1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Field.
Require Import QArith.
Require Import Znumtheory.
Require Import Eqdep_dec.
(** [Qc] : A canonical representation of rational numbers.
based on the setoid representation [Q]. *)
Record Qc : Set := Qcmake { this :> Q ; canon : Qred this = this }.
Delimit Scope Qc_scope with Qc.
Bind Scope Qc_scope with Qc.
Arguments Qcmake this%Q _.
Open Scope Qc_scope.
(** An alternative statement of [Qred q = q] via [Z.gcd] *)
Lemma Qred_identity :
forall q:Q, Z.gcd (Qnum q) (QDen q) = 1%Z -> Qred q = q.
Proof.
intros (a,b) H; simpl in *.
rewrite <- Z.ggcd_gcd in H.
generalize (Z.ggcd_correct_divisors a ('b)).
destruct Z.ggcd as (g,(aa,bb)); simpl in *; subst.
rewrite !Z.mul_1_l. now intros (<-,<-).
Qed.
Lemma Qred_identity2 :
forall q:Q, Qred q = q -> Z.gcd (Qnum q) (QDen q) = 1%Z.
Proof.
intros (a,b) H; simpl in *.
generalize (Z.gcd_nonneg a ('b)) (Z.ggcd_correct_divisors a ('b)).
rewrite <- Z.ggcd_gcd.
destruct Z.ggcd as (g,(aa,bb)); simpl in *.
injection H as <- <-. intros H (_,H').
destruct g as [|g|g]; [ discriminate | | now elim H ].
destruct bb as [|b|b]; simpl in *; try discriminate.
injection H' as H'. f_equal.
apply Pos.mul_reg_r with b. now rewrite Pos.mul_1_l.
Qed.
Lemma Qred_iff : forall q:Q, Qred q = q <-> Z.gcd (Qnum q) (QDen q) = 1%Z.
Proof.
split; intros.
apply Qred_identity2; auto.
apply Qred_identity; auto.
Qed.
(** Coercion from [Qc] to [Q] and equality *)
Lemma Qc_is_canon : forall q q' : Qc, q == q' -> q = q'.
Proof.
intros (q,hq) (q',hq') H. simpl in *.
assert (H' := Qred_complete _ _ H).
rewrite hq, hq' in H'. subst q'. f_equal.
apply eq_proofs_unicity. intros. repeat decide equality.
Qed.
Hint Resolve Qc_is_canon.
Theorem Qc_decomp: forall q q': Qc, (q:Q) = q' -> q = q'.
Proof.
intros. apply Qc_is_canon. now rewrite H.
Qed.
(** [Q2Qc] : a conversion from [Q] to [Qc]. *)
Lemma Qred_involutive : forall q:Q, Qred (Qred q) = Qred q.
Proof.
intros; apply Qred_complete.
apply Qred_correct.
Qed.
Definition Q2Qc (q:Q) : Qc := Qcmake (Qred q) (Qred_involutive q).
Arguments Q2Qc q%Q.
Lemma Q2Qc_eq_iff (q q' : Q) : Q2Qc q = Q2Qc q' <-> q == q'.
Proof.
split; intro H.
- now injection H as H%Qred_eq_iff.
- apply Qc_is_canon. simpl. now rewrite H.
Qed.
Notation " 0 " := (Q2Qc 0) : Qc_scope.
Notation " 1 " := (Q2Qc 1) : Qc_scope.
Definition Qcle (x y : Qc) := (x <= y)%Q.
Definition Qclt (x y : Qc) := (x < y)%Q.
Notation Qcgt := (fun x y : Qc => Qlt y x).
Notation Qcge := (fun x y : Qc => Qle y x).
Infix "<" := Qclt : Qc_scope.
Infix "<=" := Qcle : Qc_scope.
Infix ">" := Qcgt : Qc_scope.
Infix ">=" := Qcge : Qc_scope.
Notation "x <= y <= z" := (x<=y/\y<=z) : Qc_scope.
Notation "x < y < z" := (x<y/\y<z) : Qc_scope.
Definition Qccompare (p q : Qc) := (Qcompare p q).
Notation "p ?= q" := (Qccompare p q) : Qc_scope.
Lemma Qceq_alt : forall p q, (p = q) <-> (p ?= q) = Eq.
Proof.
unfold Qccompare.
intros; rewrite <- Qeq_alt.
split; auto. now intros <-.
Qed.
Lemma Qclt_alt : forall p q, (p<q) <-> (p?=q = Lt).
Proof.
intros; exact (Qlt_alt p q).
Qed.
Lemma Qcgt_alt : forall p q, (p>q) <-> (p?=q = Gt).
Proof.
intros; exact (Qgt_alt p q).
Qed.
Lemma Qcle_alt : forall p q, (p<=q) <-> (p?=q <> Gt).
Proof.
intros; exact (Qle_alt p q).
Qed.
Lemma Qcge_alt : forall p q, (p>=q) <-> (p?=q <> Lt).
Proof.
intros; exact (Qge_alt p q).
Qed.
(** equality on [Qc] is decidable: *)
Theorem Qc_eq_dec : forall x y:Qc, {x=y} + {x<>y}.
Proof.
intros.
destruct (Qeq_dec x y) as [H|H]; auto.
right; contradict H; subst; auto with qarith.
Defined.
(** The addition, multiplication and opposite are defined
in the straightforward way: *)
Definition Qcplus (x y : Qc) := Q2Qc (x+y).
Infix "+" := Qcplus : Qc_scope.
Definition Qcmult (x y : Qc) := Q2Qc (x*y).
Infix "*" := Qcmult : Qc_scope.
Definition Qcopp (x : Qc) := Q2Qc (-x).
Notation "- x" := (Qcopp x) : Qc_scope.
Definition Qcminus (x y : Qc) := x+-y.
Infix "-" := Qcminus : Qc_scope.
Definition Qcinv (x : Qc) := Q2Qc (/x).
Notation "/ x" := (Qcinv x) : Qc_scope.
Definition Qcdiv (x y : Qc) := x*/y.
Infix "/" := Qcdiv : Qc_scope.
(** [0] and [1] are apart *)
Lemma Q_apart_0_1 : 1 <> 0.
Proof.
unfold Q2Qc.
intros H; discriminate H.
Qed.
Ltac qc := match goal with
| q:Qc |- _ => destruct q; qc
| _ => apply Qc_is_canon; simpl; rewrite !Qred_correct
end.
Opaque Qred.
(** Addition is associative: *)
Theorem Qcplus_assoc : forall x y z, x+(y+z)=(x+y)+z.
Proof.
intros; qc; apply Qplus_assoc.
Qed.
(** [0] is a neutral element for addition: *)
Lemma Qcplus_0_l : forall x, 0+x = x.
Proof.
intros; qc; apply Qplus_0_l.
Qed.
Lemma Qcplus_0_r : forall x, x+0 = x.
Proof.
intros; qc; apply Qplus_0_r.
Qed.
(** Commutativity of addition: *)
Theorem Qcplus_comm : forall x y, x+y = y+x.
Proof.
intros; qc; apply Qplus_comm.
Qed.
(** Properties of [Qopp] *)
Lemma Qcopp_involutive : forall q, - -q = q.
Proof.
intros; qc; apply Qopp_involutive.
Qed.
Theorem Qcplus_opp_r : forall q, q+(-q) = 0.
Proof.
intros; qc; apply Qplus_opp_r.
Qed.
(** Multiplication is associative: *)
Theorem Qcmult_assoc : forall n m p, n*(m*p)=(n*m)*p.
Proof.
intros; qc; apply Qmult_assoc.
Qed.
(** [0] is absorbing for multiplication: *)
Lemma Qcmult_0_l : forall n, 0*n = 0.
Proof.
intros; qc; split.
Qed.
Theorem Qcmult_0_r : forall n, n*0=0.
Proof.
intros; qc; rewrite Qmult_comm; split.
Qed.
(** [1] is a neutral element for multiplication: *)
Lemma Qcmult_1_l : forall n, 1*n = n.
Proof.
intros; qc; apply Qmult_1_l.
Qed.
Theorem Qcmult_1_r : forall n, n*1=n.
Proof.
intros; qc; apply Qmult_1_r.
Qed.
(** Commutativity of multiplication *)
Theorem Qcmult_comm : forall x y, x*y=y*x.
Proof.
intros; qc; apply Qmult_comm.
Qed.
(** Distributivity *)
Theorem Qcmult_plus_distr_r : forall x y z, x*(y+z)=(x*y)+(x*z).
Proof.
intros; qc; apply Qmult_plus_distr_r.
Qed.
Theorem Qcmult_plus_distr_l : forall x y z, (x+y)*z=(x*z)+(y*z).
Proof.
intros; qc; apply Qmult_plus_distr_l.
Qed.
(** Integrality *)
Theorem Qcmult_integral : forall x y, x*y=0 -> x=0 \/ y=0.
Proof.
intros.
destruct (Qmult_integral x y); try qc; auto.
injection H as H.
rewrite <- (Qred_correct (x*y)).
rewrite <- (Qred_correct 0).
rewrite H; auto with qarith.
Qed.
Theorem Qcmult_integral_l : forall x y, ~ x = 0 -> x*y = 0 -> y = 0.
Proof.
intros; destruct (Qcmult_integral _ _ H0); tauto.
Qed.
(** Inverse and division. *)
Theorem Qcmult_inv_r : forall x, x<>0 -> x*(/x) = 1.
Proof.
intros; qc; apply Qmult_inv_r; auto.
Qed.
Theorem Qcmult_inv_l : forall x, x<>0 -> (/x)*x = 1.
Proof.
intros.
rewrite Qcmult_comm.
apply Qcmult_inv_r; auto.
Qed.
Lemma Qcinv_mult_distr : forall p q, / (p * q) = /p * /q.
Proof.
intros; qc; apply Qinv_mult_distr.
Qed.
Theorem Qcdiv_mult_l : forall x y, y<>0 -> (x*y)/y = x.
Proof.
unfold Qcdiv.
intros.
rewrite <- Qcmult_assoc.
rewrite Qcmult_inv_r; auto.
apply Qcmult_1_r.
Qed.
Theorem Qcmult_div_r : forall x y, ~ y = 0 -> y*(x/y) = x.
Proof.
unfold Qcdiv.
intros.
rewrite Qcmult_assoc.
rewrite Qcmult_comm.
rewrite Qcmult_assoc.
rewrite Qcmult_inv_l; auto.
apply Qcmult_1_l.
Qed.
(** Properties of order upon Qc. *)
Lemma Qcle_refl : forall x, x<=x.
Proof.
unfold Qcle; intros; simpl; apply Qle_refl.
Qed.
Lemma Qcle_antisym : forall x y, x<=y -> y<=x -> x=y.
Proof.
unfold Qcle; intros; simpl in *.
apply Qc_is_canon; apply Qle_antisym; auto.
Qed.
Lemma Qcle_trans : forall x y z, x<=y -> y<=z -> x<=z.
Proof.
unfold Qcle; intros; eapply Qle_trans; eauto.
Qed.
Lemma Qclt_not_eq : forall x y, x<y -> x<>y.
Proof.
unfold Qclt; intros; simpl in *.
intro; destruct (Qlt_not_eq _ _ H).
subst; auto with qarith.
Qed.
(** Large = strict or equal *)
Lemma Qclt_le_weak : forall x y, x<y -> x<=y.
Proof.
unfold Qcle, Qclt; intros; apply Qlt_le_weak; auto.
Qed.
Lemma Qcle_lt_trans : forall x y z, x<=y -> y<z -> x<z.
Proof.
unfold Qcle, Qclt; intros; eapply Qle_lt_trans; eauto.
Qed.
Lemma Qclt_le_trans : forall x y z, x<y -> y<=z -> x<z.
Proof.
unfold Qcle, Qclt; intros; eapply Qlt_le_trans; eauto.
Qed.
Lemma Qclt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
unfold Qclt; intros; eapply Qlt_trans; eauto.
Qed.
(** [x<y] iff [~(y<=x)] *)
Lemma Qcnot_lt_le : forall x y, ~ x<y -> y<=x.
Proof.
unfold Qcle, Qclt; intros; apply Qnot_lt_le; auto.
Qed.
Lemma Qcnot_le_lt : forall x y, ~ x<=y -> y<x.
Proof.
unfold Qcle, Qclt; intros; apply Qnot_le_lt; auto.
Qed.
Lemma Qclt_not_le : forall x y, x<y -> ~ y<=x.
Proof.
unfold Qcle, Qclt; intros; apply Qlt_not_le; auto.
Qed.
Lemma Qcle_not_lt : forall x y, x<=y -> ~ y<x.
Proof.
unfold Qcle, Qclt; intros; apply Qle_not_lt; auto.
Qed.
Lemma Qcle_lt_or_eq : forall x y, x<=y -> x<y \/ x=y.
Proof.
unfold Qcle, Qclt; intros x y H.
destruct (Qle_lt_or_eq _ _ H); [left|right]; trivial.
now apply Qc_is_canon.
Qed.
(** Some decidability results about orders. *)
Lemma Qc_dec : forall x y, {x<y} + {y<x} + {x=y}.
Proof.
unfold Qclt, Qcle; intros.
destruct (Q_dec x y) as [H|H].
left; auto.
right; apply Qc_is_canon; auto.
Defined.
Lemma Qclt_le_dec : forall x y, {x<y} + {y<=x}.
Proof.
unfold Qclt, Qcle; intros; apply Qlt_le_dec; auto.
Defined.
(** Compatibility of operations with respect to order. *)
Lemma Qcopp_le_compat : forall p q, p<=q -> -q <= -p.
Proof.
unfold Qcle, Qcopp; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qopp_le_compat; auto.
Qed.
Lemma Qcle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
Proof.
unfold Qcle, Qcminus; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qle_minus_iff; auto.
Qed.
Lemma Qclt_minus_iff : forall p q, p < q <-> 0 < q+-p.
Proof.
unfold Qclt, Qcplus, Qcopp; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qlt_minus_iff; auto.
Qed.
Lemma Qcplus_le_compat :
forall x y z t, x<=y -> z<=t -> x+z <= y+t.
Proof.
unfold Qcplus, Qcle; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qplus_le_compat; auto.
Qed.
Lemma Qcmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z.
Proof.
unfold Qcmult, Qcle; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qmult_le_compat_r; auto.
Qed.
Lemma Qcmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y.
Proof.
unfold Qcmult, Qcle, Qclt; intros; simpl in *.
rewrite !Qred_correct in * |-.
eapply Qmult_lt_0_le_reg_r; eauto.
Qed.
Lemma Qcmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z.
Proof.
unfold Qcmult, Qclt; intros; simpl in *.
rewrite !Qred_correct in *.
eapply Qmult_lt_compat_r; eauto.
Qed.
(** Rational to the n-th power *)
Fixpoint Qcpower (q:Qc)(n:nat) : Qc :=
match n with
| O => 1
| S n => q * (Qcpower q n)
end.
Notation " q ^ n " := (Qcpower q n) : Qc_scope.
Lemma Qcpower_1 : forall n, 1^n = 1.
Proof.
induction n; simpl; auto with qarith.
rewrite IHn; auto with qarith.
Qed.
Lemma Qcpower_0 : forall n, n<>O -> 0^n = 0.
Proof.
destruct n; simpl.
destruct 1; auto.
intros.
now apply Qc_is_canon.
Qed.
Lemma Qcpower_pos : forall p n, 0 <= p -> 0 <= p^n.
Proof.
induction n; simpl; auto with qarith.
easy.
intros.
apply Qcle_trans with (0*(p^n)).
easy.
apply Qcmult_le_compat_r; auto.
Qed.
(** And now everything is easier concerning tactics: *)
(** A ring tactic for rational numbers *)
Definition Qc_eq_bool (x y : Qc) :=
if Qc_eq_dec x y then true else false.
Lemma Qc_eq_bool_correct : forall x y : Qc, Qc_eq_bool x y = true -> x=y.
Proof.
intros x y; unfold Qc_eq_bool; case (Qc_eq_dec x y); simpl; auto.
intros _ H; inversion H.
Qed.
Definition Qcrt : ring_theory 0 1 Qcplus Qcmult Qcminus Qcopp (eq(A:=Qc)).
Proof.
constructor.
exact Qcplus_0_l.
exact Qcplus_comm.
exact Qcplus_assoc.
exact Qcmult_1_l.
exact Qcmult_comm.
exact Qcmult_assoc.
exact Qcmult_plus_distr_l.
reflexivity.
exact Qcplus_opp_r.
Qed.
Definition Qcft :
field_theory 0%Qc 1%Qc Qcplus Qcmult Qcminus Qcopp Qcdiv Qcinv (eq(A:=Qc)).
Proof.
constructor.
exact Qcrt.
exact Q_apart_0_1.
reflexivity.
exact Qcmult_inv_l.
Qed.
Add Field Qcfield : Qcft.
(** A field tactic for rational numbers *)
Example test_field : (forall x y : Qc, y<>0 -> (x/y)*y = x)%Qc.
Proof.
intros.
field.
auto.
Qed.
|