; unfold continue_in in H5; unfold limit1_in in H5;
    unfold limit_in in H5; simpl in H5; unfold R_dist in H5.
  elim (H5 _ H3); intros del2 H8.
  set (del := Rmin del1 del2).
  exists del; intros.
  split.
  unfold del; unfold Rmin; case (Rle_dec del1 del2); intro.
  apply (cond_pos del1).
  elim H8; intros; assumption.
  intros;
    apply Rle_lt_trans with (Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y)).
  replace (f x0 - f y) with (f x0 - fn N0 x0 + (fn N0 x0 - f y));
  [ apply Rabs_triang | ring ].
  apply Rle_lt_trans with
    (Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y)).
  rewrite Rplus_assoc; apply Rplus_le_compat_l.
  replace (fn N0 x0 - f y) with (fn N0 x0 - fn N0 y + (fn N0 y - f y));
  [ apply Rabs_triang | ring ].
  replace eps with (eps / 3 + eps / 3 + eps / 3).
  repeat apply Rplus_lt_compat.
  apply H4.
  apply le_n.
  replace x0 with (y + (x0 - y)); [ idtac | ring ]; apply H7.
  elim H9; intros.
  apply Rlt_le_trans with del.
  assumption.
  unfold del; apply Rmin_l.
  elim H8; intros.
  apply H11.
  split.
  elim H9; intros; assumption.
  elim H9; intros; apply Rlt_le_trans with del.
  assumption.
  unfold del; apply Rmin_r.
  rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H4.
  apply le_n.
  assumption.
  apply Rmult_eq_reg_l with 3.
  do 2 rewrite Rmult_plus_distr_l; unfold Rdiv; rewrite <- Rmult_assoc;
    rewrite Rinv_r_simpl_m.
  ring.
  discrR.
  discrR.
  cut (0 < r - Rabs (x - y)).
  intro; exists (mkposreal _ H6).
  simpl; intros.
  unfold Boule; replace (y + h - x) with (h + (y - x));
    [ idtac | ring ]; apply Rle_lt_trans with (Rabs h + Rabs (y - x)).
  apply Rabs_triang.
  apply Rplus_lt_reg_l with (- Rabs (x - y)).
  rewrite <- (Rabs_Ropp (y - x)); rewrite Ropp_minus_distr'.
  replace (- Rabs (x - y) + r) with (r - Rabs (x - y)).
  replace (- Rabs (x - y) + (Rabs h + Rabs (x - y))) with (Rabs h).
  apply H7.
  ring.
  ring.
  unfold Boule in H1; rewrite <- (Rabs_Ropp (x - y)); rewrite Ropp_minus_distr';
    apply Rplus_lt_reg_l with (Rabs (y - x)).
  rewrite Rplus_0_r; replace (Rabs (y - x) + (r - Rabs (y - x))) with (pos r);
    [ apply H1 | ring ].
Qed.

(**********)
Lemma continuity_pt_finite_SF :
  forall (fn:nat -> R -> R) (N:nat) (x:R),
    (forall n:nat, (n <= N)%nat -> continuity_pt (fn n) x) ->
    continuity_pt (fun y:R => sum_f_R0 (fun k:nat => fn k y) N) x.
Proof.
  intros; induction  N as [| N HrecN].
  simpl; apply (H 0%nat); apply le_n.
  simpl;
    replace (fun y:R => sum_f_R0 (fun k:nat => fn k y) N + fn (S N) y) with
    ((fun y:R => sum_f_R0 (fun k:nat => fn k y) N) + (fun y:R => fn (S N) y))%F;
    [ idtac | reflexivity ].
  apply continuity_pt_plus.
  apply HrecN.
  intros; apply H.
  apply le_trans with N; [ assumption | apply le_n_Sn ].
  apply (H (S N)); apply le_n.
Qed.

(** Continuity and normal convergence *)
Lemma SFL_continuity_pt :
  forall (fn:nat -> R -> R)
    (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
    (r:posreal),
    CVN_r fn r ->
    (forall (n:nat) (y:R), Boule 0 r y -> continuity_pt (fn n) y) ->
    forall y:R, Boule 0 r y -> continuity_pt (SFL fn cv) y.
Proof.
  intros; eapply CVU_continuity.
  apply CVN_CVU.
  apply X.
  intros; unfold SP; apply continuity_pt_finite_SF.
  intros; apply H.
  apply H1.
  apply H0.
Qed.

Lemma SFL_continuity :
  forall (fn:nat -> R -> R)
    (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }),
    CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv).
Proof.
  intros; unfold continuity; intro.
  cut (0 < Rabs x + 1);
    [ intro | apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ] ].
  cut (Boule 0 (mkposreal _ H0) x).
  intro; eapply SFL_continuity_pt with (mkposreal _ H0).
  apply X.
  intros; apply (H n y).
  apply H1.
  unfold Boule; simpl; rewrite Rminus_0_r;
    pattern (Rabs x) at 1; rewrite <- Rplus_0_r;
      apply Rplus_lt_compat_l; apply Rlt_0_1.
Qed.

(** As R is complete, normal convergence implies that (fn) is simply-uniformly convergent *)
Lemma CVN_R_CVS :
  forall fn:nat -> R -> R,
    CVN_R fn -> forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }.
Proof.
  intros; apply R_complete.
  unfold SP; set (An := fun N:nat => fn N x).
  change (Cauchy_crit_series An).
  apply cauchy_abs.
  unfold Cauchy_crit_series; apply CV_Cauchy.
  unfold CVN_R in X; cut (0 < Rabs x + 1).
  intro; assert (H0 := X (mkposreal _ H)).
  unfold CVN_r in H0; elim H0; intros Bn H1.
  elim H1; intros l H2.
  elim H2; intros.
  apply Rseries_CV_comp with Bn.
  intro; split.
  apply Rabs_pos.
  unfold An; apply H4; unfold Boule; simpl;
    rewrite Rminus_0_r.
  pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
    apply Rlt_0_1.
  exists l.
  cut (forall n:nat, 0 <= Bn n).
  intro; unfold Un_cv in H3; unfold Un_cv; intros.
  elim (H3 _ H6); intros.
  exists x0; intros.
  replace (sum_f_R0 Bn n) with (sum_f_R0 (fun k:nat => Rabs (Bn k)) n).
  apply H7; assumption.
  apply sum_eq; intros; apply Rabs_right; apply Rle_ge; apply H5.
  intro; apply Rle_trans with (Rabs (An n)).
  apply Rabs_pos.
  unfold An; apply H4; unfold Boule; simpl;
    rewrite Rminus_0_r; pattern (Rabs x) at 1;
      rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1.
  apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ].
Qed.

(* Uniform convergence implies pointwise simple convergence *)
Lemma CVU_cv : forall f g c d, CVU f g c d ->
   forall x, Boule c d x -> Un_cv (fun n => f n x) (g x).
Proof.
intros f g c d cvu x bx eps ep; destruct (cvu eps ep) as [N Pn].
 exists N; intros n nN; rewrite R_dist_sym; apply Pn; assumption.
Qed.

(* convergence is preserved through extensional equality *)
Lemma CVU_ext_lim :
  forall f g1 g2 c d, CVU f g1 c d -> (forall x, Boule c d x -> g1 x = g2 x) ->
    CVU f g2 c d.
Proof.
intros f g1 g2 c d cvu q eps ep; destruct (cvu _ ep) as [N Pn].
exists N; intros; rewrite <- q; auto.
Qed.

(* When a sequence of derivable functions converge pointwise towards
  a function g, with the derivatives converging uniformly towards
  a function g', then the function g' is the derivative of g. *)

Lemma CVU_derivable :
  forall f f' g g' c d,
   CVU f' g' c d ->
   (forall x, Boule c d x -> Un_cv (fun n => f n x) (g x)) ->
   (forall n x, Boule c d x -> derivable_pt_lim (f n) x (f' n x)) ->
   forall x, Boule c d x -> derivable_pt_lim g x (g' x).
Proof.
intros f f' g g' c d cvu cvp dff' x bx.
set (rho_ :=
       fun n y =>
           if Req_EM_T y x then
              f' n x
           else ((f n y - f n x)/ (y - x))).
set (rho := fun y =>
               if Req_EM_T y x then
                  g' x
               else (g y - g x)/(y - x)).
assert (ctrho : forall n z, Boule c d z -> continuity_pt (rho_ n) z).
 intros n z bz.
 destruct (Req_EM_T x z) as [xz | xnz].
  rewrite <- xz.
  intros eps' ep'.
  destruct (dff' n x bx eps' ep') as [alp Pa].
  exists (pos alp);split;[apply cond_pos | ].
  intros z'; unfold rho_, D_x, dist, R_met; simpl; intros [[_ xnz'] dxz'].
   destruct (Req_EM_T z' x) as [abs | _].
    case xnz'; symmetry; exact abs.
   destruct (Req_EM_T x x) as [_ | abs];[ | case abs; reflexivity].
  pattern z' at 1; replace z' with (x + (z' - x)) by ring.
  apply Pa;[intros h; case xnz';
    replace z' with (z' - x + x) by ring; rewrite h, Rplus_0_l;
       reflexivity | exact dxz'].
 destruct (Ball_in_inter c c d d z bz bz) as [delta Pd].
 assert (dz :  0 < Rmin delta (Rabs (z - x))).
  now apply Rmin_glb_lt;[apply cond_pos | apply Rabs_pos_lt; intros zx0; case xnz;
                       replace z with (z - x + x) by ring; rewrite zx0, Rplus_0_l].
 assert (t' : forall y : R,
      R_dist y z < Rmin delta (Rabs (z - x)) ->
      (fun z : R => (f n z - f n x) / (z - x)) y = rho_ n y).
  intros y dyz; unfold rho_; destruct (Req_EM_T y x) as [xy | xny].
   rewrite xy in dyz.
   destruct (Rle_dec  delta (Rabs (z - x))).
    rewrite Rmin_left, R_dist_sym in dyz; unfold R_dist in dyz; fourier.
   rewrite Rmin_right, R_dist_sym in dyz; unfold R_dist in dyz;
      [case (Rlt_irrefl _ dyz) |apply Rlt_le, Rnot_le_gt; assumption].
  reflexivity.
 apply (continuity_pt_locally_ext (fun z => (f n z - f n x)/(z - x))
             (rho_ n) _ z dz t'); clear t'.
 apply continuity_pt_div.
   apply continuity_pt_minus.
    apply derivable_continuous_pt; eapply exist; apply dff'; assumption.
   apply continuity_pt_const; intro; intro; reflexivity.
  apply continuity_pt_minus;
   [apply derivable_continuous_pt; exists 1; apply derivable_pt_lim_id
   | apply continuity_pt_const; intro; reflexivity].
 intros zx0; case xnz; replace z with (z - x + x) by ring.
 rewrite zx0, Rplus_0_l; reflexivity.
assert (CVU rho_ rho c d ).
 intros eps ep.
 assert (ep8 : 0 < eps/8).
  fourier.
 destruct (cvu _ ep8) as [N Pn1].
 assert (cauchy1 : forall n p, (N <= n)%nat -> (N <= p)%nat ->
           forall z, Boule c d z -> Rabs (f' n z - f' p z) < eps/4).
  intros n p nN pN z bz; replace (eps/4) with (eps/8 + eps/8) by field.
  rewrite <- Rabs_Ropp.
  replace (-(f' n z - f' p z)) with (g' z - f' n z - (g' z - f' p z)) by ring.
  apply Rle_lt_trans with (1 := Rabs_triang _ _); rewrite Rabs_Ropp.
  apply Rplus_lt_compat; apply Pn1; assumption.
 assert (step_2 : forall n p, (N <= n)%nat -> (N <= p)%nat ->
         forall y, Boule c d y -> x <> y ->
         Rabs ((f n y - f n x)/(y - x) - (f p y - f p x)/(y - x)) < eps/4).
  intros n p nN pN y b_y xny.
  assert (mm0 : (Rmin x y = x /\ Rmax x y = y) \/ 
                (Rmin x y = y /\ Rmax x y = x)).
   destruct (Rle_dec x y) as [H | H].
    rewrite Rmin_left, Rmax_right.
      left; split; reflexivity.
     assumption.
    assumption.
   rewrite Rmin_right, Rmax_left.
     right; split; reflexivity.
    apply Rlt_le, Rnot_le_gt; assumption.
   apply Rlt_le, Rnot_le_gt; assumption.
  assert (mm : Rmin x y < Rmax x y).
   destruct mm0 as [[q1 q2] | [q1 q2]]; generalize (Rminmax x y); rewrite q1, q2.
    intros h; destruct h;[ assumption| contradiction].
   intros h; destruct h as [h | h];[assumption | rewrite h in xny; case xny; reflexivity].
  assert (dm : forall z, Rmin x y <= z <= Rmax x y ->
            derivable_pt_lim (fun x => f n x - f p x) z (f' n z - f' p z)).
   intros z intz; apply derivable_pt_lim_minus.
    apply dff'; apply Boule_convex with (Rmin x y) (Rmax x y);
      destruct mm0 as [[q1 q2] | [q1 q2]]; revert intz; rewrite ?q1, ?q2; intros;
     try assumption.
   apply dff'; apply Boule_convex with (Rmin x y) (Rmax x y);
      destruct mm0 as [[q1 q2] | [q1 q2]]; revert intz; rewrite ?q1, ?q2; intros;
     try assumption.

  replace ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x))
    with (((f n y - f p y) - (f n x - f p x))/(y - x)) by
    (field; intros yx0; case xny; replace y with (y - x + x) by ring;
     rewrite yx0, Rplus_0_l; reflexivity).
  destruct (MVT_cor2 (fun x => f n x - f p x) (fun x => f' n x - f' p x)
             (Rmin x y) (Rmax x y) mm dm) as [z [Pz inz]].
  destruct mm0 as [[q1 q2] | [q1 q2]].
   replace ((f n y - f p y - (f n x - f p x))/(y - x)) with
    ((f n (Rmax x y) - f p (Rmax x y) - (f  n (Rmin x y) - f p (Rmin x y)))/
      (Rmax x y - Rmin x y)) by (rewrite q1, q2; reflexivity).
   unfold Rdiv; rewrite Pz, Rmult_assoc, Rinv_r, Rmult_1_r.
    apply cauchy1; auto.
    apply Boule_convex with (Rmin x y) (Rmax x y);
      revert inz; rewrite ?q1, ?q2; intros;
     try assumption.
    split; apply Rlt_le; tauto.
   rewrite q1, q2; apply Rminus_eq_contra, not_eq_sym; assumption.
  replace ((f n y - f p y - (f n x - f p x))/(y - x)) with
    ((f n (Rmax x y) - f p (Rmax x y) - (f  n (Rmin x y) - f p (Rmin x y)))/
      (Rmax x y - Rmin x y)).
   unfold Rdiv; rewrite Pz, Rmult_assoc, Rinv_r, Rmult_1_r.
    apply cauchy1; auto.
    apply Boule_convex with (Rmin x y) (Rmax x y);
     revert inz; rewrite ?q1, ?q2; intros;
    try assumption; split; apply Rlt_le; tauto.
   rewrite q1, q2; apply Rminus_eq_contra; assumption.
  rewrite q1, q2; field; split; 
    apply Rminus_eq_contra;[apply not_eq_sym |]; assumption.
 assert (unif_ac :
  forall n p, (N <= n)%nat -> (N <= p)%nat ->
     forall y, Boule c d y ->
       Rabs (rho_ n y - rho_ p y) <= eps/2).
  intros n p nN pN y b_y.
  destruct (Req_dec x y) as [xy | xny].
   destruct (Ball_in_inter c c d d x bx bx) as [delta Pdelta].
   destruct (ctrho n y b_y _ ep8) as [d' [dp Pd]].
   destruct (ctrho p y b_y _ ep8) as [d2 [dp2 Pd2]].
   assert (mmpos : 0 < (Rmin (Rmin d' d2) delta)/2).
    apply Rmult_lt_0_compat; repeat apply Rmin_glb_lt; try assumption.
     apply cond_pos.
    apply Rinv_0_lt_compat, Rlt_0_2.
   apply Rle_trans with (1 := R_dist_tri _ _ (rho_ n (y + Rmin (Rmin d' d2) delta/2))).
   replace (eps/2) with (eps/8 + (eps/4 + eps/8)) by field.
   apply Rplus_le_compat.
    rewrite R_dist_sym; apply Rlt_le, Pd;split;[split;[exact I | ] | ].
      apply Rminus_not_eq_right; rewrite Rplus_comm; unfold Rminus;
      rewrite Rplus_assoc, Rplus_opp_r, Rplus_0_r; apply Rgt_not_eq; assumption.
    simpl; unfold R_dist.
    unfold Rminus; rewrite (Rplus_comm y), Rplus_assoc, Rplus_opp_r, Rplus_0_r.
    rewrite Rabs_pos_eq;[ |apply Rlt_le; assumption ].
    apply Rlt_le_trans with (Rmin (Rmin d' d2) delta);[fourier | ].
    apply Rle_trans with (Rmin d' d2); apply Rmin_l.
   apply Rle_trans with (1 := R_dist_tri _ _ (rho_ p (y + Rmin (Rmin d' d2) delta/2))).
   apply Rplus_le_compat.
    apply Rlt_le.
    replace (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) with
          ((f n (y + Rmin (Rmin d' d2) delta / 2) - f n x)/
            ((y + Rmin (Rmin d' d2) delta / 2) - x)).
     replace (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) with
          ((f p (y + Rmin (Rmin d' d2) delta / 2) - f p x)/
             ((y + Rmin (Rmin d' d2) delta / 2) - x)).
      apply step_2; auto; try fourier.
      assert (0 < pos delta) by (apply cond_pos).
      apply Boule_convex with y (y + delta/2).
        assumption.
       destruct (Pdelta (y + delta/2)); auto.
       rewrite xy; unfold Boule; rewrite Rabs_pos_eq; try fourier; auto.
      split; try fourier.
      apply Rplus_le_compat_l, Rmult_le_compat_r;[ | apply Rmin_r].
       now apply Rlt_le, Rinv_0_lt_compat, Rlt_0_2.
      apply Rminus_not_eq_right; rewrite xy; apply Rgt_not_eq; fourier.
     unfold rho_.
     destruct (Req_EM_T (y + Rmin (Rmin d' d2) delta/2) x) as [ymx | ymnx].
      case (RIneq.Rle_not_lt _ _ (Req_le _ _ ymx)); fourier.
     reflexivity.
    unfold rho_.
    destruct (Req_EM_T (y + Rmin (Rmin d' d2) delta / 2) x) as [ymx | ymnx].
     case (RIneq.Rle_not_lt _ _ (Req_le _ _ ymx)); fourier.
    reflexivity.
   apply Rlt_le, Pd2; split;[split;[exact I | apply Rlt_not_eq; fourier] | ].
   simpl; unfold R_dist.
   unfold Rminus; rewrite (Rplus_comm y), Rplus_assoc, Rplus_opp_r, Rplus_0_r.
   rewrite Rabs_pos_eq;[ | fourier].
   apply Rlt_le_trans with (Rmin (Rmin d' d2) delta); [fourier |].
   apply Rle_trans with (Rmin d' d2).
    solve[apply Rmin_l].
   solve[apply Rmin_r].
  apply Rlt_le, Rlt_le_trans with (eps/4);[ | fourier].
  unfold rho_; destruct (Req_EM_T y x); solve[auto].
 assert (unif_ac' : forall p, (N <= p)%nat ->
           forall y, Boule c d y -> Rabs (rho y - rho_ p y) < eps).
  assert (cvrho : forall y, Boule c d y -> Un_cv (fun n => rho_ n y) (rho y)).
   intros y b_y; unfold rho_, rho; destruct (Req_EM_T y x).
    intros eps' ep'; destruct (cvu eps' ep') as [N2 Pn2].
    exists N2; intros n nN2; rewrite R_dist_sym; apply Pn2; assumption.
   apply CV_mult.
    apply CV_minus.
     apply cvp; assumption.
    apply cvp; assumption.
   intros eps' ep'; simpl; exists 0%nat; intros; rewrite R_dist_eq; assumption.
  intros p pN y b_y.
  replace eps with (eps/2 + eps/2) by field.
  assert (ep2 : 0 < eps/2) by fourier.
  destruct (cvrho y b_y _ ep2) as [N2 Pn2].
  apply Rle_lt_trans with (1 := R_dist_tri _ _ (rho_ (max N N2) y)).
  apply Rplus_lt_le_compat.
   solve[rewrite R_dist_sym; apply Pn2, Max.le_max_r].
  apply unif_ac; auto; solve [apply Max.le_max_l].
 exists N; intros; apply unif_ac'; solve[auto].
intros eps ep.
destruct (CVU_continuity _ _ _ _ H ctrho x bx eps ep) as [delta [dp Pd]].
exists (mkposreal _ dp); intros h hn0 dh.
replace ((g (x + h) - g x) / h) with (rho (x + h)).
 replace (g' x) with (rho x).
  apply Pd; unfold D_x, no_cond;split;[split;[solve[auto] | ] | ].
   intros xxh; case hn0; replace h with (x + h - x) by ring; rewrite <- xxh; ring.
  simpl; unfold R_dist; replace (x + h - x) with h by ring; exact dh.
 unfold rho; destruct (Req_EM_T x x) as [ _ | abs];[ | case abs]; reflexivity.
unfold rho; destruct (Req_EM_T (x + h) x) as [abs | _];[ | ].
 case hn0; replace h with (x + h - x) by ring; rewrite abs; ring.
replace (x + h - x) with h by ring; reflexivity.
Qed.