aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Binome.v
blob: dae7fa148b5ba46342bc1532d9fce87ba2289291 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)
 
(*i $Id$ i*)

Require DiscrR.
Require Rbase.
Require Rtrigo_fun.
Require Alembert.

Definition C [n,p:nat] : R := ``(INR (fact n))/((INR (fact p))*(INR (fact (minus n p))))``.

Lemma pascal_step1 : (n,i:nat) (le i n) -> (C n i) == (C n (minus n i)).
Intros; Unfold C; Replace (minus n (minus n i)) with i.
Rewrite Rmult_sym.
Reflexivity.
Apply plus_minus; Rewrite plus_sym; Apply le_plus_minus; Assumption.
Qed.

Lemma pascal_step2 : (n,i:nat) (le i n) -> (C (S n) i) == ``(INR (S n))/(INR (minus (S n) i))*(C n i)``.
Intros; Unfold C; Replace (minus (S n) i) with (S (minus n i)).
Cut (n:nat) (fact (S n))=(mult (S n) (fact n)).
Intro; Repeat Rewrite H0.
Unfold Rdiv; Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult.
Ring.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply prod_neq_R0.
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Intro; Reflexivity.
Apply minus_Sn_m; Assumption.
Qed.

Lemma minus_neq_O : (n,i:nat) (lt i n) -> ~(minus n i)=O.
Intros; Red; Intro.
Cut (n,m:nat) (le m n) -> (minus n m)=O -> n=m.
Intro; Assert H2 := (H1 ? ? (lt_le_weak ? ? H) H0); Rewrite H2 in H; Elim (lt_n_n ? H).
Pose R := [n,m:nat](le m n)->(minus n m)=(0)->n=m.
Cut ((n,m:nat)(R n m)) -> ((n0,m:nat)(le m n0)->(minus n0 m)=(0)->n0=m).
Intro; Apply H1.
Apply nat_double_ind.
Unfold R; Intros; Inversion H2; Reflexivity.
Unfold R; Intros; Simpl in H3; Assumption.
Unfold R; Intros; Simpl in H4; Assert H5 := (le_S_n ? ? H3); Assert H6 := (H2 H5 H4); Rewrite H6; Reflexivity.
Unfold R; Intros; Apply H1; Assumption.
Qed.

Lemma pascal_step3 : (n,i:nat) (lt i n) -> (C n (S i)) == ``(INR (minus n i))/(INR (S i))*(C n i)``.
Intros; Unfold C.
Cut (n:nat) (fact (S n))=(mult (S n) (fact n)).
Intro.
Cut (minus n i) = (S (minus n (S i))).
Intro.
Pattern 2 (minus n i); Rewrite H1.
Repeat Rewrite H0; Unfold Rdiv; Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult.
Rewrite <- H1; Rewrite (Rmult_sym ``/(INR (minus n i))``); Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym (INR (minus n i))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Ring.
Apply not_O_INR; Apply minus_neq_O; Assumption.
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
Apply INR_fact_neq_0.
Rewrite minus_Sn_m.
Simpl; Reflexivity.
Apply lt_le_S; Assumption.
Intro; Reflexivity.
Qed.

Lemma le_minusni_n : (n,i:nat) (le i n)->(le (minus n i) n).
Pose R := [m,n:nat] (le n m) -> (le (minus m n) m).
Cut ((m,n:nat)(R m n)) -> ((n,i:nat)(le i n)->(le (minus n i) n)).
Intro; Apply H.
Apply nat_double_ind.
Unfold R; Intros; Simpl; Apply le_n.
Unfold R; Intros; Simpl; Apply le_n.
Unfold R; Intros; Simpl; Apply le_trans with n.
Apply H0; Apply le_S_n; Assumption.
Apply le_n_Sn.
Unfold R; Intros; Apply H; Assumption.
Qed.

(**********)
Lemma pascal : (n,i:nat) (lt i n) -> ``(C n i)+(C n (S i))==(C (S n) (S i))``.
Intros.
Rewrite pascal_step3; [Idtac | Assumption].
Replace ``(C n i)+(INR (minus n i))/(INR (S i))*(C n i)`` with ``(C n i)*(1+(INR (minus n i))/(INR (S i)))``; [Idtac | Ring].
Replace ``1+(INR (minus n i))/(INR (S i))`` with ``(INR (S n))/(INR (S i))``.
Rewrite pascal_step1.
Rewrite Rmult_sym; Replace (S i) with (minus (S n) (minus n i)).
Rewrite <- pascal_step2.
Apply pascal_step1.
Apply le_trans with n.
Apply le_minusni_n.
Apply lt_le_weak; Assumption.
Apply le_n_Sn.
Apply le_minusni_n.
Apply lt_le_weak; Assumption.
Rewrite <- minus_Sn_m.
Cut (minus n (minus n i))=i.
Intro; Rewrite H0; Reflexivity.
Symmetry; Apply plus_minus.
Rewrite plus_sym; Rewrite le_plus_minus_r.
Reflexivity.
Apply lt_le_weak; Assumption.
Apply le_minusni_n; Apply lt_le_weak; Assumption.
Apply lt_le_weak; Assumption.
Unfold Rdiv.
Repeat Rewrite S_INR.
Rewrite minus_INR.
Cut ``((INR i)+1)<>0``.
Intro.
Apply r_Rmult_mult with ``(INR i)+1``; [Idtac | Assumption].
Rewrite Rmult_Rplus_distr.
Rewrite Rmult_1r.
Do 2 Rewrite (Rmult_sym ``(INR i)+1``).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym; [Idtac | Assumption].
Ring.
Rewrite <- S_INR.
Apply not_O_INR; Discriminate.
Apply lt_le_weak; Assumption.
Qed.

Lemma scal_sum : (An:nat->R;N:nat;x:R) (Rmult x (sum_f_R0 An N))==(sum_f_R0 [i:nat]``(An i)*x`` N).
Intros; Induction N.
Simpl; Ring.
Do 2 Rewrite tech5.
Rewrite Rmult_Rplus_distr; Rewrite <- HrecN; Ring.
Qed.

Lemma decomp_sum : (An:nat->R;N:nat) (lt O N) -> (sum_f_R0 An N)==(Rplus (An O) (sum_f_R0 [i:nat](An (S i)) (pred N))).
Intros; Induction N.
Elim (lt_n_n ? H).
Cut (lt O N)\/N=O.
Intro; Elim H0; Intro.
Cut (S (pred N))=(pred (S N)).
Intro; Rewrite <- H2.
Do 2 Rewrite tech5.
Replace (S (S (pred N))) with (S N).
Rewrite (HrecN H1); Ring.
Rewrite H2; Simpl; Reflexivity.
Assert H2 := (O_or_S N).
Elim H2; Intros.
Elim a; Intros.
Rewrite <- p.
Simpl; Reflexivity.
Rewrite <- b in H1; Elim (lt_n_n ? H1).
Rewrite H1; Simpl; Reflexivity.
Inversion H.
Right; Reflexivity.
Left; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption].
Qed.

Lemma plus_sum : (An,Bn:nat->R;N:nat) (sum_f_R0 [i:nat]``(An i)+(Bn i)`` N)==``(sum_f_R0 An N)+(sum_f_R0 Bn N)``.
Intros; Induction N.
Simpl; Ring.
Do 3 Rewrite tech5; Rewrite HrecN; Ring.
Qed.

Lemma sum_eq : (An,Bn:nat->R;N:nat) ((i:nat)(le i N)->(An i)==(Bn i)) -> (sum_f_R0 An N)==(sum_f_R0 Bn N).
Intros; Induction N.
Simpl; Apply H; Apply le_n.
Do 2 Rewrite tech5; Rewrite HrecN.
Rewrite (H (S N)); [Reflexivity | Apply le_n].
Intros; Apply H; Apply le_trans with N; [Assumption | Apply le_n_Sn].
Qed.

(*********************)
(* Formule du binôme *)
(*********************)
Lemma binome : (x,y:R;n:nat) ``(pow (x+y) n)``==(sum_f_R0 [i:nat]``(C n i)*(pow x i)*(pow y (minus n i))`` n).
Intros; Induction n.
Unfold C; Simpl; Unfold Rdiv; Repeat Rewrite Rmult_1r; Rewrite Rinv_R1; Ring.
Pattern 1 (S n); Replace (S n) with (plus n (1)); [Idtac | Ring].
Rewrite pow_add; Rewrite Hrecn.
Replace ``(pow (x+y) (S O))`` with ``x+y``; [Idtac | Simpl; Ring].
Rewrite tech5.
Cut (p:nat)(C p p)==R1.
Cut (p:nat)(C p O)==R1.
Intros; Rewrite H0; Rewrite <- minus_n_n; Rewrite Rmult_1l.
Replace (pow y O) with R1; [Rewrite Rmult_1r | Simpl; Reflexivity].
Induction n.
Simpl; Do 2 Rewrite H; Ring.
(* N >= 1 *)
Pose N := (S n).
Rewrite Rmult_Rplus_distr.
Replace (Rmult (sum_f_R0 ([i:nat]``(C N i)*(pow x i)*(pow y (minus N i))``) N) x) with (sum_f_R0 [i:nat]``(C N i)*(pow x (S i))*(pow y (minus N i))`` N).
Replace (Rmult (sum_f_R0 ([i:nat]``(C N i)*(pow x i)*(pow y (minus N i))``) N) y) with (sum_f_R0 [i:nat]``(C N i)*(pow x i)*(pow y (minus (S N) i))`` N).
Rewrite (decomp_sum [i:nat]``(C (S N) i)*(pow x i)*(pow y (minus (S N) i))`` N).
Rewrite H; Replace (pow x O) with R1; [Idtac | Reflexivity].
Do 2 Rewrite Rmult_1l.
Replace (minus (S N) O) with (S N); [Idtac | Reflexivity].
Pose An := [i:nat]``(C N i)*(pow x (S i))*(pow y (minus N i))``.
Pose Bn := [i:nat]``(C N (S i))*(pow x (S i))*(pow y (minus N i))``.
Replace (pred N) with n.
Replace (sum_f_R0 ([i:nat]``(C (S N) (S i))*(pow x (S i))*(pow y (minus (S N) (S i)))``) n) with (sum_f_R0 [i:nat]``(An i)+(Bn i)`` n).
Rewrite plus_sum.
Replace (pow x (S N)) with (An (S n)).
Rewrite (Rplus_sym (sum_f_R0 An n)).
Repeat Rewrite Rplus_assoc.
Rewrite <- tech5.
Fold N.
Pose Cn := [i:nat]``(C N i)*(pow x i)*(pow y (minus (S N) i))``.
Cut (i:nat) (lt i N)-> (Cn (S i))==(Bn i).
Intro; Replace (sum_f_R0 Bn n) with (sum_f_R0 [i:nat](Cn (S i)) n).
Replace (pow y (S N)) with (Cn O).
Rewrite <- Rplus_assoc; Rewrite (decomp_sum Cn N).
Replace (pred N) with n.
Ring.
Unfold N; Simpl; Reflexivity.
Unfold N; Apply lt_O_Sn.
Unfold Cn; Rewrite H; Simpl; Ring.
Apply sum_eq.
Intros; Apply H1.
Unfold N; Apply le_lt_trans with n; [Assumption | Apply lt_n_Sn].
Intros; Unfold Bn Cn.
Replace (minus (S N) (S i)) with (minus N i); Reflexivity.
Unfold An; Fold N; Rewrite <- minus_n_n; Rewrite H0; Simpl; Ring.
Apply sum_eq.
Intros; Unfold An Bn; Replace (minus (S N) (S i)) with (minus N i); [Idtac | Reflexivity].
Rewrite <- pascal; [Ring | Apply le_lt_trans with n; [Assumption | Unfold N; Apply lt_n_Sn]].
Unfold N; Reflexivity.
Unfold N; Apply lt_O_Sn.
Rewrite <- (Rmult_sym y); Rewrite scal_sum; Apply sum_eq.
Intros; Replace (minus (S N) i) with (S (minus N i)).
Replace (S (minus N i)) with (plus (minus N i) (1)); [Idtac | Ring].
Rewrite pow_add; Replace (pow y (S O)) with y; [Idtac | Simpl; Ring]; Ring.
Apply minus_Sn_m; Assumption.
Rewrite <- (Rmult_sym x); Rewrite scal_sum; Apply sum_eq.
Intros; Replace (S i) with (plus i (1)); [Idtac | Ring]; Rewrite pow_add; Replace (pow x (S O)) with x; [Idtac | Simpl; Ring]; Ring.
Intro; Unfold C.
Replace (INR (fact O)) with R1; [Idtac | Reflexivity].
Replace (minus p O) with p; [Idtac | Apply minus_n_O].
Rewrite Rmult_1l; Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | Apply INR_fact_neq_0].
Intro; Unfold C.
Replace (minus p p) with O; [Idtac | Apply minus_n_n].
Replace (INR (fact O)) with R1; [Idtac | Reflexivity].
Rewrite Rmult_1r; Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | Apply INR_fact_neq_0].
Qed.