1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import Rtopology. Open Local Scope R_scope.
(* The Mean Value Theorem *)
Theorem MVT :
forall (f g:R -> R) (a b:R) (pr1:forall c:R, a < c < b -> derivable_pt f c)
(pr2:forall c:R, a < c < b -> derivable_pt g c),
a < b ->
(forall c:R, a <= c <= b -> continuity_pt f c) ->
(forall c:R, a <= c <= b -> continuity_pt g c) ->
exists c : R,
(exists P : a < c < b,
(g b - g a) * derive_pt f c (pr1 c P) =
(f b - f a) * derive_pt g c (pr2 c P)).
Proof.
intros; assert (H2 := Rlt_le _ _ H).
set (h := fun y:R => (g b - g a) * f y - (f b - f a) * g y).
cut (forall c:R, a < c < b -> derivable_pt h c).
intro X; cut (forall c:R, a <= c <= b -> continuity_pt h c).
intro; assert (H4 := continuity_ab_maj h a b H2 H3).
assert (H5 := continuity_ab_min h a b H2 H3).
elim H4; intros Mx H6.
elim H5; intros mx H7.
cut (h a = h b).
intro; set (M := h Mx); set (m := h mx).
cut
(forall (c:R) (P:a < c < b),
derive_pt h c (X c P) =
(g b - g a) * derive_pt f c (pr1 c P) -
(f b - f a) * derive_pt g c (pr2 c P)).
intro; case (Req_dec (h a) M); intro.
case (Req_dec (h a) m); intro.
cut (forall c:R, a <= c <= b -> h c = M).
intro; cut (a < (a + b) / 2 < b).
(*** h constant ***)
intro; exists ((a + b) / 2).
exists H13.
apply Rminus_diag_uniq; rewrite <- H9; apply deriv_constant2 with a b.
elim H13; intros; assumption.
elim H13; intros; assumption.
intros; rewrite (H12 ((a + b) / 2)).
apply H12; split; left; assumption.
elim H13; intros; split; left; assumption.
split.
apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H.
discrR.
apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite Rplus_comm; rewrite double;
apply Rplus_lt_compat_l; apply H.
discrR.
intros; elim H6; intros H13 _.
elim H7; intros H14 _.
apply Rle_antisym.
apply H13; apply H12.
rewrite H10 in H11; rewrite H11; apply H14; apply H12.
cut (a < mx < b).
(*** h admet un minimum global sur [a,b] ***)
intro; exists mx.
exists H12.
apply Rminus_diag_uniq; rewrite <- H9; apply deriv_minimum with a b.
elim H12; intros; assumption.
elim H12; intros; assumption.
intros; elim H7; intros.
apply H15; split; left; assumption.
elim H7; intros _ H12; elim H12; intros; split.
inversion H13.
apply H15.
rewrite H15 in H11; elim H11; reflexivity.
inversion H14.
apply H15.
rewrite H8 in H11; rewrite <- H15 in H11; elim H11; reflexivity.
cut (a < Mx < b).
(*** h admet un maximum global sur [a,b] ***)
intro; exists Mx.
exists H11.
apply Rminus_diag_uniq; rewrite <- H9; apply deriv_maximum with a b.
elim H11; intros; assumption.
elim H11; intros; assumption.
intros; elim H6; intros; apply H14.
split; left; assumption.
elim H6; intros _ H11; elim H11; intros; split.
inversion H12.
apply H14.
rewrite H14 in H10; elim H10; reflexivity.
inversion H13.
apply H14.
rewrite H8 in H10; rewrite <- H14 in H10; elim H10; reflexivity.
intros; unfold h in |- *;
replace
(derive_pt (fun y:R => (g b - g a) * f y - (f b - f a) * g y) c (X c P))
with
(derive_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F) c
(derivable_pt_minus _ _ _
(derivable_pt_mult _ _ _ (derivable_pt_const (g b - g a) c) (pr1 c P))
(derivable_pt_mult _ _ _ (derivable_pt_const (f b - f a) c) (pr2 c P))));
[ idtac | apply pr_nu ].
rewrite derive_pt_minus; do 2 rewrite derive_pt_mult;
do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l;
do 2 rewrite Rplus_0_l; reflexivity.
unfold h in |- *; ring.
intros; unfold h in |- *;
change
(continuity_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F)
c) in |- *.
apply continuity_pt_minus; apply continuity_pt_mult.
apply derivable_continuous_pt; apply derivable_const.
apply H0; apply H3.
apply derivable_continuous_pt; apply derivable_const.
apply H1; apply H3.
intros;
change
(derivable_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F)
c) in |- *.
apply derivable_pt_minus; apply derivable_pt_mult.
apply derivable_pt_const.
apply (pr1 _ H3).
apply derivable_pt_const.
apply (pr2 _ H3).
Qed.
(* Corollaries ... *)
Lemma MVT_cor1 :
forall (f:R -> R) (a b:R) (pr:derivable f),
a < b ->
exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b.
Proof.
intros f a b pr H; cut (forall c:R, a < c < b -> derivable_pt f c);
[ intro X | intros; apply pr ].
cut (forall c:R, a < c < b -> derivable_pt id c);
[ intro X0 | intros; apply derivable_pt_id ].
cut (forall c:R, a <= c <= b -> continuity_pt f c);
[ intro | intros; apply derivable_continuous_pt; apply pr ].
cut (forall c:R, a <= c <= b -> continuity_pt id c);
[ intro | intros; apply derivable_continuous_pt; apply derivable_id ].
assert (H2 := MVT f id a b X X0 H H0 H1).
elim H2; intros c H3; elim H3; intros.
exists c; split.
cut (derive_pt id c (X0 c x) = derive_pt id c (derivable_pt_id c));
[ intro | apply pr_nu ].
rewrite H5 in H4; rewrite (derive_pt_id c) in H4; rewrite Rmult_1_r in H4;
rewrite <- H4; replace (derive_pt f c (X c x)) with (derive_pt f c (pr c));
[ idtac | apply pr_nu ]; apply Rmult_comm.
apply x.
Qed.
Theorem MVT_cor2 :
forall (f f':R -> R) (a b:R),
a < b ->
(forall c:R, a <= c <= b -> derivable_pt_lim f c (f' c)) ->
exists c : R, f b - f a = f' c * (b - a) /\ a < c < b.
Proof.
intros f f' a b H H0; cut (forall c:R, a <= c <= b -> derivable_pt f c).
intro X; cut (forall c:R, a < c < b -> derivable_pt f c).
intro X0; cut (forall c:R, a <= c <= b -> continuity_pt f c).
intro; cut (forall c:R, a <= c <= b -> derivable_pt id c).
intro X1; cut (forall c:R, a < c < b -> derivable_pt id c).
intro X2; cut (forall c:R, a <= c <= b -> continuity_pt id c).
intro; elim (MVT f id a b X0 X2 H H1 H2); intros; elim H3; clear H3; intros;
exists x; split.
cut (derive_pt id x (X2 x x0) = 1).
cut (derive_pt f x (X0 x x0) = f' x).
intros; rewrite H4 in H3; rewrite H5 in H3; unfold id in H3;
rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *;
assumption.
apply derive_pt_eq_0; apply H0; elim x0; intros; split; left; assumption.
apply derive_pt_eq_0; apply derivable_pt_lim_id.
assumption.
intros; apply derivable_continuous_pt; apply X1; assumption.
intros; apply derivable_pt_id.
intros; apply derivable_pt_id.
intros; apply derivable_continuous_pt; apply X; assumption.
intros; elim H1; intros; apply X; split; left; assumption.
intros; unfold derivable_pt in |- *; apply existT with (f' c); apply H0;
apply H1.
Qed.
Lemma MVT_cor3 :
forall (f f':R -> R) (a b:R),
a < b ->
(forall x:R, a <= x -> x <= b -> derivable_pt_lim f x (f' x)) ->
exists c : R, a <= c /\ c <= b /\ f b = f a + f' c * (b - a).
Proof.
intros f f' a b H H0;
assert (H1 : exists c : R, f b - f a = f' c * (b - a) /\ a < c < b);
[ apply MVT_cor2; [ apply H | intros; elim H1; intros; apply (H0 _ H2 H3) ]
| elim H1; intros; exists x; elim H2; intros; elim H4; intros; split;
[ left; assumption | split; [ left; assumption | rewrite <- H3; ring ] ] ].
Qed.
Lemma Rolle :
forall (f:R -> R) (a b:R) (pr:forall x:R, a < x < b -> derivable_pt f x),
(forall x:R, a <= x <= b -> continuity_pt f x) ->
a < b ->
f a = f b ->
exists c : R, (exists P : a < c < b, derive_pt f c (pr c P) = 0).
Proof.
intros; assert (H2 : forall x:R, a < x < b -> derivable_pt id x).
intros; apply derivable_pt_id.
assert (H3 := MVT f id a b pr H2 H0 H);
assert (H4 : forall x:R, a <= x <= b -> continuity_pt id x).
intros; apply derivable_continuous; apply derivable_id.
elim (H3 H4); intros; elim H5; intros; exists x; exists x0; rewrite H1 in H6;
unfold id in H6; unfold Rminus in H6; rewrite Rplus_opp_r in H6;
rewrite Rmult_0_l in H6; apply Rmult_eq_reg_l with (b - a);
[ rewrite Rmult_0_r; apply H6
| apply Rminus_eq_contra; red in |- *; intro; rewrite H7 in H0;
elim (Rlt_irrefl _ H0) ].
Qed.
(**********)
Lemma nonneg_derivative_1 :
forall (f:R -> R) (pr:derivable f),
(forall x:R, 0 <= derive_pt f x (pr x)) -> increasing f.
Proof.
intros.
unfold increasing in |- *.
intros.
case (total_order_T x y); intro.
elim s; intro.
apply Rplus_le_reg_l with (- f x).
rewrite Rplus_opp_l; rewrite Rplus_comm.
assert (H1 := MVT_cor1 f _ _ pr a).
elim H1; intros.
elim H2; intros.
unfold Rminus in H3.
rewrite H3.
apply Rmult_le_pos.
apply H.
apply Rplus_le_reg_l with x.
rewrite Rplus_0_r; replace (x + (y + - x)) with y; [ assumption | ring ].
rewrite b; right; reflexivity.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 r)).
Qed.
(**********)
Lemma nonpos_derivative_0 :
forall (f:R -> R) (pr:derivable f),
decreasing f -> forall x:R, derive_pt f x (pr x) <= 0.
Proof.
intros f pr H x; assert (H0 := H); unfold decreasing in H0;
generalize (derivable_derive f x (pr x)); intro; elim H1;
intros l H2.
rewrite H2; case (Rtotal_order l 0); intro.
left; assumption.
elim H3; intro.
right; assumption.
generalize (derive_pt_eq_1 f x l (pr x) H2); intros; cut (0 < l / 2).
intro; elim (H5 (l / 2) H6); intros delta H7;
cut (delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta).
intro; decompose [and] H8; intros; generalize (H7 (delta / 2) H9 H12);
cut ((f (x + delta / 2) - f x) / (delta / 2) <= 0).
intro; cut (0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)).
intro; unfold Rabs in |- *;
case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)).
intros;
generalize
(Rplus_lt_compat_r (- l) (- ((f (x + delta / 2) - f x) / (delta / 2) - l))
(l / 2) H14); unfold Rminus in |- *.
replace (l / 2 + - l) with (- (l / 2)).
replace (- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l) with
(- ((f (x + delta / 2) + - f x) / (delta / 2))).
intro.
generalize
(Ropp_lt_gt_contravar (- ((f (x + delta / 2) + - f x) / (delta / 2)))
(- (l / 2)) H15).
repeat rewrite Ropp_involutive.
intro.
generalize
(Rlt_trans 0 (l / 2) ((f (x + delta / 2) - f x) / (delta / 2)) H6 H16);
intro.
elim
(Rlt_irrefl 0
(Rlt_le_trans 0 ((f (x + delta / 2) - f x) / (delta / 2)) 0 H17 H10)).
ring.
pattern l at 3 in |- *; rewrite double_var.
ring.
intros.
generalize
(Ropp_ge_le_contravar ((f (x + delta / 2) - f x) / (delta / 2) - l) 0 r).
rewrite Ropp_0.
intro.
elim
(Rlt_irrefl 0
(Rlt_le_trans 0 (- ((f (x + delta / 2) - f x) / (delta / 2) - l)) 0 H13
H15)).
replace (- ((f (x + delta / 2) - f x) / (delta / 2) - l)) with
((f x - f (x + delta / 2)) / (delta / 2) + l).
unfold Rminus in |- *.
apply Rplus_le_lt_0_compat.
unfold Rdiv in |- *; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H0 x (x + delta * / 2) H13); intro;
generalize
(Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H14);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
assumption.
rewrite Ropp_minus_distr.
unfold Rminus in |- *.
rewrite (Rplus_comm l).
unfold Rdiv in |- *.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite Ropp_plus_distr.
rewrite Ropp_involutive.
rewrite (Rplus_comm (f x)).
reflexivity.
replace ((f (x + delta / 2) - f x) / (delta / 2)) with
(- ((f x - f (x + delta / 2)) / (delta / 2))).
rewrite <- Ropp_0.
apply Ropp_ge_le_contravar.
apply Rle_ge.
unfold Rdiv in |- *; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H0 x (x + delta * / 2) H10); intro.
generalize
(Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H13);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
rewrite Ropp_minus_distr.
reflexivity.
split.
unfold Rdiv in |- *; apply prod_neq_R0.
generalize (cond_pos delta); intro; red in |- *; intro H9; rewrite H9 in H8;
elim (Rlt_irrefl 0 H8).
apply Rinv_neq_0_compat; discrR.
split.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
rewrite Rabs_right.
unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double; pattern (pos delta) at 1 in |- *;
rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l; apply (cond_pos delta).
discrR.
apply Rle_ge; unfold Rdiv in |- *; left; apply Rmult_lt_0_compat.
apply (cond_pos delta).
apply Rinv_0_lt_compat; prove_sup0.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ apply H4 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
(**********)
Lemma increasing_decreasing_opp :
forall f:R -> R, increasing f -> decreasing (- f)%F.
Proof.
unfold increasing, decreasing, opp_fct in |- *; intros; generalize (H x y H0);
intro; apply Ropp_ge_le_contravar; apply Rle_ge; assumption.
Qed.
(**********)
Lemma nonpos_derivative_1 :
forall (f:R -> R) (pr:derivable f),
(forall x:R, derive_pt f x (pr x) <= 0) -> decreasing f.
Proof.
intros.
cut (forall h:R, - - f h = f h).
intro.
generalize (increasing_decreasing_opp (- f)%F).
unfold decreasing in |- *.
unfold opp_fct in |- *.
intros.
rewrite <- (H0 x); rewrite <- (H0 y).
apply H1.
cut (forall x:R, 0 <= derive_pt (- f) x (derivable_opp f pr x)).
intros.
replace (fun x:R => - f x) with (- f)%F; [ idtac | reflexivity ].
apply (nonneg_derivative_1 (- f)%F (derivable_opp f pr) H3).
intro.
assert (H3 := derive_pt_opp f x0 (pr x0)).
cut
(derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) =
derive_pt (- f) x0 (derivable_opp f pr x0)).
intro.
rewrite <- H4.
rewrite H3.
rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; apply (H x0).
apply pr_nu.
assumption.
intro; ring.
Qed.
(**********)
Lemma positive_derivative :
forall (f:R -> R) (pr:derivable f),
(forall x:R, 0 < derive_pt f x (pr x)) -> strict_increasing f.
Proof.
intros.
unfold strict_increasing in |- *.
intros.
apply Rplus_lt_reg_r with (- f x).
rewrite Rplus_opp_l; rewrite Rplus_comm.
assert (H1 := MVT_cor1 f _ _ pr H0).
elim H1; intros.
elim H2; intros.
unfold Rminus in H3.
rewrite H3.
apply Rmult_lt_0_compat.
apply H.
apply Rplus_lt_reg_r with x.
rewrite Rplus_0_r; replace (x + (y + - x)) with y; [ assumption | ring ].
Qed.
(**********)
Lemma strictincreasing_strictdecreasing_opp :
forall f:R -> R, strict_increasing f -> strict_decreasing (- f)%F.
Proof.
unfold strict_increasing, strict_decreasing, opp_fct in |- *; intros;
generalize (H x y H0); intro; apply Ropp_lt_gt_contravar;
assumption.
Qed.
(**********)
Lemma negative_derivative :
forall (f:R -> R) (pr:derivable f),
(forall x:R, derive_pt f x (pr x) < 0) -> strict_decreasing f.
Proof.
intros.
cut (forall h:R, - - f h = f h).
intros.
generalize (strictincreasing_strictdecreasing_opp (- f)%F).
unfold strict_decreasing, opp_fct in |- *.
intros.
rewrite <- (H0 x).
rewrite <- (H0 y).
apply H1; [ idtac | assumption ].
cut (forall x:R, 0 < derive_pt (- f) x (derivable_opp f pr x)).
intros; eapply positive_derivative; apply H3.
intro.
assert (H3 := derive_pt_opp f x0 (pr x0)).
cut
(derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) =
derive_pt (- f) x0 (derivable_opp f pr x0)).
intro.
rewrite <- H4; rewrite H3.
rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; apply (H x0).
apply pr_nu.
intro; ring.
Qed.
(**********)
Lemma null_derivative_0 :
forall (f:R -> R) (pr:derivable f),
constant f -> forall x:R, derive_pt f x (pr x) = 0.
Proof.
intros.
unfold constant in H.
apply derive_pt_eq_0.
intros; exists (mkposreal 1 Rlt_0_1); simpl in |- *; intros.
rewrite (H x (x + h)); unfold Rminus in |- *; unfold Rdiv in |- *;
rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r;
rewrite Rabs_R0; assumption.
Qed.
(**********)
Lemma increasing_decreasing :
forall f:R -> R, increasing f -> decreasing f -> constant f.
Proof.
unfold increasing, decreasing, constant in |- *; intros;
case (Rtotal_order x y); intro.
generalize (Rlt_le x y H1); intro;
apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)).
elim H1; intro.
rewrite H2; reflexivity.
generalize (Rlt_le y x H2); intro; symmetry in |- *;
apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)).
Qed.
(**********)
Lemma null_derivative_1 :
forall (f:R -> R) (pr:derivable f),
(forall x:R, derive_pt f x (pr x) = 0) -> constant f.
Proof.
intros.
cut (forall x:R, derive_pt f x (pr x) <= 0).
cut (forall x:R, 0 <= derive_pt f x (pr x)).
intros.
assert (H2 := nonneg_derivative_1 f pr H0).
assert (H3 := nonpos_derivative_1 f pr H1).
apply increasing_decreasing; assumption.
intro; right; symmetry in |- *; apply (H x).
intro; right; apply (H x).
Qed.
(**********)
Lemma derive_increasing_interv_ax :
forall (a b:R) (f:R -> R) (pr:derivable f),
a < b ->
((forall t:R, a < t < b -> 0 < derive_pt f t (pr t)) ->
forall x y:R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y) /\
((forall t:R, a < t < b -> 0 <= derive_pt f t (pr t)) ->
forall x y:R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y).
Proof.
intros.
split; intros.
apply Rplus_lt_reg_r with (- f x).
rewrite Rplus_opp_l; rewrite Rplus_comm.
assert (H4 := MVT_cor1 f _ _ pr H3).
elim H4; intros.
elim H5; intros.
unfold Rminus in H6.
rewrite H6.
apply Rmult_lt_0_compat.
apply H0.
elim H7; intros.
split.
elim H1; intros.
apply Rle_lt_trans with x; assumption.
elim H2; intros.
apply Rlt_le_trans with y; assumption.
apply Rplus_lt_reg_r with x.
rewrite Rplus_0_r; replace (x + (y + - x)) with y; [ assumption | ring ].
apply Rplus_le_reg_l with (- f x).
rewrite Rplus_opp_l; rewrite Rplus_comm.
assert (H4 := MVT_cor1 f _ _ pr H3).
elim H4; intros.
elim H5; intros.
unfold Rminus in H6.
rewrite H6.
apply Rmult_le_pos.
apply H0.
elim H7; intros.
split.
elim H1; intros.
apply Rle_lt_trans with x; assumption.
elim H2; intros.
apply Rlt_le_trans with y; assumption.
apply Rplus_le_reg_l with x.
rewrite Rplus_0_r; replace (x + (y + - x)) with y;
[ left; assumption | ring ].
Qed.
(**********)
Lemma derive_increasing_interv :
forall (a b:R) (f:R -> R) (pr:derivable f),
a < b ->
(forall t:R, a < t < b -> 0 < derive_pt f t (pr t)) ->
forall x y:R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y.
Proof.
intros.
generalize (derive_increasing_interv_ax a b f pr H); intro.
elim H4; intros H5 _; apply (H5 H0 x y H1 H2 H3).
Qed.
(**********)
Lemma derive_increasing_interv_var :
forall (a b:R) (f:R -> R) (pr:derivable f),
a < b ->
(forall t:R, a < t < b -> 0 <= derive_pt f t (pr t)) ->
forall x y:R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y.
Proof.
intros a b f pr H H0 x y H1 H2 H3;
generalize (derive_increasing_interv_ax a b f pr H);
intro; elim H4; intros _ H5; apply (H5 H0 x y H1 H2 H3).
Qed.
(**********)
(**********)
Theorem IAF :
forall (f:R -> R) (a b k:R) (pr:derivable f),
a <= b ->
(forall c:R, a <= c <= b -> derive_pt f c (pr c) <= k) ->
f b - f a <= k * (b - a).
Proof.
intros.
case (total_order_T a b); intro.
elim s; intro.
assert (H1 := MVT_cor1 f _ _ pr a0).
elim H1; intros.
elim H2; intros.
rewrite H3.
do 2 rewrite <- (Rmult_comm (b - a)).
apply Rmult_le_compat_l.
apply Rplus_le_reg_l with a; rewrite Rplus_0_r.
replace (a + (b - a)) with b; [ assumption | ring ].
apply H0.
elim H4; intros.
split; left; assumption.
rewrite b0.
unfold Rminus in |- *; do 2 rewrite Rplus_opp_r.
rewrite Rmult_0_r; right; reflexivity.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
Qed.
Lemma IAF_var :
forall (f g:R -> R) (a b:R) (pr1:derivable f) (pr2:derivable g),
a <= b ->
(forall c:R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)) ->
g b - g a <= f b - f a.
Proof.
intros.
cut (derivable (g - f)).
intro X.
cut (forall c:R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0).
intro.
assert (H2 := IAF (g - f)%F a b 0 X H H1).
rewrite Rmult_0_l in H2; unfold minus_fct in H2.
apply Rplus_le_reg_l with (- f b + f a).
replace (- f b + f a + (f b - f a)) with 0; [ idtac | ring ].
replace (- f b + f a + (g b - g a)) with (g b - f b - (g a - f a));
[ apply H2 | ring ].
intros.
cut
(derive_pt (g - f) c (X c) =
derive_pt (g - f) c (derivable_pt_minus _ _ _ (pr2 c) (pr1 c))).
intro.
rewrite H2.
rewrite derive_pt_minus.
apply Rplus_le_reg_l with (derive_pt f c (pr1 c)).
rewrite Rplus_0_r.
replace
(derive_pt f c (pr1 c) + (derive_pt g c (pr2 c) - derive_pt f c (pr1 c)))
with (derive_pt g c (pr2 c)); [ idtac | ring ].
apply H0; assumption.
apply pr_nu.
apply derivable_minus; assumption.
Qed.
(* If f has a null derivative in ]a,b[ and is continue in [a,b], *)
(* then f is constant on [a,b] *)
Lemma null_derivative_loc :
forall (f:R -> R) (a b:R) (pr:forall x:R, a < x < b -> derivable_pt f x),
(forall x:R, a <= x <= b -> continuity_pt f x) ->
(forall (x:R) (P:a < x < b), derive_pt f x (pr x P) = 0) ->
constant_D_eq f (fun x:R => a <= x <= b) (f a).
Proof.
intros; unfold constant_D_eq in |- *; intros; case (total_order_T a b); intro.
elim s; intro.
assert (H2 : forall y:R, a < y < x -> derivable_pt id y).
intros; apply derivable_pt_id.
assert (H3 : forall y:R, a <= y <= x -> continuity_pt id y).
intros; apply derivable_continuous; apply derivable_id.
assert (H4 : forall y:R, a < y < x -> derivable_pt f y).
intros; apply pr; elim H4; intros; split.
assumption.
elim H1; intros; apply Rlt_le_trans with x; assumption.
assert (H5 : forall y:R, a <= y <= x -> continuity_pt f y).
intros; apply H; elim H5; intros; split.
assumption.
elim H1; intros; apply Rle_trans with x; assumption.
elim H1; clear H1; intros; elim H1; clear H1; intro.
assert (H7 := MVT f id a x H4 H2 H1 H5 H3).
elim H7; intros; elim H8; intros; assert (H10 : a < x0 < b).
elim x1; intros; split.
assumption.
apply Rlt_le_trans with x; assumption.
assert (H11 : derive_pt f x0 (H4 x0 x1) = 0).
replace (derive_pt f x0 (H4 x0 x1)) with (derive_pt f x0 (pr x0 H10));
[ apply H0 | apply pr_nu ].
assert (H12 : derive_pt id x0 (H2 x0 x1) = 1).
apply derive_pt_eq_0; apply derivable_pt_lim_id.
rewrite H11 in H9; rewrite H12 in H9; rewrite Rmult_0_r in H9;
rewrite Rmult_1_r in H9; apply Rminus_diag_uniq; symmetry in |- *;
assumption.
rewrite H1; reflexivity.
assert (H2 : x = a).
rewrite <- b0 in H1; elim H1; intros; apply Rle_antisym; assumption.
rewrite H2; reflexivity.
elim H1; intros;
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H2 H3) r)).
Qed.
(* Unicity of the antiderivative *)
Lemma antiderivative_Ucte :
forall (f g1 g2:R -> R) (a b:R),
antiderivative f g1 a b ->
antiderivative f g2 a b ->
exists c : R, (forall x:R, a <= x <= b -> g1 x = g2 x + c).
Proof.
unfold antiderivative in |- *; intros; elim H; clear H; intros; elim H0;
clear H0; intros H0 _; exists (g1 a - g2 a); intros;
assert (H3 : forall x:R, a <= x <= b -> derivable_pt g1 x).
intros; unfold derivable_pt in |- *; apply existT with (f x0); elim (H x0 H3);
intros; eapply derive_pt_eq_1; symmetry in |- *;
apply H4.
assert (H4 : forall x:R, a <= x <= b -> derivable_pt g2 x).
intros; unfold derivable_pt in |- *; apply existT with (f x0);
elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *;
apply H5.
assert (H5 : forall x:R, a < x < b -> derivable_pt (g1 - g2) x).
intros; elim H5; intros; apply derivable_pt_minus;
[ apply H3; split; left; assumption | apply H4; split; left; assumption ].
assert (H6 : forall x:R, a <= x <= b -> continuity_pt (g1 - g2) x).
intros; apply derivable_continuous_pt; apply derivable_pt_minus;
[ apply H3 | apply H4 ]; assumption.
assert (H7 : forall (x:R) (P:a < x < b), derive_pt (g1 - g2) x (H5 x P) = 0).
intros; elim P; intros; apply derive_pt_eq_0; replace 0 with (f x0 - f x0);
[ idtac | ring ].
assert (H9 : a <= x0 <= b).
split; left; assumption.
apply derivable_pt_lim_minus; [ elim (H _ H9) | elim (H0 _ H9) ]; intros;
eapply derive_pt_eq_1; symmetry in |- *; apply H10.
assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7);
unfold constant_D_eq in H8; assert (H9 := H8 _ H2);
unfold minus_fct in H9; rewrite <- H9; ring.
Qed.
|