1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import QArith.
Lemma Qopp_lt_compat: forall p q : Q, p < q -> - q < - p.
Proof.
intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl.
rewrite !Z.mul_opp_l; omega.
Qed.
Hint Resolve Qopp_lt_compat : qarith.
(************)
Local Coercion inject_Z : Z >-> Q.
Definition Qfloor (x:Q) := let (n,d) := x in Z.div n (Zpos d).
Definition Qceiling (x:Q) := (-(Qfloor (-x)))%Z.
Lemma Qfloor_Z : forall z:Z, Qfloor z = z.
Proof.
intros z.
simpl.
auto with *.
Qed.
Lemma Qceiling_Z : forall z:Z, Qceiling z = z.
Proof.
intros z.
unfold Qceiling.
simpl.
rewrite Zdiv_1_r.
auto with *.
Qed.
Lemma Qfloor_le : forall x, Qfloor x <= x.
Proof.
intros [n d].
simpl.
unfold Qle.
simpl.
replace (n*1)%Z with n by ring.
rewrite Z.mul_comm.
apply Z_mult_div_ge.
auto with *.
Qed.
Hint Resolve Qfloor_le : qarith.
Lemma Qle_ceiling : forall x, x <= Qceiling x.
Proof.
intros x.
apply Qle_trans with (- - x).
rewrite Qopp_involutive.
auto with *.
change (Qceiling x:Q) with (-(Qfloor(-x))).
auto with *.
Qed.
Hint Resolve Qle_ceiling : qarith.
Lemma Qle_floor_ceiling : forall x, Qfloor x <= Qceiling x.
Proof.
eauto with qarith.
Qed.
Lemma Qlt_floor : forall x, x < (Qfloor x+1)%Z.
Proof.
intros [n d].
simpl.
unfold Qlt.
simpl.
replace (n*1)%Z with n by ring.
ring_simplify.
replace (n / ' d * ' d + ' d)%Z with
(('d * (n / 'd) + n mod 'd) + 'd - n mod 'd)%Z by ring.
rewrite <- Z_div_mod_eq; auto with*.
rewrite <- Z.lt_add_lt_sub_r.
destruct (Z_mod_lt n ('d)); auto with *.
Qed.
Hint Resolve Qlt_floor : qarith.
Lemma Qceiling_lt : forall x, (Qceiling x-1)%Z < x.
Proof.
intros x.
unfold Qceiling.
replace (- Qfloor (- x) - 1)%Z with (-(Qfloor (-x) + 1))%Z by ring.
change ((- (Qfloor (- x) + 1))%Z:Q) with (-(Qfloor (- x) + 1)%Z).
apply Qlt_le_trans with (- - x); auto with *.
rewrite Qopp_involutive.
auto with *.
Qed.
Hint Resolve Qceiling_lt : qarith.
Lemma Qfloor_resp_le : forall x y, x <= y -> (Qfloor x <= Qfloor y)%Z.
Proof.
intros [xn xd] [yn yd] Hxy.
unfold Qle in *.
simpl in *.
rewrite <- (Zdiv_mult_cancel_r xn ('xd) ('yd)); auto with *.
rewrite <- (Zdiv_mult_cancel_r yn ('yd) ('xd)); auto with *.
rewrite (Z.mul_comm ('yd) ('xd)).
apply Z_div_le; auto with *.
Qed.
Hint Resolve Qfloor_resp_le : qarith.
Lemma Qceiling_resp_le : forall x y, x <= y -> (Qceiling x <= Qceiling y)%Z.
Proof.
intros x y Hxy.
unfold Qceiling.
cut (Qfloor (-y) <= Qfloor (-x))%Z; auto with *.
Qed.
Hint Resolve Qceiling_resp_le : qarith.
Add Morphism Qfloor with signature Qeq ==> eq as Qfloor_comp.
Proof.
intros x y H.
apply Z.le_antisymm.
auto with *.
symmetry in H; auto with *.
Qed.
Add Morphism Qceiling with signature Qeq ==> eq as Qceiling_comp.
Proof.
intros x y H.
apply Z.le_antisymm.
auto with *.
symmetry in H; auto with *.
Qed.
Lemma Zdiv_Qdiv (n m: Z): (n / m)%Z = Qfloor (n / m).
Proof.
unfold Qfloor. intros. simpl.
destruct m as [?|?|p]; simpl.
now rewrite Zdiv_0_r, Z.mul_0_r.
now rewrite Z.mul_1_r.
rewrite <- Z.opp_eq_mul_m1.
rewrite <- (Z.opp_involutive (Zpos p)).
now rewrite Zdiv_opp_opp.
Qed.
|