aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Cauchy_prod.v
blob: 6ea0767d094761f3ebd576f6b4f5a90d30209094 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
  (************************************************************************)
  (*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
  (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
  (*   \VV/  **************************************************************)
  (*    //   *      This file is distributed under the terms of the       *)
  (*         *       GNU Lesser General Public License Version 2.1        *)
  (************************************************************************)

  (*i $Id$ i*)

Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import PartSum.
Open Local Scope R_scope.

  (**********)
Lemma sum_N_predN :
  forall (An:nat -> R) (N:nat),
    (0 < N)%nat -> sum_f_R0 An N = sum_f_R0 An (pred N) + An N.
Proof.
  intros.
  replace N with (S (pred N)).
  rewrite tech5.
  reflexivity.
  symmetry  in |- *; apply S_pred with 0%nat; assumption.
Qed.

  (**********)
Lemma sum_plus :
  forall (An Bn:nat -> R) (N:nat),
    sum_f_R0 (fun l:nat => An l + Bn l) N = sum_f_R0 An N + sum_f_R0 Bn N.
Proof.
  intros.
  induction  N as [| N HrecN].
  reflexivity.
  do 3 rewrite tech5.
  rewrite HrecN; ring.
Qed.

  (* The main result *)
Theorem cauchy_finite :
  forall (An Bn:nat -> R) (N:nat),
    (0 < N)%nat ->
    sum_f_R0 An N * sum_f_R0 Bn N =
    sum_f_R0 (fun k:nat => sum_f_R0 (fun p:nat => An p * Bn (k - p)%nat) k) N +
    sum_f_R0
    (fun k:nat =>
      sum_f_R0 (fun l:nat => An (S (l + k)) * Bn (N - l)%nat)
      (pred (N - k))) (pred N).
Proof.
  intros; induction  N as [| N HrecN].
  elim (lt_irrefl _ H).
  cut (N = 0%nat \/ (0 < N)%nat).
  intro; elim H0; intro.
  rewrite H1; simpl in |- *; ring.
  replace (pred (S N)) with (S (pred N)).
  do 5 rewrite tech5.
  rewrite Rmult_plus_distr_r; rewrite Rmult_plus_distr_l; rewrite (HrecN H1).
  repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l.
  replace (pred (S N - S (pred N))) with 0%nat.
  rewrite Rmult_plus_distr_l;
    replace
      (sum_f_R0 (fun l:nat => An (S (l + S (pred N))) * Bn (S N - l)%nat) 0) with
      (An (S N) * Bn (S N)).
  repeat rewrite <- Rplus_assoc;
    do 2 rewrite <- (Rplus_comm (An (S N) * Bn (S N)));
      repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l.
  rewrite <- minus_n_n; cut (N = 1%nat \/ (2 <= N)%nat).
  intro; elim H2; intro.
  rewrite H3; simpl in |- *; ring.
  replace
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (l + k)) * Bn (N - l)%nat) (pred (N - k)))
      (pred N)) with
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (pred (N - k)))) (pred (pred N)) +
      sum_f_R0 (fun l:nat => An (S l) * Bn (N - l)%nat) (pred N)).
  replace (sum_f_R0 (fun p:nat => An p * Bn (S N - p)%nat) N) with
    (sum_f_R0 (fun l:nat => An (S l) * Bn (N - l)%nat) (pred N) +
      An 0%nat * Bn (S N)).
  repeat rewrite <- Rplus_assoc;
    rewrite <-
      (Rplus_comm (sum_f_R0 (fun l:nat => An (S l) * Bn (N - l)%nat) (pred N)))
      ; repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l.
  replace
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (l + k)) * Bn (S N - l)%nat)
        (pred (S N - k))) (pred N)) with
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (N - k))) (pred N) +
      Bn (S N) * sum_f_R0 (fun l:nat => An (S l)) (pred N)).
  rewrite (decomp_sum An N H1); rewrite Rmult_plus_distr_r;
    repeat rewrite <- Rplus_assoc; rewrite <- (Rplus_comm (An 0%nat * Bn (S N)));
      repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l.
  repeat rewrite <- Rplus_assoc;
    rewrite <-
      (Rplus_comm (sum_f_R0 (fun i:nat => An (S i)) (pred N) * Bn (S N)))
      ;
      rewrite <-
	(Rplus_comm (Bn (S N) * sum_f_R0 (fun i:nat => An (S i)) (pred N)))
	; rewrite (Rmult_comm (Bn (S N))); repeat rewrite Rplus_assoc;
	  apply Rplus_eq_compat_l.
  replace
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (N - k))) (pred N)) with
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (pred (N - k)))) (pred (pred N)) +
      An (S N) * sum_f_R0 (fun l:nat => Bn (S l)) (pred N)).
  rewrite (decomp_sum Bn N H1); rewrite Rmult_plus_distr_l.
  set
    (Z :=
      sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (pred (N - k)))) (pred (pred N)));
    set (Z2 := sum_f_R0 (fun i:nat => Bn (S i)) (pred N));
      ring.
  rewrite
    (sum_N_predN
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (N - k))) (pred N)).
  replace
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (N - k))) (pred (pred N))) with
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (pred (N - k))) + An (S N) * Bn (S k)) (
	  pred (pred N))).
  rewrite
    (sum_plus
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (pred (N - k)))) (fun k:nat => An (S N) * Bn (S k))
      (pred (pred N))).
  repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l.
  replace (pred (N - pred N)) with 0%nat.
  simpl in |- *; rewrite <- minus_n_O.
  replace (S (pred N)) with N.
  replace (sum_f_R0 (fun k:nat => An (S N) * Bn (S k)) (pred (pred N))) with
    (sum_f_R0 (fun k:nat => Bn (S k) * An (S N)) (pred (pred N))).
  rewrite <- (scal_sum (fun l:nat => Bn (S l)) (pred (pred N)) (An (S N)));
    rewrite (sum_N_predN (fun l:nat => Bn (S l)) (pred N)).
  replace (S (pred N)) with N.
  ring.
  apply S_pred with 0%nat; assumption.
  apply lt_pred; apply lt_le_trans with 2%nat; [ apply lt_n_Sn | assumption ].
  apply sum_eq; intros; apply Rmult_comm.
  apply S_pred with 0%nat; assumption.
  replace (N - pred N)%nat with 1%nat.
  reflexivity.
  pattern N at 1 in |- *; replace N with (S (pred N)).
  rewrite <- minus_Sn_m.
  rewrite <- minus_n_n; reflexivity.
  apply le_n.
  symmetry  in |- *; apply S_pred with 0%nat; assumption.
  apply sum_eq; intros;
    rewrite
      (sum_N_predN (fun l:nat => An (S (S (l + i))) * Bn (N - l)%nat)
	(pred (N - i))).
  replace (S (S (pred (N - i) + i))) with (S N).
  replace (N - pred (N - i))%nat with (S i).
  reflexivity.
  rewrite pred_of_minus; apply INR_eq; repeat rewrite minus_INR.
  rewrite S_INR; simpl; ring.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply INR_le; rewrite minus_INR.
  apply Rplus_le_reg_l with (INR i - 1).
  replace (INR i - 1 + INR 1) with (INR i); [ idtac | simpl; ring ].
  replace (INR i - 1 + (INR N - INR i)) with (INR N - INR 1);
    [ idtac | simpl; ring ].
  rewrite <- minus_INR.
  apply le_INR; apply le_trans with (pred (pred N)).
  assumption.
  rewrite <- pred_of_minus; apply le_pred_n.
  apply le_trans with 2%nat.
  apply le_n_Sn.
  assumption.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  rewrite <- pred_of_minus.
  apply le_trans with (pred N).
  apply le_S_n.
  replace (S (pred N)) with N.
  replace (S (pred (N - i))) with (N - i)%nat.
  apply (fun p n m:nat => plus_le_reg_l n m p) with i; rewrite le_plus_minus_r.
  apply le_plus_r.
  apply le_trans with (pred (pred N));
    [ assumption | apply le_trans with (pred N); apply le_pred_n ].
  apply S_pred with 0%nat.
  apply plus_lt_reg_l with i; rewrite le_plus_minus_r.
  replace (i + 0)%nat with i; [ idtac | ring ].
  apply le_lt_trans with (pred (pred N));
    [ assumption | apply lt_trans with (pred N); apply lt_pred_n_n ].
  apply lt_S_n.
  replace (S (pred N)) with N.
  apply lt_le_trans with 2%nat.
  apply lt_n_Sn.
  assumption.
  apply S_pred with 0%nat; assumption.
  assumption.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply S_pred with 0%nat; assumption.
  apply le_pred_n.
  apply INR_eq; rewrite pred_of_minus; do 3 rewrite S_INR; rewrite plus_INR;
    repeat rewrite minus_INR.
  simpl; ring.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply INR_le.
  rewrite minus_INR.
  apply Rplus_le_reg_l with (INR i - 1).
  replace (INR i - 1 + INR 1) with (INR i); [ idtac | simpl; ring ].
  replace (INR i - 1 + (INR N - INR i)) with (INR N - INR 1);
    [ idtac | simpl; ring ].
  rewrite <- minus_INR.
  apply le_INR.
  apply le_trans with (pred (pred N)).
  assumption.
  rewrite <- pred_of_minus.
  apply le_pred_n.
  apply le_trans with 2%nat.
  apply le_n_Sn.
  assumption.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply lt_le_trans with 1%nat.
  apply lt_O_Sn.
  apply INR_le.
  rewrite pred_of_minus.
  repeat rewrite minus_INR.
  apply Rplus_le_reg_l with (INR i - 1).
  replace (INR i - 1 + INR 1) with (INR i); [ idtac | simpl; ring ].
  replace (INR i - 1 + (INR N - INR i - INR 1)) with (INR N - INR 1 - INR 1).
  repeat rewrite <- minus_INR.
  apply le_INR.
  apply le_trans with (pred (pred N)).
  assumption.
  do 2 rewrite <- pred_of_minus.
  apply le_n.
  apply (fun p n m:nat => plus_le_reg_l n m p) with 1%nat.
  rewrite le_plus_minus_r.
  simpl in |- *; assumption.
  apply le_trans with 2%nat; [ apply le_n_Sn | assumption ].
  apply le_trans with 2%nat; [ apply le_n_Sn | assumption ].
  simpl; ring.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply (fun p n m:nat => plus_le_reg_l n m p) with i.
  rewrite le_plus_minus_r.
  replace (i + 1)%nat with (S i).
  replace N with (S (pred N)).
  apply le_n_S.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_pred_n.
  symmetry  in |- *; apply S_pred with 0%nat; assumption.
  apply INR_eq; rewrite S_INR; rewrite plus_INR; reflexivity.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply lt_le_trans with 1%nat.
  apply lt_O_Sn.
  apply le_S_n.
  replace (S (pred N)) with N.
  assumption.
  apply S_pred with 0%nat; assumption.
  replace
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (l + k)) * Bn (S N - l)%nat)
        (pred (S N - k))) (pred N)) with
    (sum_f_R0
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (N - k)) + An (S k) * Bn (S N)) (pred N)).
  rewrite
    (sum_plus
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
        (pred (N - k))) (fun k:nat => An (S k) * Bn (S N))).
  apply Rplus_eq_compat_l.
  rewrite scal_sum; reflexivity.
  apply sum_eq; intros; rewrite Rplus_comm;
    rewrite
      (decomp_sum (fun l:nat => An (S (l + i)) * Bn (S N - l)%nat)
	(pred (S N - i))).
  replace (0 + i)%nat with i; [ idtac | ring ].
  rewrite <- minus_n_O; apply Rplus_eq_compat_l.
  replace (pred (pred (S N - i))) with (pred (N - i)).
  apply sum_eq; intros.
  replace (S N - S i0)%nat with (N - i0)%nat; [ idtac | reflexivity ].
  replace (S i0 + i)%nat with (S (i0 + i)).
  reflexivity.
  apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; rewrite S_INR; simpl; ring.
  cut ((N - i)%nat = pred (S N - i)).
  intro; rewrite H5; reflexivity.
  rewrite pred_of_minus.
  apply INR_eq; repeat rewrite minus_INR.
  rewrite S_INR; simpl; ring.
  apply le_trans with N.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  apply le_n_Sn.
  apply (fun p n m:nat => plus_le_reg_l n m p) with i.
  rewrite le_plus_minus_r.
  replace (i + 1)%nat with (S i).
  apply le_n_S.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  apply INR_eq; rewrite S_INR; rewrite plus_INR; simpl; ring.
  apply le_trans with N.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  apply le_n_Sn.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  replace (pred (S N - i)) with (S N - S i)%nat.
  replace (S N - S i)%nat with (N - i)%nat; [ idtac | reflexivity ].
  apply plus_lt_reg_l with i.
  rewrite le_plus_minus_r.
  replace (i + 0)%nat with i; [ idtac | ring ].
  apply le_lt_trans with (pred N).
  assumption.
  apply lt_pred_n_n.
  assumption.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  rewrite pred_of_minus.
  apply INR_eq; repeat rewrite minus_INR.
  repeat rewrite S_INR; simpl; ring.
  apply le_trans with N.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  apply le_n_Sn.
  apply (fun p n m:nat => plus_le_reg_l n m p) with i.
  rewrite le_plus_minus_r.
  replace (i + 1)%nat with (S i).
  apply le_n_S.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  apply INR_eq; rewrite S_INR; rewrite plus_INR; simpl; ring.
  apply le_trans with N.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  apply le_n_Sn.
  apply le_n_S.
  apply le_trans with (pred N).
  assumption.
  apply le_pred_n.
  rewrite Rplus_comm.
  rewrite (decomp_sum (fun p:nat => An p * Bn (S N - p)%nat) N).
  rewrite <- minus_n_O.
  apply Rplus_eq_compat_l.
  apply sum_eq; intros.
  reflexivity.
  assumption.
  rewrite Rplus_comm.
  rewrite
    (decomp_sum
      (fun k:nat =>
	sum_f_R0 (fun l:nat => An (S (l + k)) * Bn (N - l)%nat) (pred (N - k)))
      (pred N)).
  rewrite <- minus_n_O.
  replace (sum_f_R0 (fun l:nat => An (S (l + 0)) * Bn (N - l)%nat) (pred N))
    with (sum_f_R0 (fun l:nat => An (S l) * Bn (N - l)%nat) (pred N)).
  apply Rplus_eq_compat_l.
  apply sum_eq; intros.
  replace (pred (N - S i)) with (pred (pred (N - i))).
  apply sum_eq; intros.
  replace (i0 + S i)%nat with (S (i0 + i)).
  reflexivity.
  apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; rewrite S_INR; simpl; ring.
  cut (pred (N - i) = (N - S i)%nat).
  intro; rewrite H5; reflexivity.
  rewrite pred_of_minus.
  apply INR_eq.
  repeat rewrite minus_INR.
  repeat rewrite S_INR; simpl; ring.
  apply le_trans with (S (pred (pred N))).
  apply le_n_S; assumption.
  replace (S (pred (pred N))) with (pred N).
  apply le_pred_n.
  apply S_pred with 0%nat.
  apply lt_S_n.
  replace (S (pred N)) with N.
  apply lt_le_trans with 2%nat.
  apply lt_n_Sn.
  assumption.
  apply S_pred with 0%nat; assumption.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply (fun p n m:nat => plus_le_reg_l n m p) with i.
  rewrite le_plus_minus_r.
  replace (i + 1)%nat with (S i).
  replace N with (S (pred N)).
  apply le_n_S.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_pred_n.
  symmetry  in |- *; apply S_pred with 0%nat; assumption.
  apply INR_eq; rewrite S_INR; rewrite plus_INR; simpl; ring.
  apply le_trans with (pred (pred N)).
  assumption.
  apply le_trans with (pred N); apply le_pred_n.
  apply sum_eq; intros.
  replace (i + 0)%nat with i; [ reflexivity | trivial ].
  apply lt_S_n.
  replace (S (pred N)) with N.
  apply lt_le_trans with 2%nat; [ apply lt_n_Sn | assumption ].
  apply S_pred with 0%nat; assumption.
  inversion H1.
  left; reflexivity.
  right; apply le_n_S; assumption.
  simpl in |- *.
  replace (S (pred N)) with N.
  reflexivity.
  apply S_pred with 0%nat; assumption.
  simpl in |- *.
  cut ((N - pred N)%nat = 1%nat).
  intro; rewrite H2; reflexivity.
  rewrite pred_of_minus.
  apply INR_eq; repeat rewrite minus_INR.
  simpl; ring.
  apply lt_le_S; assumption.
  rewrite <- pred_of_minus; apply le_pred_n.
  simpl in |- *; symmetry  in |- *; apply S_pred with 0%nat; assumption.
  inversion H.
  left; reflexivity.
  right; apply lt_le_trans with 1%nat; [ apply lt_n_Sn | exact H1 ].
Qed.