1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * An absolute value for normalized rational numbers. *)
(** Contributed by Cédric Auger *)
Require Import Qabs Qcanon.
Lemma Qred_abs (x : Q) : Qred (Qabs x) = Qabs (Qred x).
Proof.
destruct x as [[|a|a] d]; simpl; auto;
destruct (Pos.ggcd a d) as [x [y z]]; simpl; auto.
Qed.
Lemma Qcabs_canon (x : Q) : Qred x = x -> Qred (Qabs x) = Qabs x.
Proof. intros H; now rewrite (Qred_abs x), H. Qed.
Definition Qcabs (x:Qc) : Qc := {| canon := Qcabs_canon x (canon x) |}.
Notation "[ q ]" := (Qcabs q) : Qc_scope.
Ltac Qc_unfolds :=
unfold Qcabs, Qcminus, Qcopp, Qcplus, Qcmult, Qcle, Q2Qc, this.
Lemma Qcabs_case (x:Qc) (P : Qc -> Type) :
(0 <= x -> P x) -> (x <= 0 -> P (- x)) -> P [x].
Proof.
intros A B.
apply (Qabs_case x (fun x => forall Hx, P {|this:=x;canon:=Hx|})).
intros; case (Qc_decomp x {|canon:=Hx|}); auto.
intros; case (Qc_decomp (-x) {|canon:=Hx|}); auto.
Qed.
Lemma Qcabs_pos x : 0 <= x -> [x] = x.
Proof.
intro Hx; apply Qc_decomp; Qc_unfolds; fold (this x).
set (K := canon [x]); simpl in K; case K; clear K.
set (a := x) at 1; case (canon x); subst a; apply Qred_complete.
now apply Qabs_pos.
Qed.
Lemma Qcabs_neg x : x <= 0 -> [x] = - x.
Proof.
intro Hx; apply Qc_decomp; Qc_unfolds; fold (this x).
set (K := canon [x]); simpl in K; case K; clear K.
now apply Qred_complete; apply Qabs_neg.
Qed.
Lemma Qcabs_nonneg x : 0 <= [x].
Proof. intros; apply Qabs_nonneg. Qed.
Lemma Qcabs_opp x : [(-x)] = [x].
Proof.
apply Qc_decomp; Qc_unfolds; fold (this x).
set (K := canon [x]); simpl in K; case K; clear K.
case Qred_abs; apply Qred_complete; apply Qabs_opp.
Qed.
Lemma Qcabs_triangle x y : [x+y] <= [x] + [y].
Proof.
Qc_unfolds; case Qred_abs; rewrite !Qred_le; apply Qabs_triangle.
Qed.
Lemma Qcabs_Qcmult x y : [x*y] = [x]*[y].
Proof.
apply Qc_decomp; Qc_unfolds; fold (this x) (this y); case Qred_abs.
apply Qred_complete; apply Qabs_Qmult.
Qed.
Lemma Qcabs_Qcminus x y: [x-y] = [y-x].
Proof.
apply Qc_decomp; Qc_unfolds; fold (this x) (this y) (this (-x)) (this (-y)).
set (a := x) at 2; case (canon x); subst a.
set (a := y) at 1; case (canon y); subst a.
rewrite !Qred_opp; fold (Qred x - Qred y)%Q (Qred y - Qred x)%Q.
repeat case Qred_abs; f_equal; apply Qabs_Qminus.
Qed.
Lemma Qcle_Qcabs x : x <= [x].
Proof. apply Qle_Qabs. Qed.
Lemma Qcabs_triangle_reverse x y : [x] - [y] <= [x - y].
Proof.
unfold Qcle, Qcabs, Qcminus, Qcplus, Qcopp, Q2Qc, this;
fold (this x) (this y) (this (-x)) (this (-y)).
case Qred_abs; rewrite !Qred_le, !Qred_opp, Qred_abs.
apply Qabs_triangle_reverse.
Qed.
Lemma Qcabs_Qcle_condition x y : [x] <= y <-> -y <= x <= y.
Proof.
Qc_unfolds; fold (this x) (this y).
destruct (Qabs_Qle_condition x y) as [A B].
split; intros H.
+ destruct (A H) as [X Y]; split; auto.
now case (canon x); apply Qred_le.
+ destruct H as [X Y]; apply B; split; auto.
now case (canon y); case Qred_opp.
Qed.
Lemma Qcabs_diff_Qcle_condition x y r : [x-y] <= r <-> x - r <= y <= x + r.
Proof.
Qc_unfolds; fold (this x) (this y) (this r).
case Qred_abs; repeat rewrite Qred_opp.
set (a := y) at 1; case (canon y); subst a.
set (a := r) at 2; case (canon r); subst a.
set (a := Qred r) at 2 3;
assert (K := canon (Q2Qc r)); simpl in K; case K; clear K; subst a.
set (a := Qred y) at 1;
assert (K := canon (Q2Qc y)); simpl in K; case K; clear K; subst a.
fold (x - Qred y)%Q (x - Qred r)%Q.
destruct (Qabs_diff_Qle_condition x (Qred y) (Qred r)) as [A B].
split.
+ clear B; rewrite !Qred_le. auto.
+ clear A; rewrite !Qred_le. auto.
Qed.
Lemma Qcabs_null x : [x] = 0 -> x = 0.
Proof.
intros H.
destruct (proj1 (Qcabs_Qcle_condition x 0)) as [A B].
+ rewrite H; apply Qcle_refl.
+ apply Qcle_antisym; auto.
Qed.
|