aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/AltSeries.v
blob: 73d288aee3d7db9c5e3b678b6f916bbf11c05637 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import SeqProp.
Require Import PartSum.
Require Import Max.
Local Open Scope R_scope.

(**********)
(** * Formalization of alternated series *)
Definition tg_alt (Un:nat -> R) (i:nat) : R := (-1) ^ i * Un i.
Definition positivity_seq (Un:nat -> R) : Prop := forall n:nat, 0 <= Un n.

Lemma CV_ALT_step0 :
  forall Un:nat -> R,
    Un_decreasing Un ->
    Un_growing (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))).
Proof.
  intros; unfold Un_growing; intro.
  cut ((2 * S n)%nat = S (S (2 * n))).
  intro; rewrite H0.
  do 4 rewrite tech5; repeat rewrite Rplus_assoc; apply Rplus_le_compat_l.
  pattern (tg_alt Un (S (2 * n))) at 1; rewrite <- Rplus_0_r.
  apply Rplus_le_compat_l.
  unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
    rewrite Rmult_1_l.
  apply Rplus_le_reg_l with (Un (S (2 * S n))).
  rewrite Rplus_0_r;
    replace (Un (S (2 * S n)) + (Un (2 * S n)%nat + -1 * Un (S (2 * S n)))) with
      (Un (2 * S n)%nat); [ idtac | ring ].
  apply H.
  cut (forall n:nat, S n = (n + 1)%nat); [ intro | intro; ring ].
  rewrite (H0 n); rewrite (H0 (S (2 * n))); rewrite (H0 (2 * n)%nat); ring.
Qed.

Lemma CV_ALT_step1 :
  forall Un:nat -> R,
    Un_decreasing Un ->
    Un_decreasing (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)).
Proof.
  intros; unfold Un_decreasing; intro.
  cut ((2 * S n)%nat = S (S (2 * n))).
  intro; rewrite H0; do 2 rewrite tech5; repeat rewrite Rplus_assoc.
  pattern (sum_f_R0 (tg_alt Un) (2 * n)) at 2; rewrite <- Rplus_0_r.
  apply Rplus_le_compat_l.
  unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
    rewrite Rmult_1_l.
  apply Rplus_le_reg_l with (Un (S (2 * n))).
  rewrite Rplus_0_r;
    replace (Un (S (2 * n)) + (-1 * Un (S (2 * n)) + Un (2 * S n)%nat)) with
      (Un (2 * S n)%nat); [ idtac | ring ].
  rewrite H0; apply H.
  cut (forall n:nat, S n = (n + 1)%nat); [ intro | intro; ring ].
  rewrite (H0 n); rewrite (H0 (S (2 * n))); rewrite (H0 (2 * n)%nat); ring.
Qed.

(**********)
Lemma CV_ALT_step2 :
  forall (Un:nat -> R) (N:nat),
    Un_decreasing Un ->
    positivity_seq Un ->
    sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N)) <= 0.
Proof.
  intros; induction  N as [| N HrecN].
  simpl; unfold tg_alt; simpl; rewrite Rmult_1_r.
  replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ].
  apply Rplus_le_reg_l with (Un 1%nat); rewrite Rplus_0_r.
  replace (Un 1%nat + (-1 * Un 1%nat + Un 2%nat)) with (Un 2%nat);
    [ apply H | ring ].
  cut (S (2 * S N) = S (S (S (2 * N)))).
  intro; rewrite H1; do 2 rewrite tech5.
  apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))).
  pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))) at 2;
    rewrite <- Rplus_0_r.
  rewrite Rplus_assoc; apply Rplus_le_compat_l.
  unfold tg_alt; rewrite <- H1.
  rewrite pow_1_odd.
  cut (S (S (2 * S N)) = (2 * S (S N))%nat).
  intro; rewrite H2; rewrite pow_1_even; rewrite Rmult_1_l; rewrite <- H2.
  apply Rplus_le_reg_l with (Un (S (2 * S N))).
  rewrite Rplus_0_r;
    replace (Un (S (2 * S N)) + (-1 * Un (S (2 * S N)) + Un (S (S (2 * S N)))))
      with (Un (S (S (2 * S N)))); [ idtac | ring ].
  apply H.
  ring.
  apply HrecN.
  ring.
Qed.

(** A more general inequality *)
Lemma CV_ALT_step3 :
  forall (Un:nat -> R) (N:nat),
    Un_decreasing Un ->
    positivity_seq Un -> sum_f_R0 (fun i:nat => tg_alt Un (S i)) N <= 0.
Proof.
  intros; induction  N as [| N HrecN].
  simpl; unfold tg_alt; simpl; rewrite Rmult_1_r.
  apply Rplus_le_reg_l with (Un 1%nat).
  rewrite Rplus_0_r; replace (Un 1%nat + -1 * Un 1%nat) with 0;
    [ apply H0 | ring ].
  assert (H1 := even_odd_cor N).
  elim H1; intros.
  elim H2; intro.
  rewrite H3; apply CV_ALT_step2; assumption.
  rewrite H3; rewrite tech5.
  apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))).
  pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))) at 2;
    rewrite <- Rplus_0_r.
  apply Rplus_le_compat_l.
  unfold tg_alt; simpl.
  replace (x + (x + 0))%nat with (2 * x)%nat; [ idtac | ring ].
  rewrite pow_1_even.
  replace (-1 * (-1 * (-1 * 1)) * Un (S (S (S (2 * x))))) with
    (- Un (S (S (S (2 * x))))); [ idtac | ring ].
  apply Rplus_le_reg_l with (Un (S (S (S (2 * x))))).
  rewrite Rplus_0_r; rewrite Rplus_opp_r.
  apply H0.
  apply CV_ALT_step2; assumption.
Qed.

  (**********)
Lemma CV_ALT_step4 :
  forall Un:nat -> R,
    Un_decreasing Un ->
    positivity_seq Un ->
    has_ub (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))).
Proof.
  intros; unfold has_ub; unfold bound.
  exists (Un 0%nat).
  unfold is_upper_bound; intros; elim H1; intros.
  rewrite H2; rewrite decomp_sum.
  replace (tg_alt Un 0) with (Un 0%nat).
  pattern (Un 0%nat) at 2; rewrite <- Rplus_0_r.
  apply Rplus_le_compat_l.
  apply CV_ALT_step3; assumption.
  unfold tg_alt; simpl; ring.
  apply lt_O_Sn.
Qed.

(** This lemma gives an interesting result about alternated series *)
Lemma CV_ALT :
  forall Un:nat -> R,
    Un_decreasing Un ->
    positivity_seq Un ->
    Un_cv Un 0 ->
    { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l }.
Proof.
  intros.
  assert (H2 := CV_ALT_step0 _ H).
  assert (H3 := CV_ALT_step4 _ H H0).
  destruct (growing_cv _ H2 H3) as (x,p).
  exists x.
  unfold Un_cv; unfold R_dist; unfold Un_cv in H1;
    unfold R_dist in H1; unfold Un_cv in p; unfold R_dist in p.
  intros; cut (0 < eps / 2);
    [ intro
      | unfold Rdiv; apply Rmult_lt_0_compat;
	[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
  elim (H1 (eps / 2) H5); intros N2 H6.
  elim (p (eps / 2) H5); intros N1 H7.
  set (N := max (S (2 * N1)) N2).
  exists N; intros.
  assert (H9 := even_odd_cor n).
  elim H9; intros P H10.
  cut (N1 <= P)%nat.
  intro; elim H10; intro.
  replace (sum_f_R0 (tg_alt Un) n - x) with
    (sum_f_R0 (tg_alt Un) (S n) - x + - tg_alt Un (S n)).
  apply Rle_lt_trans with
    (Rabs (sum_f_R0 (tg_alt Un) (S n) - x) + Rabs (- tg_alt Un (S n))).
  apply Rabs_triang.
  rewrite (double_var eps); apply Rplus_lt_compat.
  rewrite H12; apply H7; assumption.
  rewrite Rabs_Ropp; unfold tg_alt; rewrite Rabs_mult;
    rewrite pow_1_abs; rewrite Rmult_1_l; unfold Rminus in H6;
      rewrite Ropp_0 in H6; rewrite <- (Rplus_0_r (Un (S n)));
	apply H6.
  unfold ge; apply le_trans with n.
  apply le_trans with N; [ unfold N; apply le_max_r | assumption ].
  apply le_n_Sn.
  rewrite tech5; ring.
  rewrite H12; apply Rlt_trans with (eps / 2).
  apply H7; assumption.
  unfold Rdiv; apply Rmult_lt_reg_l with 2.
  prove_sup0.
  rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
    [ rewrite Rmult_1_r | discrR ].
  rewrite double.
  pattern eps at 1; rewrite <- (Rplus_0_r eps); apply Rplus_lt_compat_l;
    assumption.
  elim H10; intro; apply le_double.
  rewrite <- H11; apply le_trans with N.
  unfold N; apply le_trans with (S (2 * N1));
    [ apply le_n_Sn | apply le_max_l ].
  assumption.
  apply lt_n_Sm_le.
  rewrite <- H11.
  apply lt_le_trans with N.
  unfold N; apply lt_le_trans with (S (2 * N1)).
  apply lt_n_Sn.
  apply le_max_l.
  assumption.
Qed.


(*************************************************)
(** *       Convergence of alternated series     *)
Theorem alternated_series :
  forall Un:nat -> R,
    Un_decreasing Un ->
    Un_cv Un 0 ->
    { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l }.
Proof.
  intros; apply CV_ALT.
  assumption.
  unfold positivity_seq; apply decreasing_ineq; assumption.
  assumption.
Qed.

Theorem alternated_series_ineq :
  forall (Un:nat -> R) (l:R) (N:nat),
    Un_decreasing Un ->
    Un_cv Un 0 ->
    Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l ->
    sum_f_R0 (tg_alt Un) (S (2 * N)) <= l <= sum_f_R0 (tg_alt Un) (2 * N).
Proof.
  intros.
  cut (Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)) l).
  cut (Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))) l).
  intros; split.
  apply (growing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N)))).
  apply CV_ALT_step0; assumption.
  assumption.
  apply (decreasing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N))).
  apply CV_ALT_step1; assumption.
  assumption.
  unfold Un_cv; unfold R_dist; unfold Un_cv in H1;
    unfold R_dist in H1; intros.
  elim (H1 eps H2); intros.
  exists x; intros.
  apply H3.
  unfold ge; apply le_trans with (2 * n)%nat.
  apply le_trans with n.
  assumption.
  assert (H5 := mult_O_le n 2).
  elim H5; intro.
  cut (0%nat <> 2%nat);
    [ intro; elim H7; symmetry ; assumption | discriminate ].
  assumption.
  apply le_n_Sn.
  unfold Un_cv; unfold R_dist; unfold Un_cv in H1;
    unfold R_dist in H1; intros.
  elim (H1 eps H2); intros.
  exists x; intros.
  apply H3.
  unfold ge; apply le_trans with n.
  assumption.
  assert (H5 := mult_O_le n 2).
  elim H5; intro.
  cut (0%nat <> 2%nat);
    [ intro; elim H7; symmetry ; assumption | discriminate ].
  assumption.
Qed.

(***************************************)
(** * Application : construction of PI *)
(***************************************)

Definition PI_tg (n:nat) := / INR (2 * n + 1).

Lemma PI_tg_pos : forall n:nat, 0 <= PI_tg n.
Proof.
  intro; unfold PI_tg; left; apply Rinv_0_lt_compat; apply lt_INR_0;
    replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
Qed.

Lemma PI_tg_decreasing : Un_decreasing PI_tg.
Proof.
  unfold PI_tg, Un_decreasing; intro.
  apply Rmult_le_reg_l with (INR (2 * n + 1)).
  apply lt_INR_0.
  replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
  rewrite <- Rinv_r_sym.
  apply Rmult_le_reg_l with (INR (2 * S n + 1)).
  apply lt_INR_0.
  replace (2 * S n + 1)%nat with (S (2 * S n)); [ apply lt_O_Sn | ring ].
  rewrite (Rmult_comm (INR (2 * S n + 1))); rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym.
  do 2 rewrite Rmult_1_r; apply le_INR.
  replace (2 * S n + 1)%nat with (S (S (2 * n + 1))).
  apply le_trans with (S (2 * n + 1)); apply le_n_Sn.
  ring.
  apply not_O_INR; discriminate.
  apply not_O_INR; replace (2 * n + 1)%nat with (S (2 * n));
    [ discriminate | ring ].
Qed.

Lemma PI_tg_cv : Un_cv PI_tg 0.
Proof.
  unfold Un_cv; unfold R_dist; intros.
  cut (0 < 2 * eps);
    [ intro | apply Rmult_lt_0_compat; [ prove_sup0 | assumption ] ].
  assert (H1 := archimed (/ (2 * eps))).
  cut (0 <= up (/ (2 * eps)))%Z.
  intro; assert (H3 := IZN (up (/ (2 * eps))) H2).
  elim H3; intros N H4.
  cut (0 < N)%nat.
  intro; exists N; intros.
  cut (0 < n)%nat.
  intro; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
    rewrite Rabs_right.
  unfold PI_tg; apply Rlt_trans with (/ INR (2 * n)).
  apply Rmult_lt_reg_l with (INR (2 * n)).
  apply lt_INR_0.
  replace (2 * n)%nat with (n + n)%nat; [ idtac | ring ].
  apply lt_le_trans with n.
  assumption.
  apply le_plus_l.
  rewrite <- Rinv_r_sym.
  apply Rmult_lt_reg_l with (INR (2 * n + 1)).
  apply lt_INR_0.
  replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
  rewrite (Rmult_comm (INR (2 * n + 1))).
  rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
  do 2 rewrite Rmult_1_r; apply lt_INR.
  replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_n_Sn | ring ].
  apply not_O_INR; replace (2 * n + 1)%nat with (S (2 * n));
    [ discriminate | ring ].
  replace n with (S (pred n)).
  apply not_O_INR; discriminate.
  symmetry ; apply S_pred with 0%nat.
  assumption.
  apply Rle_lt_trans with (/ INR (2 * N)).
  apply Rmult_le_reg_l with (INR (2 * N)).
  rewrite mult_INR; apply Rmult_lt_0_compat;
    [ simpl; prove_sup0 | apply lt_INR_0; assumption ].
  rewrite <- Rinv_r_sym.
  apply Rmult_le_reg_l with (INR (2 * n)).
  rewrite mult_INR; apply Rmult_lt_0_compat;
    [ simpl; prove_sup0 | apply lt_INR_0; assumption ].
  rewrite (Rmult_comm (INR (2 * n))); rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym.
  do 2 rewrite Rmult_1_r; apply le_INR.
  apply (fun m n p:nat => mult_le_compat_l p n m); assumption.
  replace n with (S (pred n)).
  apply not_O_INR; discriminate.
  symmetry ; apply S_pred with 0%nat.
  assumption.
  replace N with (S (pred N)).
  apply not_O_INR; discriminate.
  symmetry ; apply S_pred with 0%nat.
  assumption.
  rewrite mult_INR.
  rewrite Rinv_mult_distr.
  replace (INR 2) with 2; [ idtac | reflexivity ].
  apply Rmult_lt_reg_l with 2.
  prove_sup0.
  rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ idtac | discrR ].
  rewrite Rmult_1_l; apply Rmult_lt_reg_l with (INR N).
  apply lt_INR_0; assumption.
  rewrite <- Rinv_r_sym.
  apply Rmult_lt_reg_l with (/ (2 * eps)).
  apply Rinv_0_lt_compat; assumption.
  rewrite Rmult_1_r;
    replace (/ (2 * eps) * (INR N * (2 * eps))) with
      (INR N * (2 * eps * / (2 * eps))); [ idtac | ring ].
  rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r; replace (INR N) with (IZR (Z.of_nat N)).
  rewrite <- H4.
  elim H1; intros; assumption.
  symmetry ; apply INR_IZR_INZ.
  apply prod_neq_R0;
    [ discrR | red; intro; rewrite H8 in H; elim (Rlt_irrefl _ H) ].
  apply not_O_INR.
  red; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
  replace (INR 2) with 2; [ discrR | reflexivity ].
  apply not_O_INR.
  red; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
  apply Rle_ge; apply PI_tg_pos.
  apply lt_le_trans with N; assumption.
  elim H1; intros H5 _.
  destruct (lt_eq_lt_dec 0 N) as [[| <- ]|H6].
  assumption.
  rewrite H4 in H5.
  simpl in H5.
  cut (0 < / (2 * eps)); [ intro | apply Rinv_0_lt_compat; assumption ].
  elim (Rlt_irrefl _ (Rlt_trans _ _ _ H6 H5)).
  elim (lt_n_O _ H6).
  apply le_IZR.
  simpl.
  left; apply Rlt_trans with (/ (2 * eps)).
  apply Rinv_0_lt_compat; assumption.
  elim H1; intros; assumption.
Qed.

Lemma exist_PI :
  { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt PI_tg) N) l }.
Proof.
  apply alternated_series.
  apply PI_tg_decreasing.
  apply PI_tg_cv.
Qed.

(** Now, PI is defined *)
Definition Alt_PI : R := 4 * (let (a,_) := exist_PI in a).

(** We can get an approximation of PI with the following inequality *)
Lemma Alt_PI_ineq :
  forall N:nat,
    sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= Alt_PI / 4 <=
    sum_f_R0 (tg_alt PI_tg) (2 * N).
Proof.
  intro; apply alternated_series_ineq.
  apply PI_tg_decreasing.
  apply PI_tg_cv.
  unfold Alt_PI; case exist_PI; intro.
  replace (4 * x / 4) with x.
  trivial.
  unfold Rdiv; rewrite (Rmult_comm 4); rewrite Rmult_assoc;
    rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r; reflexivity | discrR ].
Qed.

Lemma Alt_PI_RGT_0 : 0 < Alt_PI.
Proof.
  assert (H := Alt_PI_ineq 0).
  apply Rmult_lt_reg_l with (/ 4).
  apply Rinv_0_lt_compat; prove_sup0.
  rewrite Rmult_0_r; rewrite Rmult_comm.
  elim H; clear H; intros H _.
  unfold Rdiv in H;
    apply Rlt_le_trans with (sum_f_R0 (tg_alt PI_tg) (S (2 * 0))).
  simpl; unfold tg_alt; simpl; rewrite Rmult_1_l;
    rewrite Rmult_1_r; apply Rplus_lt_reg_l with (PI_tg 1).
  rewrite Rplus_0_r;
    replace (PI_tg 1 + (PI_tg 0 + -1 * PI_tg 1)) with (PI_tg 0);
      [ unfold PI_tg | ring ].
  simpl; apply Rinv_lt_contravar.
  rewrite Rmult_1_l; replace (2 + 1) with 3; [ prove_sup0 | ring ].
  rewrite Rplus_comm; pattern 1 at 1; rewrite <- Rplus_0_r;
    apply Rplus_lt_compat_l; prove_sup0.
  assumption.
Qed.