1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Export ZArith.
Require Export ZArithRing.
Require Export Morphisms Setoid Bool.
(** * Definition of [Q] and basic properties *)
(** Rationals are pairs of [Z] and [positive] numbers. *)
Record Q : Set := Qmake {Qnum : Z; Qden : positive}.
Delimit Scope Q_scope with Q.
Bind Scope Q_scope with Q.
Arguments Qmake _%Z _%positive.
Open Scope Q_scope.
Ltac simpl_mult := rewrite ?Pos2Z.inj_mul.
(** [a#b] denotes the fraction [a] over [b]. *)
Notation "a # b" := (Qmake a b) (at level 55, no associativity) : Q_scope.
Definition inject_Z (x : Z) := Qmake x 1.
Arguments inject_Z x%Z.
Notation QDen p := (Zpos (Qden p)).
Notation " 0 " := (0#1) : Q_scope.
Notation " 1 " := (1#1) : Q_scope.
Definition Qeq (p q : Q) := (Qnum p * QDen q)%Z = (Qnum q * QDen p)%Z.
Definition Qle (x y : Q) := (Qnum x * QDen y <= Qnum y * QDen x)%Z.
Definition Qlt (x y : Q) := (Qnum x * QDen y < Qnum y * QDen x)%Z.
Notation Qgt a b := (Qlt b a) (only parsing).
Notation Qge a b := (Qle b a) (only parsing).
Infix "==" := Qeq (at level 70, no associativity) : Q_scope.
Infix "<" := Qlt : Q_scope.
Infix "<=" := Qle : Q_scope.
Notation "x > y" := (Qlt y x)(only parsing) : Q_scope.
Notation "x >= y" := (Qle y x)(only parsing) : Q_scope.
Notation "x <= y <= z" := (x<=y/\y<=z) : Q_scope.
(** injection from Z is injective. *)
Lemma inject_Z_injective (a b: Z): inject_Z a == inject_Z b <-> a = b.
Proof.
unfold Qeq. simpl. omega.
Qed.
(** Another approach : using Qcompare for defining order relations. *)
Definition Qcompare (p q : Q) := (Qnum p * QDen q ?= Qnum q * QDen p)%Z.
Notation "p ?= q" := (Qcompare p q) : Q_scope.
Lemma Qeq_alt p q : (p == q) <-> (p ?= q) = Eq.
Proof.
symmetry. apply Z.compare_eq_iff.
Qed.
Lemma Qlt_alt p q : (p<q) <-> (p?=q = Lt).
Proof.
reflexivity.
Qed.
Lemma Qgt_alt p q : (p>q) <-> (p?=q = Gt).
Proof.
symmetry. apply Z.gt_lt_iff.
Qed.
Lemma Qle_alt p q : (p<=q) <-> (p?=q <> Gt).
Proof.
reflexivity.
Qed.
Lemma Qge_alt p q : (p>=q) <-> (p?=q <> Lt).
Proof.
symmetry. apply Z.ge_le_iff.
Qed.
Hint Unfold Qeq Qlt Qle : qarith.
Hint Extern 5 (?X1 <> ?X2) => intro; discriminate: qarith.
Lemma Qcompare_antisym x y : CompOpp (x ?= y) = (y ?= x).
Proof.
symmetry. apply Z.compare_antisym.
Qed.
Lemma Qcompare_spec x y : CompareSpec (x==y) (x<y) (y<x) (x ?= y).
Proof.
unfold Qeq, Qlt, Qcompare. case Z.compare_spec; now constructor.
Qed.
(** * Properties of equality. *)
Theorem Qeq_refl x : x == x.
Proof.
auto with qarith.
Qed.
Theorem Qeq_sym x y : x == y -> y == x.
Proof.
auto with qarith.
Qed.
Theorem Qeq_trans x y z : x == y -> y == z -> x == z.
Proof.
unfold Qeq; intros XY YZ.
apply Z.mul_reg_r with (QDen y); [auto with qarith|].
now rewrite Z.mul_shuffle0, XY, Z.mul_shuffle0, YZ, Z.mul_shuffle0.
Qed.
Hint Immediate Qeq_sym : qarith.
Hint Resolve Qeq_refl Qeq_trans : qarith.
(** In a word, [Qeq] is a setoid equality. *)
Instance Q_Setoid : Equivalence Qeq.
Proof. split; red; eauto with qarith. Qed.
(** Furthermore, this equality is decidable: *)
Theorem Qeq_dec x y : {x==y} + {~ x==y}.
Proof.
apply Z.eq_dec.
Defined.
Definition Qeq_bool x y :=
(Zeq_bool (Qnum x * QDen y) (Qnum y * QDen x))%Z.
Definition Qle_bool x y :=
(Z.leb (Qnum x * QDen y) (Qnum y * QDen x))%Z.
Lemma Qeq_bool_iff x y : Qeq_bool x y = true <-> x == y.
Proof.
symmetry; apply Zeq_is_eq_bool.
Qed.
Lemma Qeq_bool_eq x y : Qeq_bool x y = true -> x == y.
Proof.
apply Qeq_bool_iff.
Qed.
Lemma Qeq_eq_bool x y : x == y -> Qeq_bool x y = true.
Proof.
apply Qeq_bool_iff.
Qed.
Lemma Qeq_bool_neq x y : Qeq_bool x y = false -> ~ x == y.
Proof.
rewrite <- Qeq_bool_iff. now intros ->.
Qed.
Lemma Qle_bool_iff x y : Qle_bool x y = true <-> x <= y.
Proof.
symmetry; apply Zle_is_le_bool.
Qed.
Lemma Qle_bool_imp_le x y : Qle_bool x y = true -> x <= y.
Proof.
apply Qle_bool_iff.
Qed.
Theorem Qnot_eq_sym x y : ~x == y -> ~y == x.
Proof.
auto with qarith.
Qed.
Lemma Qeq_bool_comm x y: Qeq_bool x y = Qeq_bool y x.
Proof.
apply eq_true_iff_eq. rewrite !Qeq_bool_iff. now symmetry.
Qed.
Lemma Qeq_bool_refl x: Qeq_bool x x = true.
Proof.
rewrite Qeq_bool_iff. now reflexivity.
Qed.
Lemma Qeq_bool_sym x y: Qeq_bool x y = true -> Qeq_bool y x = true.
Proof.
rewrite !Qeq_bool_iff. now symmetry.
Qed.
Lemma Qeq_bool_trans x y z: Qeq_bool x y = true -> Qeq_bool y z = true -> Qeq_bool x z = true.
Proof.
rewrite !Qeq_bool_iff; apply Qeq_trans.
Qed.
Hint Resolve Qnot_eq_sym : qarith.
(** * Addition, multiplication and opposite *)
(** The addition, multiplication and opposite are defined
in the straightforward way: *)
Definition Qplus (x y : Q) :=
(Qnum x * QDen y + Qnum y * QDen x) # (Qden x * Qden y).
Definition Qmult (x y : Q) := (Qnum x * Qnum y) # (Qden x * Qden y).
Definition Qopp (x : Q) := (- Qnum x) # (Qden x).
Definition Qminus (x y : Q) := Qplus x (Qopp y).
Definition Qinv (x : Q) :=
match Qnum x with
| Z0 => 0
| Zpos p => (QDen x)#p
| Zneg p => (Zneg (Qden x))#p
end.
Definition Qdiv (x y : Q) := Qmult x (Qinv y).
Infix "+" := Qplus : Q_scope.
Notation "- x" := (Qopp x) : Q_scope.
Infix "-" := Qminus : Q_scope.
Infix "*" := Qmult : Q_scope.
Notation "/ x" := (Qinv x) : Q_scope.
Infix "/" := Qdiv : Q_scope.
(** A light notation for [Zpos] *)
Notation " ' x " := (Zpos x) (at level 20, no associativity) : Z_scope.
Lemma Qmake_Qdiv a b : a#b==inject_Z a/inject_Z ('b).
Proof.
unfold Qeq. simpl. ring.
Qed.
(** * Setoid compatibility results *)
Instance Qplus_comp : Proper (Qeq==>Qeq==>Qeq) Qplus.
Proof.
unfold Qeq, Qplus; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
simpl_mult; ring_simplify.
replace (p1 * 'r2 * 'q2) with (p1 * 'q2 * 'r2) by ring.
rewrite H.
replace (r1 * 'p2 * 'q2 * 's2) with (r1 * 's2 * 'p2 * 'q2) by ring.
rewrite H0.
ring.
Close Scope Z_scope.
Qed.
Instance Qopp_comp : Proper (Qeq==>Qeq) Qopp.
Proof.
unfold Qeq, Qopp; simpl.
Open Scope Z_scope.
intros x y H; simpl.
replace (- Qnum x * ' Qden y) with (- (Qnum x * ' Qden y)) by ring.
rewrite H; ring.
Close Scope Z_scope.
Qed.
Instance Qminus_comp : Proper (Qeq==>Qeq==>Qeq) Qminus.
Proof.
intros x x' Hx y y' Hy.
unfold Qminus. rewrite Hx, Hy; auto with qarith.
Qed.
Instance Qmult_comp : Proper (Qeq==>Qeq==>Qeq) Qmult.
Proof.
unfold Qeq; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
intros; simpl_mult; ring_simplify.
replace (q1 * s1 * 'p2) with (q1 * 'p2 * s1) by ring.
rewrite <- H.
replace (p1 * r1 * 'q2 * 's2) with (r1 * 's2 * p1 * 'q2) by ring.
rewrite H0.
ring.
Close Scope Z_scope.
Qed.
Instance Qinv_comp : Proper (Qeq==>Qeq) Qinv.
Proof.
unfold Qeq, Qinv; simpl.
Open Scope Z_scope.
intros (p1, p2) (q1, q2) EQ; simpl in *.
destruct q1; simpl in *.
- apply Z.mul_eq_0 in EQ. destruct EQ; now subst.
- destruct p1; simpl in *; try discriminate.
now rewrite Pos.mul_comm, <- EQ, Pos.mul_comm.
- destruct p1; simpl in *; try discriminate.
now rewrite Pos.mul_comm, <- EQ, Pos.mul_comm.
Close Scope Z_scope.
Qed.
Instance Qdiv_comp : Proper (Qeq==>Qeq==>Qeq) Qdiv.
Proof.
intros x x' Hx y y' Hy; unfold Qdiv.
rewrite Hx, Hy; auto with qarith.
Qed.
Instance Qcompare_comp : Proper (Qeq==>Qeq==>eq) Qcompare.
Proof.
unfold Qeq, Qcompare.
Open Scope Z_scope.
intros (p1,p2) (q1,q2) H (r1,r2) (s1,s2) H'; simpl in *.
rewrite <- (Zcompare_mult_compat (q2*s2) (p1*'r2)).
rewrite <- (Zcompare_mult_compat (p2*r2) (q1*'s2)).
change ('(q2*s2)) with ('q2 * 's2).
change ('(p2*r2)) with ('p2 * 'r2).
replace ('q2 * 's2 * (p1*'r2)) with ((p1*'q2)*'r2*'s2) by ring.
rewrite H.
replace ('q2 * 's2 * (r1*'p2)) with ((r1*'s2)*'q2*'p2) by ring.
rewrite H'.
f_equal; ring.
Close Scope Z_scope.
Qed.
Instance Qle_comp : Proper (Qeq==>Qeq==>iff) Qle.
Proof.
intros p q H r s H'. rewrite 2 Qle_alt, H, H'; auto with *.
Qed.
Instance Qlt_compat : Proper (Qeq==>Qeq==>iff) Qlt.
Proof.
intros p q H r s H'. rewrite 2 Qlt_alt, H, H'; auto with *.
Qed.
Instance Qeqb_comp : Proper (Qeq==>Qeq==>eq) Qeq_bool.
Proof.
intros p q H r s H'; apply eq_true_iff_eq.
rewrite 2 Qeq_bool_iff, H, H'; split; auto with qarith.
Qed.
Instance Qleb_comp : Proper (Qeq==>Qeq==>eq) Qle_bool.
Proof.
intros p q H r s H'; apply eq_true_iff_eq.
rewrite 2 Qle_bool_iff, H, H'; split; auto with qarith.
Qed.
(** [0] and [1] are apart *)
Lemma Q_apart_0_1 : ~ 1 == 0.
Proof.
unfold Qeq; auto with qarith.
Qed.
(** * Properties of [Qadd] *)
(** Addition is associative: *)
Theorem Qplus_assoc : forall x y z, x+(y+z)==(x+y)+z.
Proof.
intros (x1, x2) (y1, y2) (z1, z2).
unfold Qeq, Qplus; simpl; simpl_mult; ring.
Qed.
(** [0] is a neutral element for addition: *)
Lemma Qplus_0_l : forall x, 0+x == x.
Proof.
intros (x1, x2); unfold Qeq, Qplus; simpl; ring.
Qed.
Lemma Qplus_0_r : forall x, x+0 == x.
Proof.
intros (x1, x2); unfold Qeq, Qplus; simpl.
rewrite Pos.mul_comm; simpl; ring.
Qed.
(** Commutativity of addition: *)
Theorem Qplus_comm : forall x y, x+y == y+x.
Proof.
intros (x1, x2); unfold Qeq, Qplus; simpl.
intros; rewrite Pos.mul_comm; ring.
Qed.
(** * Properties of [Qopp] *)
Lemma Qopp_involutive : forall q, - -q == q.
Proof.
red; simpl; intros; ring.
Qed.
Theorem Qplus_opp_r : forall q, q+(-q) == 0.
Proof.
red; simpl; intro; ring.
Qed.
(** Injectivity of addition (uses theory about Qopp above): *)
Lemma Qplus_inj_r (x y z: Q):
x + z == y + z <-> x == y.
Proof.
split; intro E.
rewrite <- (Qplus_0_r x), <- (Qplus_0_r y).
rewrite <- (Qplus_opp_r z); auto.
do 2 rewrite Qplus_assoc.
rewrite E. reflexivity.
rewrite E. reflexivity.
Qed.
Lemma Qplus_inj_l (x y z: Q):
z + x == z + y <-> x == y.
Proof.
rewrite (Qplus_comm z x), (Qplus_comm z y).
apply Qplus_inj_r.
Qed.
(** * Properties of [Qmult] *)
(** Multiplication is associative: *)
Theorem Qmult_assoc : forall n m p, n*(m*p)==(n*m)*p.
Proof.
intros; red; simpl; rewrite Pos.mul_assoc; ring.
Qed.
(** multiplication and zero *)
Lemma Qmult_0_l : forall x , 0*x == 0.
Proof.
intros; compute; reflexivity.
Qed.
Lemma Qmult_0_r : forall x , x*0 == 0.
Proof.
intros; red; simpl; ring.
Qed.
(** [1] is a neutral element for multiplication: *)
Lemma Qmult_1_l : forall n, 1*n == n.
Proof.
intro; red; simpl; destruct (Qnum n); auto.
Qed.
Theorem Qmult_1_r : forall n, n*1==n.
Proof.
intro; red; simpl.
rewrite Z.mul_1_r with (n := Qnum n).
rewrite Pos.mul_comm; simpl; trivial.
Qed.
(** Commutativity of multiplication *)
Theorem Qmult_comm : forall x y, x*y==y*x.
Proof.
intros; red; simpl; rewrite Pos.mul_comm; ring.
Qed.
(** Distributivity over [Qadd] *)
Theorem Qmult_plus_distr_r : forall x y z, x*(y+z)==(x*y)+(x*z).
Proof.
intros (x1, x2) (y1, y2) (z1, z2).
unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
Qed.
Theorem Qmult_plus_distr_l : forall x y z, (x+y)*z==(x*z)+(y*z).
Proof.
intros (x1, x2) (y1, y2) (z1, z2).
unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
Qed.
(** Integrality *)
Theorem Qmult_integral : forall x y, x*y==0 -> x==0 \/ y==0.
Proof.
intros (x1,x2) (y1,y2).
unfold Qeq, Qmult; simpl.
now rewrite <- Z.mul_eq_0, !Z.mul_1_r.
Qed.
Theorem Qmult_integral_l : forall x y, ~ x == 0 -> x*y == 0 -> y == 0.
Proof.
intros (x1, x2) (y1, y2).
unfold Qeq, Qmult; simpl.
rewrite !Z.mul_1_r, Z.mul_eq_0. intuition.
Qed.
(** * inject_Z is a ring homomorphism: *)
Lemma inject_Z_plus (x y: Z): inject_Z (x + y) = inject_Z x + inject_Z y.
Proof.
unfold Qplus, inject_Z. simpl. f_equal. ring.
Qed.
Lemma inject_Z_mult (x y: Z): inject_Z (x * y) = inject_Z x * inject_Z y.
Proof. reflexivity. Qed.
Lemma inject_Z_opp (x: Z): inject_Z (- x) = - inject_Z x.
Proof. reflexivity. Qed.
(** * Inverse and division. *)
Lemma Qinv_involutive : forall q, (/ / q) == q.
Proof.
intros [[|n|n] d]; red; simpl; reflexivity.
Qed.
Theorem Qmult_inv_r : forall x, ~ x == 0 -> x*(/x) == 1.
Proof.
intros (x1, x2); unfold Qeq, Qdiv, Qmult; case x1; simpl;
intros; simpl_mult; try ring.
elim H; auto.
Qed.
Lemma Qinv_mult_distr : forall p q, / (p * q) == /p * /q.
Proof.
intros (x1,x2) (y1,y2); unfold Qeq, Qinv, Qmult; simpl.
destruct x1; simpl; auto;
destruct y1; simpl; auto.
Qed.
Theorem Qdiv_mult_l : forall x y, ~ y == 0 -> (x*y)/y == x.
Proof.
intros; unfold Qdiv.
rewrite <- (Qmult_assoc x y (Qinv y)).
rewrite (Qmult_inv_r y H).
apply Qmult_1_r.
Qed.
Theorem Qmult_div_r : forall x y, ~ y == 0 -> y*(x/y) == x.
Proof.
intros; unfold Qdiv.
rewrite (Qmult_assoc y x (Qinv y)).
rewrite (Qmult_comm y x).
fold (Qdiv (Qmult x y) y).
apply Qdiv_mult_l; auto.
Qed.
(** Injectivity of Qmult (requires theory about Qinv above): *)
Lemma Qmult_inj_r (x y z: Q): ~ z == 0 -> (x * z == y * z <-> x == y).
Proof.
intro z_ne_0.
split; intro E.
rewrite <- (Qmult_1_r x), <- (Qmult_1_r y).
rewrite <- (Qmult_inv_r z); auto.
do 2 rewrite Qmult_assoc.
rewrite E. reflexivity.
rewrite E. reflexivity.
Qed.
Lemma Qmult_inj_l (x y z: Q): ~ z == 0 -> (z * x == z * y <-> x == y).
Proof.
rewrite (Qmult_comm z x), (Qmult_comm z y).
apply Qmult_inj_r.
Qed.
(** * Properties of order upon Q. *)
Lemma Qle_refl x : x<=x.
Proof.
unfold Qle; auto with zarith.
Qed.
Lemma Qle_antisym x y : x<=y -> y<=x -> x==y.
Proof.
unfold Qle, Qeq; auto with zarith.
Qed.
Lemma Qle_trans : forall x y z, x<=y -> y<=z -> x<=z.
Proof.
unfold Qle; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
Open Scope Z_scope.
apply Z.mul_le_mono_pos_r with ('y2); [easy|].
apply Z.le_trans with (y1 * 'x2 * 'z2).
- rewrite Z.mul_shuffle0. now apply Z.mul_le_mono_pos_r.
- rewrite Z.mul_shuffle0, (Z.mul_shuffle0 z1).
now apply Z.mul_le_mono_pos_r.
Close Scope Z_scope.
Qed.
Hint Resolve Qle_trans : qarith.
Lemma Qlt_irrefl x : ~x<x.
Proof.
unfold Qlt. auto with zarith.
Qed.
Lemma Qlt_not_eq x y : x<y -> ~ x==y.
Proof.
unfold Qlt, Qeq; auto with zarith.
Qed.
Lemma Zle_Qle (x y: Z): (x <= y)%Z = (inject_Z x <= inject_Z y).
Proof.
unfold Qle. simpl. now rewrite !Z.mul_1_r.
Qed.
Lemma Zlt_Qlt (x y: Z): (x < y)%Z = (inject_Z x < inject_Z y).
Proof.
unfold Qlt. simpl. now rewrite !Z.mul_1_r.
Qed.
(** Large = strict or equal *)
Lemma Qle_lteq x y : x<=y <-> x<y \/ x==y.
Proof.
rewrite Qeq_alt, Qle_alt, Qlt_alt.
destruct (x ?= y); intuition; discriminate.
Qed.
Lemma Qlt_le_weak x y : x<y -> x<=y.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.
Lemma Qle_lt_trans : forall x y z, x<=y -> y<z -> x<z.
Proof.
unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
Open Scope Z_scope.
apply Z.mul_lt_mono_pos_r with ('y2); [easy|].
apply Z.le_lt_trans with (y1 * 'x2 * 'z2).
- rewrite Z.mul_shuffle0. now apply Z.mul_le_mono_pos_r.
- rewrite Z.mul_shuffle0, (Z.mul_shuffle0 z1).
now apply Z.mul_lt_mono_pos_r.
Close Scope Z_scope.
Qed.
Lemma Qlt_le_trans : forall x y z, x<y -> y<=z -> x<z.
Proof.
unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
Open Scope Z_scope.
apply Z.mul_lt_mono_pos_r with ('y2); [easy|].
apply Z.lt_le_trans with (y1 * 'x2 * 'z2).
- rewrite Z.mul_shuffle0. now apply Z.mul_lt_mono_pos_r.
- rewrite Z.mul_shuffle0, (Z.mul_shuffle0 z1).
now apply Z.mul_le_mono_pos_r.
Close Scope Z_scope.
Qed.
Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
intros.
apply Qle_lt_trans with y; auto.
apply Qlt_le_weak; auto.
Qed.
(** [x<y] iff [~(y<=x)] *)
Lemma Qnot_lt_le : forall x y, ~ x<y -> y<=x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.
Lemma Qnot_le_lt : forall x y, ~ x<=y -> y<x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.
Lemma Qlt_not_le : forall x y, x<y -> ~ y<=x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.
Lemma Qle_not_lt : forall x y, x<=y -> ~ y<x.
Proof.
unfold Qle, Qlt; auto with zarith.
Qed.
Lemma Qle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y.
Proof.
unfold Qle, Qlt, Qeq; intros; now apply Z.lt_eq_cases.
Qed.
Hint Resolve Qle_not_lt Qlt_not_le Qnot_le_lt Qnot_lt_le
Qlt_le_weak Qlt_not_eq Qle_antisym Qle_refl: qarith.
(** Some decidability results about orders. *)
Lemma Q_dec : forall x y, {x<y} + {y<x} + {x==y}.
Proof.
unfold Qlt, Qle, Qeq; intros.
exact (Z_dec' (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.
Lemma Qlt_le_dec : forall x y, {x<y} + {y<=x}.
Proof.
unfold Qlt, Qle; intros.
exact (Z_lt_le_dec (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.
(** Compatibility of operations with respect to order. *)
Lemma Qopp_le_compat : forall p q, p<=q -> -q <= -p.
Proof.
intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl.
rewrite !Z.mul_opp_l. omega.
Qed.
Hint Resolve Qopp_le_compat : qarith.
Lemma Qle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
Proof.
intros (x1,x2) (y1,y2); unfold Qle; simpl.
rewrite Z.mul_opp_l. omega.
Qed.
Lemma Qlt_minus_iff : forall p q, p < q <-> 0 < q+-p.
Proof.
intros (x1,x2) (y1,y2); unfold Qlt; simpl.
rewrite Z.mul_opp_l. omega.
Qed.
Lemma Qplus_le_compat :
forall x y z t, x<=y -> z<=t -> x+z <= y+t.
Proof.
unfold Qplus, Qle; intros (x1, x2) (y1, y2) (z1, z2) (t1, t2);
simpl; simpl_mult.
Open Scope Z_scope.
intros.
match goal with |- ?a <= ?b => ring_simplify a b end.
rewrite Z.add_comm.
apply Z.add_le_mono.
match goal with |- ?a <= ?b => ring_simplify z1 t1 ('z2) ('t2) a b end.
auto with zarith.
match goal with |- ?a <= ?b => ring_simplify x1 y1 ('x2) ('y2) a b end.
auto with zarith.
Close Scope Z_scope.
Qed.
Lemma Qplus_lt_le_compat :
forall x y z t, x<y -> z<=t -> x+z < y+t.
Proof.
unfold Qplus, Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2) (t1, t2);
simpl; simpl_mult.
Open Scope Z_scope.
intros.
match goal with |- ?a < ?b => ring_simplify a b end.
rewrite Z.add_comm.
apply Z.add_le_lt_mono.
match goal with |- ?a <= ?b => ring_simplify z1 t1 ('z2) ('t2) a b end.
auto with zarith.
match goal with |- ?a < ?b => ring_simplify x1 y1 ('x2) ('y2) a b end.
do 2 (apply Z.mul_lt_mono_pos_r;try easy).
Close Scope Z_scope.
Qed.
Lemma Qplus_le_l (x y z: Q): x + z <= y + z <-> x <= y.
Proof.
split; intros.
rewrite <- (Qplus_0_r x), <- (Qplus_0_r y), <- (Qplus_opp_r z).
do 2 rewrite Qplus_assoc.
apply Qplus_le_compat; auto with *.
apply Qplus_le_compat; auto with *.
Qed.
Lemma Qplus_le_r (x y z: Q): z + x <= z + y <-> x <= y.
Proof.
rewrite (Qplus_comm z x), (Qplus_comm z y).
apply Qplus_le_l.
Qed.
Lemma Qplus_lt_l (x y z: Q): x + z < y + z <-> x < y.
Proof.
split; intros.
rewrite <- (Qplus_0_r x), <- (Qplus_0_r y), <- (Qplus_opp_r z).
do 2 rewrite Qplus_assoc.
apply Qplus_lt_le_compat; auto with *.
apply Qplus_lt_le_compat; auto with *.
Qed.
Lemma Qplus_lt_r (x y z: Q): z + x < z + y <-> x < y.
Proof.
rewrite (Qplus_comm z x), (Qplus_comm z y).
apply Qplus_lt_l.
Qed.
Lemma Qmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z.
Proof.
intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
Open Scope Z_scope.
intros; simpl_mult.
rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
apply Z.mul_le_mono_nonneg_r; auto with zarith.
Close Scope Z_scope.
Qed.
Lemma Qmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y.
Proof.
intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
Open Scope Z_scope.
simpl_mult.
rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
intros LT LE.
apply Z.mul_le_mono_pos_r in LE; trivial.
apply Z.mul_pos_pos; [omega|easy].
Close Scope Z_scope.
Qed.
Lemma Qmult_le_r (x y z: Q): 0 < z -> (x*z <= y*z <-> x <= y).
Proof.
split; intro.
now apply Qmult_lt_0_le_reg_r with z.
apply Qmult_le_compat_r; auto with qarith.
Qed.
Lemma Qmult_le_l (x y z: Q): 0 < z -> (z*x <= z*y <-> x <= y).
Proof.
rewrite (Qmult_comm z x), (Qmult_comm z y).
apply Qmult_le_r.
Qed.
Lemma Qmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z.
Proof.
intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
Open Scope Z_scope.
intros; simpl_mult.
rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
apply Z.mul_lt_mono_pos_r; auto with zarith.
apply Z.mul_pos_pos; [omega|reflexivity].
Close Scope Z_scope.
Qed.
Lemma Qmult_lt_r: forall x y z, 0 < z -> (x*z < y*z <-> x < y).
Proof.
Open Scope Z_scope.
intros (a1,a2) (b1,b2) (c1,c2).
unfold Qle, Qlt; simpl.
simpl_mult.
rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
intro LT. rewrite <- Z.mul_lt_mono_pos_r. reflexivity.
apply Z.mul_pos_pos; [omega|reflexivity].
Close Scope Z_scope.
Qed.
Lemma Qmult_lt_l (x y z: Q): 0 < z -> (z*x < z*y <-> x < y).
Proof.
rewrite (Qmult_comm z x), (Qmult_comm z y).
apply Qmult_lt_r.
Qed.
Lemma Qmult_le_0_compat : forall a b, 0 <= a -> 0 <= b -> 0 <= a*b.
Proof.
intros a b Ha Hb.
unfold Qle in *.
simpl in *.
auto with *.
Qed.
Lemma Qinv_le_0_compat : forall a, 0 <= a -> 0 <= /a.
Proof.
intros [[|n|n] d] Ha; assumption.
Qed.
Lemma Qle_shift_div_l : forall a b c,
0 < c -> a*c <= b -> a <= b/c.
Proof.
intros a b c Hc H.
apply Qmult_lt_0_le_reg_r with (c).
assumption.
setoid_replace (b/c*c) with (c*(b/c)) by apply Qmult_comm.
rewrite Qmult_div_r; try assumption.
auto with *.
Qed.
Lemma Qle_shift_inv_l : forall a c,
0 < c -> a*c <= 1 -> a <= /c.
Proof.
intros a c Hc H.
setoid_replace (/c) with (1*/c) by (symmetry; apply Qmult_1_l).
change (a <= 1/c).
apply Qle_shift_div_l; assumption.
Qed.
Lemma Qle_shift_div_r : forall a b c,
0 < b -> a <= c*b -> a/b <= c.
Proof.
intros a b c Hc H.
apply Qmult_lt_0_le_reg_r with b.
assumption.
setoid_replace (a/b*b) with (b*(a/b)) by apply Qmult_comm.
rewrite Qmult_div_r; try assumption.
auto with *.
Qed.
Lemma Qle_shift_inv_r : forall b c,
0 < b -> 1 <= c*b -> /b <= c.
Proof.
intros b c Hc H.
setoid_replace (/b) with (1*/b) by (symmetry; apply Qmult_1_l).
change (1/b <= c).
apply Qle_shift_div_r; assumption.
Qed.
Lemma Qinv_lt_0_compat : forall a, 0 < a -> 0 < /a.
Proof.
intros [[|n|n] d] Ha; assumption.
Qed.
Lemma Qlt_shift_div_l : forall a b c,
0 < c -> a*c < b -> a < b/c.
Proof.
intros a b c Hc H.
apply Qnot_le_lt.
intros H0.
apply (Qlt_not_le _ _ H).
apply Qmult_lt_0_le_reg_r with (/c).
apply Qinv_lt_0_compat.
assumption.
setoid_replace (a*c/c) with (a) by (apply Qdiv_mult_l; auto with *).
assumption.
Qed.
Lemma Qlt_shift_inv_l : forall a c,
0 < c -> a*c < 1 -> a < /c.
Proof.
intros a c Hc H.
setoid_replace (/c) with (1*/c) by (symmetry; apply Qmult_1_l).
change (a < 1/c).
apply Qlt_shift_div_l; assumption.
Qed.
Lemma Qlt_shift_div_r : forall a b c,
0 < b -> a < c*b -> a/b < c.
Proof.
intros a b c Hc H.
apply Qnot_le_lt.
intros H0.
apply (Qlt_not_le _ _ H).
apply Qmult_lt_0_le_reg_r with (/b).
apply Qinv_lt_0_compat.
assumption.
setoid_replace (c*b/b) with (c) by (apply Qdiv_mult_l; auto with *).
assumption.
Qed.
Lemma Qlt_shift_inv_r : forall b c,
0 < b -> 1 < c*b -> /b < c.
Proof.
intros b c Hc H.
setoid_replace (/b) with (1*/b) by (symmetry; apply Qmult_1_l).
change (1/b < c).
apply Qlt_shift_div_r; assumption.
Qed.
(** * Rational to the n-th power *)
Definition Qpower_positive : Q -> positive -> Q :=
pow_pos Qmult.
Instance Qpower_positive_comp : Proper (Qeq==>eq==>Qeq) Qpower_positive.
Proof.
intros x x' Hx y y' Hy. rewrite <-Hy; clear y' Hy.
unfold Qpower_positive.
induction y; simpl;
try rewrite IHy;
try rewrite Hx;
reflexivity.
Qed.
Definition Qpower (q:Q) (z:Z) :=
match z with
| Zpos p => Qpower_positive q p
| Z0 => 1
| Zneg p => /Qpower_positive q p
end.
Notation " q ^ z " := (Qpower q z) : Q_scope.
Instance Qpower_comp : Proper (Qeq==>eq==>Qeq) Qpower.
Proof.
intros x x' Hx y y' Hy. rewrite <- Hy; clear y' Hy.
destruct y; simpl; rewrite ?Hx; auto with *.
Qed.
|