1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export BinNums.
Require Import Eqdep_dec EqdepFacts RelationClasses Morphisms Setoid
Equalities Orders OrdersFacts GenericMinMax Le Plus.
Require Export BinPosDef.
(**********************************************************************)
(** * Binary positive numbers, operations and properties *)
(**********************************************************************)
(** Initial development by Pierre Crégut, CNET, Lannion, France *)
(** The type [positive] and its constructors [xI] and [xO] and [xH]
are now defined in [BinNums.v] *)
Local Open Scope positive_scope.
(** Every definitions and early properties about positive numbers
are placed in a module [Pos] for qualification purpose. *)
Module Pos
<: UsualOrderedTypeFull
<: UsualDecidableTypeFull
<: TotalOrder.
(** * Definitions of operations, now in a separate file *)
Include BinPosDef.Pos.
(** In functor applications that follow, we only inline t and eq *)
Set Inline Level 30.
(** * Logical Predicates *)
Definition eq := @Logic.eq positive.
Definition eq_equiv := @eq_equivalence positive.
Include BackportEq.
Definition lt x y := (x ?= y) = Lt.
Definition gt x y := (x ?= y) = Gt.
Definition le x y := (x ?= y) <> Gt.
Definition ge x y := (x ?= y) <> Lt.
Infix "<=" := le : positive_scope.
Infix "<" := lt : positive_scope.
Infix ">=" := ge : positive_scope.
Infix ">" := gt : positive_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
(**********************************************************************)
(** * Properties of operations over positive numbers *)
(** ** Decidability of equality on binary positive numbers *)
Lemma eq_dec : forall x y:positive, {x = y} + {x <> y}.
Proof.
decide equality.
Defined.
(**********************************************************************)
(** * Properties of successor on binary positive numbers *)
(** ** Specification of [xI] in term of [succ] and [xO] *)
Lemma xI_succ_xO p : p~1 = succ p~0.
Proof.
reflexivity.
Qed.
Lemma succ_discr p : p <> succ p.
Proof.
now destruct p.
Qed.
(** ** Successor and double *)
Lemma pred_double_spec p : pred_double p = pred (p~0).
Proof.
reflexivity.
Qed.
Lemma succ_pred_double p : succ (pred_double p) = p~0.
Proof.
induction p; simpl; now f_equal.
Qed.
Lemma pred_double_succ p : pred_double (succ p) = p~1.
Proof.
induction p; simpl; now f_equal.
Qed.
Lemma double_succ p : (succ p)~0 = succ (succ p~0).
Proof.
now destruct p.
Qed.
Lemma pred_double_xO_discr p : pred_double p <> p~0.
Proof.
now destruct p.
Qed.
(** ** Successor and predecessor *)
Lemma succ_not_1 p : succ p <> 1.
Proof.
now destruct p.
Qed.
Lemma pred_succ p : pred (succ p) = p.
Proof.
destruct p; simpl; trivial. apply pred_double_succ.
Qed.
Lemma succ_pred_or p : p = 1 \/ succ (pred p) = p.
Proof.
destruct p; simpl; auto.
right; apply succ_pred_double.
Qed.
Lemma succ_pred p : p <> 1 -> succ (pred p) = p.
Proof.
destruct p; intros H; simpl; trivial.
apply succ_pred_double.
now destruct H.
Qed.
(** ** Injectivity of successor *)
Lemma succ_inj p q : succ p = succ q -> p = q.
Proof.
revert q.
induction p; intros [q|q| ] H; simpl in H; destr_eq H; f_equal; auto.
elim (succ_not_1 p); auto.
elim (succ_not_1 q); auto.
Qed.
(** ** Predecessor to [N] *)
Lemma pred_N_succ p : pred_N (succ p) = Npos p.
Proof.
destruct p; simpl; trivial. f_equal. apply pred_double_succ.
Qed.
(**********************************************************************)
(** * Properties of addition on binary positive numbers *)
(** ** Specification of [succ] in term of [add] *)
Lemma add_1_r p : p + 1 = succ p.
Proof.
now destruct p.
Qed.
Lemma add_1_l p : 1 + p = succ p.
Proof.
now destruct p.
Qed.
(** ** Specification of [add_carry] *)
Theorem add_carry_spec p q : add_carry p q = succ (p + q).
Proof.
revert q. induction p; destruct q; simpl; now f_equal.
Qed.
(** ** Commutativity *)
Theorem add_comm p q : p + q = q + p.
Proof.
revert q. induction p; destruct q; simpl; f_equal; trivial.
rewrite 2 add_carry_spec; now f_equal.
Qed.
(** ** Permutation of [add] and [succ] *)
Theorem add_succ_r p q : p + succ q = succ (p + q).
Proof.
revert q.
induction p; destruct q; simpl; f_equal;
auto using add_1_r; rewrite add_carry_spec; auto.
Qed.
Theorem add_succ_l p q : succ p + q = succ (p + q).
Proof.
rewrite add_comm, (add_comm p). apply add_succ_r.
Qed.
(** ** No neutral elements for addition *)
Lemma add_no_neutral p q : q + p <> p.
Proof.
revert q.
induction p as [p IHp|p IHp| ]; intros [q|q| ] H;
destr_eq H; apply (IHp q H).
Qed.
(** ** Simplification *)
Lemma add_carry_add p q r s :
add_carry p r = add_carry q s -> p + r = q + s.
Proof.
intros H; apply succ_inj; now rewrite <- 2 add_carry_spec.
Qed.
Lemma add_reg_r p q r : p + r = q + r -> p = q.
Proof.
revert p q. induction r.
intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal;
auto using add_carry_add; contradict H;
rewrite add_carry_spec, <- add_succ_r; auto using add_no_neutral.
intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
contradict H; auto using add_no_neutral.
intros p q H. apply succ_inj. now rewrite <- 2 add_1_r.
Qed.
Lemma add_reg_l p q r : p + q = p + r -> q = r.
Proof.
rewrite 2 (add_comm p). now apply add_reg_r.
Qed.
Lemma add_cancel_r p q r : p + r = q + r <-> p = q.
Proof.
split. apply add_reg_r. congruence.
Qed.
Lemma add_cancel_l p q r : r + p = r + q <-> p = q.
Proof.
split. apply add_reg_l. congruence.
Qed.
Lemma add_carry_reg_r p q r :
add_carry p r = add_carry q r -> p = q.
Proof.
intros H. apply add_reg_r with (r:=r); now apply add_carry_add.
Qed.
Lemma add_carry_reg_l p q r :
add_carry p q = add_carry p r -> q = r.
Proof.
intros H; apply add_reg_r with (r:=p);
rewrite (add_comm r), (add_comm q); now apply add_carry_add.
Qed.
(** ** Addition is associative *)
Theorem add_assoc p q r : p + (q + r) = p + q + r.
Proof.
revert q r. induction p.
intros [q|q| ] [r|r| ]; simpl; f_equal; trivial;
rewrite ?add_carry_spec, ?add_succ_r, ?add_succ_l, ?add_1_r;
f_equal; trivial.
intros [q|q| ] [r|r| ]; simpl; f_equal; trivial;
rewrite ?add_carry_spec, ?add_succ_r, ?add_succ_l, ?add_1_r;
f_equal; trivial.
intros q r; rewrite 2 add_1_l, add_succ_l; auto.
Qed.
(** ** Commutation of addition and double *)
Lemma add_xO p q : (p + q)~0 = p~0 + q~0.
Proof.
now destruct p, q.
Qed.
Lemma add_xI_pred_double p q :
(p + q)~0 = p~1 + pred_double q.
Proof.
change (p~1) with (p~0 + 1).
now rewrite <- add_assoc, add_1_l, succ_pred_double.
Qed.
Lemma add_xO_pred_double p q :
pred_double (p + q) = p~0 + pred_double q.
Proof.
revert q. induction p as [p IHp| p IHp| ]; destruct q; simpl;
rewrite ?add_carry_spec, ?pred_double_succ, ?add_xI_pred_double;
try reflexivity.
rewrite IHp; auto.
rewrite <- succ_pred_double, <- add_1_l. reflexivity.
Qed.
(** ** Miscellaneous *)
Lemma add_diag p : p + p = p~0.
Proof.
induction p as [p IHp| p IHp| ]; simpl;
now rewrite ?add_carry_spec, ?IHp.
Qed.
(**********************************************************************)
(** * Peano induction and recursion on binary positive positive numbers *)
(** The Peano-like recursor function for [positive] (due to Daniel Schepler) *)
Fixpoint peano_rect (P:positive->Type) (a:P 1)
(f: forall p:positive, P p -> P (succ p)) (p:positive) : P p :=
let f2 := peano_rect (fun p:positive => P (p~0)) (f _ a)
(fun (p:positive) (x:P (p~0)) => f _ (f _ x))
in
match p with
| q~1 => f _ (f2 q)
| q~0 => f2 q
| 1 => a
end.
Theorem peano_rect_succ (P:positive->Type) (a:P 1)
(f:forall p, P p -> P (succ p)) (p:positive) :
peano_rect P a f (succ p) = f _ (peano_rect P a f p).
Proof.
revert P a f. induction p; trivial.
intros. simpl. now rewrite IHp.
Qed.
Theorem peano_rect_base (P:positive->Type) (a:P 1)
(f:forall p, P p -> P (succ p)) :
peano_rect P a f 1 = a.
Proof.
trivial.
Qed.
Definition peano_rec (P:positive->Set) := peano_rect P.
(** Peano induction *)
Definition peano_ind (P:positive->Prop) := peano_rect P.
(** Peano case analysis *)
Theorem peano_case :
forall P:positive -> Prop,
P 1 -> (forall n:positive, P (succ n)) -> forall p:positive, P p.
Proof.
intros; apply peano_ind; auto.
Qed.
(** Earlier, the Peano-like recursor was built and proved in a way due to
Conor McBride, see "The view from the left" *)
Inductive PeanoView : positive -> Type :=
| PeanoOne : PeanoView 1
| PeanoSucc : forall p, PeanoView p -> PeanoView (succ p).
Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) :=
match q in PeanoView x return PeanoView (x~0) with
| PeanoOne => PeanoSucc _ PeanoOne
| PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
end.
Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) :=
match q in PeanoView x return PeanoView (x~1) with
| PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
| PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
end.
Fixpoint peanoView p : PeanoView p :=
match p return PeanoView p with
| 1 => PeanoOne
| p~0 => peanoView_xO p (peanoView p)
| p~1 => peanoView_xI p (peanoView p)
end.
Definition PeanoView_iter (P:positive->Type)
(a:P 1) (f:forall p, P p -> P (succ p)) :=
(fix iter p (q:PeanoView p) : P p :=
match q in PeanoView p return P p with
| PeanoOne => a
| PeanoSucc _ q => f _ (iter _ q)
end).
Theorem eq_dep_eq_positive :
forall (P:positive->Type) (p:positive) (x y:P p),
eq_dep positive P p x p y -> x = y.
Proof.
apply eq_dep_eq_dec.
decide equality.
Qed.
Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
Proof.
intros.
induction q as [ | p q IHq ].
apply eq_dep_eq_positive.
cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial.
destruct p; intros; discriminate.
trivial.
apply eq_dep_eq_positive.
cut (succ p=succ p). pattern (succ p) at 1 2 5, q'. destruct q'.
intro. destruct p; discriminate.
intro. apply succ_inj in H.
generalize q'. rewrite H. intro.
rewrite (IHq q'0).
trivial.
trivial.
Qed.
Lemma peano_equiv (P:positive->Type) (a:P 1) (f:forall p, P p -> P (succ p)) p :
PeanoView_iter P a f p (peanoView p) = peano_rect P a f p.
Proof.
revert P a f. induction p using peano_rect.
trivial.
intros; simpl. rewrite peano_rect_succ.
rewrite (PeanoViewUnique _ (peanoView (succ p)) (PeanoSucc _ (peanoView p))).
simpl; now f_equal.
Qed.
(**********************************************************************)
(** * Properties of multiplication on binary positive numbers *)
(** ** One is neutral for multiplication *)
Lemma mul_1_l p : 1 * p = p.
Proof.
reflexivity.
Qed.
Lemma mul_1_r p : p * 1 = p.
Proof.
induction p; simpl; now f_equal.
Qed.
(** ** Right reduction properties for multiplication *)
Lemma mul_xO_r p q : p * q~0 = (p * q)~0.
Proof.
induction p; simpl; f_equal; f_equal; trivial.
Qed.
Lemma mul_xI_r p q : p * q~1 = p + (p * q)~0.
Proof.
induction p as [p IHp|p IHp| ]; simpl; f_equal; trivial.
now rewrite IHp, 2 add_assoc, (add_comm p).
Qed.
(** ** Commutativity of multiplication *)
Theorem mul_comm p q : p * q = q * p.
Proof.
induction q as [q IHq|q IHq| ]; simpl; rewrite <- ? IHq;
auto using mul_xI_r, mul_xO_r, mul_1_r.
Qed.
(** ** Distributivity of multiplication over addition *)
Theorem mul_add_distr_l p q r :
p * (q + r) = p * q + p * r.
Proof.
induction p as [p IHp|p IHp| ]; simpl.
rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0).
change ((p*q+p*r)~0) with (m+n).
rewrite 2 add_assoc; f_equal.
rewrite <- 2 add_assoc; f_equal.
apply add_comm.
f_equal; auto.
reflexivity.
Qed.
Theorem mul_add_distr_r p q r :
(p + q) * r = p * r + q * r.
Proof.
rewrite 3 (mul_comm _ r); apply mul_add_distr_l.
Qed.
(** ** Associativity of multiplication *)
Theorem mul_assoc p q r : p * (q * r) = p * q * r.
Proof.
induction p as [p IHp| p IHp | ]; simpl; rewrite ?IHp; trivial.
now rewrite mul_add_distr_r.
Qed.
(** ** Successor and multiplication *)
Lemma mul_succ_l p q : (succ p) * q = q + p * q.
Proof.
induction p as [p IHp | p IHp | ]; simpl; trivial.
now rewrite IHp, add_assoc, add_diag, <-add_xO.
symmetry; apply add_diag.
Qed.
Lemma mul_succ_r p q : p * (succ q) = p + p * q.
Proof.
rewrite mul_comm, mul_succ_l. f_equal. apply mul_comm.
Qed.
(** ** Parity properties of multiplication *)
Lemma mul_xI_mul_xO_discr p q r : p~1 * r <> q~0 * r.
Proof.
induction r; try discriminate.
rewrite 2 mul_xO_r; intro H; destr_eq H; auto.
Qed.
Lemma mul_xO_discr p q : p~0 * q <> q.
Proof.
induction q; try discriminate.
rewrite mul_xO_r; injection; auto.
Qed.
(** ** Simplification properties of multiplication *)
Theorem mul_reg_r p q r : p * r = q * r -> p = q.
Proof.
revert q r.
induction p as [p IHp| p IHp| ]; intros [q|q| ] r H;
reflexivity || apply f_equal || exfalso.
apply IHp with (r~0). simpl in *.
rewrite 2 mul_xO_r. apply add_reg_l with (1:=H).
contradict H. apply mul_xI_mul_xO_discr.
contradict H. simpl. rewrite add_comm. apply add_no_neutral.
symmetry in H. contradict H. apply mul_xI_mul_xO_discr.
apply IHp with (r~0). simpl. now rewrite 2 mul_xO_r.
contradict H. apply mul_xO_discr.
symmetry in H. contradict H. simpl. rewrite add_comm.
apply add_no_neutral.
symmetry in H. contradict H. apply mul_xO_discr.
Qed.
Theorem mul_reg_l p q r : r * p = r * q -> p = q.
Proof.
rewrite 2 (mul_comm r). apply mul_reg_r.
Qed.
Lemma mul_cancel_r p q r : p * r = q * r <-> p = q.
Proof.
split. apply mul_reg_r. congruence.
Qed.
Lemma mul_cancel_l p q r : r * p = r * q <-> p = q.
Proof.
split. apply mul_reg_l. congruence.
Qed.
(** ** Inversion of multiplication *)
Lemma mul_eq_1_l p q : p * q = 1 -> p = 1.
Proof.
now destruct p, q.
Qed.
Lemma mul_eq_1_r p q : p * q = 1 -> q = 1.
Proof.
now destruct p, q.
Qed.
Notation mul_eq_1 := mul_eq_1_l.
(** ** Square *)
Lemma square_xO p : p~0 * p~0 = (p*p)~0~0.
Proof.
simpl. now rewrite mul_comm.
Qed.
Lemma square_xI p : p~1 * p~1 = (p*p+p)~0~1.
Proof.
simpl. rewrite mul_comm. simpl. f_equal.
rewrite add_assoc, add_diag. simpl. now rewrite add_comm.
Qed.
(** ** Properties of [iter] *)
Lemma iter_swap_gen : forall A B (f:A->B)(g:A->A)(h:B->B),
(forall a, f (g a) = h (f a)) -> forall p a,
f (iter g a p) = iter h (f a) p.
Proof.
induction p; simpl; intros; now rewrite ?H, ?IHp.
Qed.
Theorem iter_swap :
forall p (A:Type) (f:A -> A) (x:A),
iter f (f x) p = f (iter f x p).
Proof.
intros. symmetry. now apply iter_swap_gen.
Qed.
Theorem iter_succ :
forall p (A:Type) (f:A -> A) (x:A),
iter f x (succ p) = f (iter f x p).
Proof.
induction p as [p IHp|p IHp|]; intros; simpl; trivial.
now rewrite !IHp, iter_swap.
Qed.
Theorem iter_add :
forall p q (A:Type) (f:A -> A) (x:A),
iter f x (p+q) = iter f (iter f x q) p.
Proof.
induction p using peano_ind; intros.
now rewrite add_1_l, iter_succ.
now rewrite add_succ_l, !iter_succ, IHp.
Qed.
Theorem iter_invariant :
forall (p:positive) (A:Type) (f:A -> A) (Inv:A -> Prop),
(forall x:A, Inv x -> Inv (f x)) ->
forall x:A, Inv x -> Inv (iter f x p).
Proof.
induction p as [p IHp|p IHp|]; simpl; trivial.
intros A f Inv H x H0. apply H, IHp, IHp; trivial.
intros A f Inv H x H0. apply IHp, IHp; trivial.
Qed.
(** ** Properties of power *)
Lemma pow_1_r p : p^1 = p.
Proof.
unfold pow. simpl. now rewrite mul_comm.
Qed.
Lemma pow_succ_r p q : p^(succ q) = p * p^q.
Proof.
unfold pow. now rewrite iter_succ.
Qed.
(** ** Properties of square *)
Lemma square_spec p : square p = p * p.
Proof.
induction p.
- rewrite square_xI. simpl. now rewrite IHp.
- rewrite square_xO. simpl. now rewrite IHp.
- trivial.
Qed.
(** ** Properties of [sub_mask] *)
Lemma sub_mask_succ_r p q :
sub_mask p (succ q) = sub_mask_carry p q.
Proof.
revert q. induction p; destruct q; simpl; f_equal; trivial; now destruct p.
Qed.
Theorem sub_mask_carry_spec p q :
sub_mask_carry p q = pred_mask (sub_mask p q).
Proof.
revert q. induction p as [p IHp|p IHp| ]; destruct q; simpl;
try reflexivity; rewrite ?IHp;
destruct (sub_mask p q) as [|[r|r| ]|] || destruct p; auto.
Qed.
Inductive SubMaskSpec (p q : positive) : mask -> Prop :=
| SubIsNul : p = q -> SubMaskSpec p q IsNul
| SubIsPos : forall r, q + r = p -> SubMaskSpec p q (IsPos r)
| SubIsNeg : forall r, p + r = q -> SubMaskSpec p q IsNeg.
Theorem sub_mask_spec p q : SubMaskSpec p q (sub_mask p q).
Proof.
revert q. induction p; destruct q; simpl; try constructor; trivial.
(* p~1 q~1 *)
destruct (IHp q); subst; try now constructor.
now apply SubIsNeg with r~0.
(* p~1 q~0 *)
destruct (IHp q); subst; try now constructor.
apply SubIsNeg with (pred_double r). symmetry. apply add_xI_pred_double.
(* p~0 q~1 *)
rewrite sub_mask_carry_spec.
destruct (IHp q); subst; try constructor.
now apply SubIsNeg with 1.
destruct r; simpl; try constructor; simpl.
now rewrite add_carry_spec, <- add_succ_r.
now rewrite add_carry_spec, <- add_succ_r, succ_pred_double.
now rewrite add_1_r.
now apply SubIsNeg with r~1.
(* p~0 q~0 *)
destruct (IHp q); subst; try now constructor.
now apply SubIsNeg with r~0.
(* p~0 1 *)
now rewrite add_1_l, succ_pred_double.
(* 1 q~1 *)
now apply SubIsNeg with q~0.
(* 1 q~0 *)
apply SubIsNeg with (pred_double q). now rewrite add_1_l, succ_pred_double.
Qed.
Theorem sub_mask_nul_iff p q : sub_mask p q = IsNul <-> p = q.
Proof.
split.
now case sub_mask_spec.
intros <-. induction p; simpl; now rewrite ?IHp.
Qed.
Theorem sub_mask_diag p : sub_mask p p = IsNul.
Proof.
now apply sub_mask_nul_iff.
Qed.
Lemma sub_mask_add p q r : sub_mask p q = IsPos r -> q + r = p.
Proof.
case sub_mask_spec; congruence.
Qed.
Lemma sub_mask_add_diag_l p q : sub_mask (p+q) p = IsPos q.
Proof.
case sub_mask_spec.
intros H. rewrite add_comm in H. elim (add_no_neutral _ _ H).
intros r H. apply add_cancel_l in H. now f_equal.
intros r H. rewrite <- add_assoc, add_comm in H. elim (add_no_neutral _ _ H).
Qed.
Lemma sub_mask_pos_iff p q r : sub_mask p q = IsPos r <-> q + r = p.
Proof.
split. apply sub_mask_add. intros <-; apply sub_mask_add_diag_l.
Qed.
Lemma sub_mask_add_diag_r p q : sub_mask p (p+q) = IsNeg.
Proof.
case sub_mask_spec; trivial.
intros H. symmetry in H; rewrite add_comm in H. elim (add_no_neutral _ _ H).
intros r H. rewrite <- add_assoc, add_comm in H. elim (add_no_neutral _ _ H).
Qed.
Lemma sub_mask_neg_iff p q : sub_mask p q = IsNeg <-> exists r, p + r = q.
Proof.
split.
case sub_mask_spec; try discriminate. intros r Hr _; now exists r.
intros (r,<-). apply sub_mask_add_diag_r.
Qed.
(*********************************************************************)
(** * Properties of boolean comparisons *)
Theorem eqb_eq p q : (p =? q) = true <-> p=q.
Proof.
revert q. induction p; destruct q; simpl; rewrite ?IHp; split; congruence.
Qed.
Theorem ltb_lt p q : (p <? q) = true <-> p < q.
Proof.
unfold ltb, lt. destruct compare; easy'.
Qed.
Theorem leb_le p q : (p <=? q) = true <-> p <= q.
Proof.
unfold leb, le. destruct compare; easy'.
Qed.
(** More about [eqb] *)
Include BoolEqualityFacts.
(**********************************************************************)
(** * Properties of comparison on binary positive numbers *)
(** First, we express [compare_cont] in term of [compare] *)
Definition switch_Eq c c' :=
match c' with
| Eq => c
| Lt => Lt
| Gt => Gt
end.
Lemma compare_cont_spec p q c :
compare_cont c p q = switch_Eq c (p ?= q).
Proof.
unfold compare.
revert q c.
induction p; destruct q; simpl; trivial.
intros c.
rewrite 2 IHp. now destruct (compare_cont Eq p q).
intros c.
rewrite 2 IHp. now destruct (compare_cont Eq p q).
Qed.
(** From this general result, we now describe particular cases
of [compare_cont p q c = c'] :
- When [c=Eq], this is directly [compare]
- When [c<>Eq], we'll show first that [c'<>Eq]
- That leaves only 4 lemmas for [c] and [c'] being [Lt] or [Gt]
*)
Theorem compare_cont_Eq p q c :
compare_cont c p q = Eq -> c = Eq.
Proof.
rewrite compare_cont_spec. now destruct (p ?= q).
Qed.
Lemma compare_cont_Lt_Gt p q :
compare_cont Lt p q = Gt <-> p > q.
Proof.
rewrite compare_cont_spec. unfold gt. destruct (p ?= q); now split.
Qed.
Lemma compare_cont_Lt_Lt p q :
compare_cont Lt p q = Lt <-> p <= q.
Proof.
rewrite compare_cont_spec. unfold le. destruct (p ?= q); easy'.
Qed.
Lemma compare_cont_Gt_Lt p q :
compare_cont Gt p q = Lt <-> p < q.
Proof.
rewrite compare_cont_spec. unfold lt. destruct (p ?= q); now split.
Qed.
Lemma compare_cont_Gt_Gt p q :
compare_cont Gt p q = Gt <-> p >= q.
Proof.
rewrite compare_cont_spec. unfold ge. destruct (p ?= q); easy'.
Qed.
Lemma compare_cont_Lt_not_Lt p q :
compare_cont Lt p q <> Lt <-> p > q.
Proof.
rewrite compare_cont_Lt_Lt.
unfold gt, le, compare.
now destruct compare_cont; split; try apply comparison_eq_stable.
Qed.
Lemma compare_cont_Lt_not_Gt p q :
compare_cont Lt p q <> Gt <-> p <= q.
Proof.
apply not_iff_compat, compare_cont_Lt_Gt.
Qed.
Lemma compare_cont_Gt_not_Lt p q :
compare_cont Gt p q <> Lt <-> p >= q.
Proof.
apply not_iff_compat, compare_cont_Gt_Lt.
Qed.
Lemma compare_cont_Gt_not_Gt p q :
compare_cont Gt p q <> Gt <-> p < q.
Proof.
rewrite compare_cont_Gt_Gt.
unfold ge, lt, compare.
now destruct compare_cont; split; try apply comparison_eq_stable.
Qed.
(** We can express recursive equations for [compare] *)
Lemma compare_xO_xO p q : (p~0 ?= q~0) = (p ?= q).
Proof. reflexivity. Qed.
Lemma compare_xI_xI p q : (p~1 ?= q~1) = (p ?= q).
Proof. reflexivity. Qed.
Lemma compare_xI_xO p q :
(p~1 ?= q~0) = switch_Eq Gt (p ?= q).
Proof. exact (compare_cont_spec p q Gt). Qed.
Lemma compare_xO_xI p q :
(p~0 ?= q~1) = switch_Eq Lt (p ?= q).
Proof. exact (compare_cont_spec p q Lt). Qed.
Hint Rewrite compare_xO_xO compare_xI_xI compare_xI_xO compare_xO_xI : compare.
Ltac simpl_compare := autorewrite with compare.
Ltac simpl_compare_in H := autorewrite with compare in H.
(** Relation between [compare] and [sub_mask] *)
Definition mask2cmp (p:mask) : comparison :=
match p with
| IsNul => Eq
| IsPos _ => Gt
| IsNeg => Lt
end.
Lemma compare_sub_mask p q : (p ?= q) = mask2cmp (sub_mask p q).
Proof.
revert q.
induction p as [p IHp| p IHp| ]; intros [q|q| ]; simpl; trivial;
specialize (IHp q); rewrite ?sub_mask_carry_spec;
destruct (sub_mask p q) as [|r|]; simpl in *;
try clear r; try destruct r; simpl; trivial;
simpl_compare; now rewrite IHp.
Qed.
(** Alternative characterisation of strict order in term of addition *)
Lemma lt_iff_add p q : p < q <-> exists r, p + r = q.
Proof.
unfold "<". rewrite <- sub_mask_neg_iff, compare_sub_mask.
destruct sub_mask; now split.
Qed.
Lemma gt_iff_add p q : p > q <-> exists r, q + r = p.
Proof.
unfold ">". rewrite compare_sub_mask.
split.
case_eq (sub_mask p q); try discriminate; intros r Hr _.
exists r. now apply sub_mask_pos_iff.
intros (r,Hr). apply sub_mask_pos_iff in Hr. now rewrite Hr.
Qed.
(** Basic facts about [compare_cont] *)
Theorem compare_cont_refl p c :
compare_cont c p p = c.
Proof.
now induction p.
Qed.
Lemma compare_cont_antisym p q c :
CompOpp (compare_cont c p q) = compare_cont (CompOpp c) q p.
Proof.
revert q c.
induction p as [p IHp|p IHp| ]; intros [q|q| ] c; simpl;
trivial; apply IHp.
Qed.
(** Basic facts about [compare] *)
Lemma compare_eq_iff p q : (p ?= q) = Eq <-> p = q.
Proof.
rewrite compare_sub_mask, <- sub_mask_nul_iff.
destruct sub_mask; now split.
Qed.
Lemma compare_antisym p q : (q ?= p) = CompOpp (p ?= q).
Proof.
unfold compare. now rewrite compare_cont_antisym.
Qed.
Lemma compare_lt_iff p q : (p ?= q) = Lt <-> p < q.
Proof. reflexivity. Qed.
Lemma compare_le_iff p q : (p ?= q) <> Gt <-> p <= q.
Proof. reflexivity. Qed.
(** More properties about [compare] and boolean comparisons,
including [compare_spec] and [lt_irrefl] and [lt_eq_cases]. *)
Include BoolOrderFacts.
Definition le_lteq := lt_eq_cases.
(** ** Facts about [gt] and [ge] *)
(** The predicates [lt] and [le] are now favored in the statements
of theorems, the use of [gt] and [ge] is hence not recommended.
We provide here the bare minimal results to related them with
[lt] and [le]. *)
Lemma gt_lt_iff p q : p > q <-> q < p.
Proof.
unfold lt, gt. now rewrite compare_antisym, CompOpp_iff.
Qed.
Lemma gt_lt p q : p > q -> q < p.
Proof.
apply gt_lt_iff.
Qed.
Lemma lt_gt p q : p < q -> q > p.
Proof.
apply gt_lt_iff.
Qed.
Lemma ge_le_iff p q : p >= q <-> q <= p.
Proof.
unfold le, ge. now rewrite compare_antisym, CompOpp_iff.
Qed.
Lemma ge_le p q : p >= q -> q <= p.
Proof.
apply ge_le_iff.
Qed.
Lemma le_ge p q : p <= q -> q >= p.
Proof.
apply ge_le_iff.
Qed.
(** ** Comparison and the successor *)
Lemma compare_succ_r p q :
switch_Eq Gt (p ?= succ q) = switch_Eq Lt (p ?= q).
Proof.
revert q.
induction p as [p IH|p IH| ]; intros [q|q| ]; simpl;
simpl_compare; rewrite ?IH; trivial;
(now destruct compare) || (now destruct p).
Qed.
Lemma compare_succ_l p q :
switch_Eq Lt (succ p ?= q) = switch_Eq Gt (p ?= q).
Proof.
rewrite 2 (compare_antisym q). generalize (compare_succ_r q p).
now do 2 destruct compare.
Qed.
Theorem lt_succ_r p q : p < succ q <-> p <= q.
Proof.
unfold lt, le. generalize (compare_succ_r p q).
do 2 destruct compare; try discriminate; now split.
Qed.
Lemma lt_succ_diag_r p : p < succ p.
Proof.
rewrite lt_iff_add. exists 1. apply add_1_r.
Qed.
Lemma compare_succ_succ p q : (succ p ?= succ q) = (p ?= q).
Proof.
revert q.
induction p; destruct q; simpl; simpl_compare; trivial;
apply compare_succ_l || apply compare_succ_r ||
(now destruct p) || (now destruct q).
Qed.
(** ** 1 is the least positive number *)
Lemma le_1_l p : 1 <= p.
Proof.
now destruct p.
Qed.
Lemma nlt_1_r p : ~ p < 1.
Proof.
now destruct p.
Qed.
Lemma lt_1_succ p : 1 < succ p.
Proof.
apply lt_succ_r, le_1_l.
Qed.
(** ** Properties of the order *)
Lemma le_nlt p q : p <= q <-> ~ q < p.
Proof.
now rewrite <- ge_le_iff.
Qed.
Lemma lt_nle p q : p < q <-> ~ q <= p.
Proof.
intros. unfold lt, le. rewrite compare_antisym.
destruct compare; split; auto; easy'.
Qed.
Lemma lt_le_incl p q : p<q -> p<=q.
Proof.
intros. apply le_lteq. now left.
Qed.
Lemma lt_lt_succ n m : n < m -> n < succ m.
Proof.
intros. now apply lt_succ_r, lt_le_incl.
Qed.
Lemma succ_lt_mono n m : n < m <-> succ n < succ m.
Proof.
unfold lt. now rewrite compare_succ_succ.
Qed.
Lemma succ_le_mono n m : n <= m <-> succ n <= succ m.
Proof.
unfold le. now rewrite compare_succ_succ.
Qed.
Lemma lt_trans n m p : n < m -> m < p -> n < p.
Proof.
rewrite 3 lt_iff_add. intros (r,Hr) (s,Hs).
exists (r+s). now rewrite add_assoc, Hr, Hs.
Qed.
Theorem lt_ind : forall (A : positive -> Prop) (n : positive),
A (succ n) ->
(forall m : positive, n < m -> A m -> A (succ m)) ->
forall m : positive, n < m -> A m.
Proof.
intros A n AB AS m. induction m using peano_ind; intros H.
elim (nlt_1_r _ H).
apply lt_succ_r, le_lteq in H. destruct H as [H|H]; subst; auto.
Qed.
Instance lt_strorder : StrictOrder lt.
Proof. split. exact lt_irrefl. exact lt_trans. Qed.
Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) lt.
Proof. repeat red. intros. subst; auto. Qed.
Lemma lt_total p q : p < q \/ p = q \/ q < p.
Proof.
case (compare_spec p q); intuition.
Qed.
Lemma le_refl p : p <= p.
Proof.
intros. unfold le. now rewrite compare_refl.
Qed.
Lemma le_lt_trans n m p : n <= m -> m < p -> n < p.
Proof.
intros H H'. apply le_lteq in H. destruct H.
now apply lt_trans with m. now subst.
Qed.
Lemma lt_le_trans n m p : n < m -> m <= p -> n < p.
Proof.
intros H H'. apply le_lteq in H'. destruct H'.
now apply lt_trans with m. now subst.
Qed.
Lemma le_trans n m p : n <= m -> m <= p -> n <= p.
Proof.
intros H H'.
apply le_lteq in H. destruct H.
apply le_lteq; left. now apply lt_le_trans with m.
now subst.
Qed.
Lemma le_succ_l n m : succ n <= m <-> n < m.
Proof.
rewrite <- lt_succ_r. symmetry. apply succ_lt_mono.
Qed.
Lemma le_antisym p q : p <= q -> q <= p -> p = q.
Proof.
rewrite le_lteq; destruct 1; auto.
rewrite le_lteq; destruct 1; auto.
elim (lt_irrefl p). now transitivity q.
Qed.
Instance le_preorder : PreOrder le.
Proof. split. exact le_refl. exact le_trans. Qed.
Instance le_partorder : PartialOrder Logic.eq le.
Proof.
intros x y. change (x=y <-> x <= y <= x).
split. intros; now subst.
destruct 1; now apply le_antisym.
Qed.
(** ** Comparison and addition *)
Lemma add_compare_mono_l p q r : (p+q ?= p+r) = (q ?= r).
Proof.
revert p q r. induction p using peano_ind; intros q r.
rewrite 2 add_1_l. apply compare_succ_succ.
now rewrite 2 add_succ_l, compare_succ_succ.
Qed.
Lemma add_compare_mono_r p q r : (q+p ?= r+p) = (q ?= r).
Proof.
rewrite 2 (add_comm _ p). apply add_compare_mono_l.
Qed.
(** ** Order and addition *)
Lemma lt_add_diag_r p q : p < p + q.
Proof.
rewrite lt_iff_add. now exists q.
Qed.
Lemma add_lt_mono_l p q r : q<r <-> p+q < p+r.
Proof.
unfold lt. rewrite add_compare_mono_l. apply iff_refl.
Qed.
Lemma add_lt_mono_r p q r : q<r <-> q+p < r+p.
Proof.
unfold lt. rewrite add_compare_mono_r. apply iff_refl.
Qed.
Lemma add_lt_mono p q r s : p<q -> r<s -> p+r<q+s.
Proof.
intros. apply lt_trans with (p+s).
now apply add_lt_mono_l.
now apply add_lt_mono_r.
Qed.
Lemma add_le_mono_l p q r : q<=r <-> p+q<=p+r.
Proof.
unfold le. rewrite add_compare_mono_l. apply iff_refl.
Qed.
Lemma add_le_mono_r p q r : q<=r <-> q+p<=r+p.
Proof.
unfold le. rewrite add_compare_mono_r. apply iff_refl.
Qed.
Lemma add_le_mono p q r s : p<=q -> r<=s -> p+r <= q+s.
Proof.
intros. apply le_trans with (p+s).
now apply add_le_mono_l.
now apply add_le_mono_r.
Qed.
(** ** Comparison and multiplication *)
Lemma mul_compare_mono_l p q r : (p*q ?= p*r) = (q ?= r).
Proof.
revert q r. induction p; simpl; trivial.
intros q r. specialize (IHp q r).
destruct (compare_spec q r).
subst. apply compare_refl.
now apply add_lt_mono.
now apply lt_gt, add_lt_mono, gt_lt.
Qed.
Lemma mul_compare_mono_r p q r : (q*p ?= r*p) = (q ?= r).
Proof.
rewrite 2 (mul_comm _ p). apply mul_compare_mono_l.
Qed.
(** ** Order and multiplication *)
Lemma mul_lt_mono_l p q r : q<r <-> p*q < p*r.
Proof.
unfold lt. rewrite mul_compare_mono_l. apply iff_refl.
Qed.
Lemma mul_lt_mono_r p q r : q<r <-> q*p < r*p.
Proof.
unfold lt. rewrite mul_compare_mono_r. apply iff_refl.
Qed.
Lemma mul_lt_mono p q r s : p<q -> r<s -> p*r < q*s.
Proof.
intros. apply lt_trans with (p*s).
now apply mul_lt_mono_l.
now apply mul_lt_mono_r.
Qed.
Lemma mul_le_mono_l p q r : q<=r <-> p*q<=p*r.
Proof.
unfold le. rewrite mul_compare_mono_l. apply iff_refl.
Qed.
Lemma mul_le_mono_r p q r : q<=r <-> q*p<=r*p.
Proof.
unfold le. rewrite mul_compare_mono_r. apply iff_refl.
Qed.
Lemma mul_le_mono p q r s : p<=q -> r<=s -> p*r <= q*s.
Proof.
intros. apply le_trans with (p*s).
now apply mul_le_mono_l.
now apply mul_le_mono_r.
Qed.
Lemma lt_add_r p q : p < p+q.
Proof.
induction q using peano_ind.
rewrite add_1_r. apply lt_succ_diag_r.
apply lt_trans with (p+q); auto.
apply add_lt_mono_l, lt_succ_diag_r.
Qed.
Lemma lt_not_add_l p q : ~ p+q < p.
Proof.
intro H. elim (lt_irrefl p).
apply lt_trans with (p+q); auto using lt_add_r.
Qed.
Lemma pow_gt_1 n p : 1<n -> 1<n^p.
Proof.
intros H. induction p using peano_ind.
now rewrite pow_1_r.
rewrite pow_succ_r.
apply lt_trans with (n*1).
now rewrite mul_1_r.
now apply mul_lt_mono_l.
Qed.
(**********************************************************************)
(** * Properties of subtraction on binary positive numbers *)
Lemma sub_1_r p : sub p 1 = pred p.
Proof.
now destruct p.
Qed.
Lemma pred_sub p : pred p = sub p 1.
Proof.
symmetry. apply sub_1_r.
Qed.
Theorem sub_succ_r p q : p - (succ q) = pred (p - q).
Proof.
unfold sub; rewrite sub_mask_succ_r, sub_mask_carry_spec.
destruct (sub_mask p q) as [|[r|r| ]|]; auto.
Qed.
(** ** Properties of subtraction without underflow *)
Lemma sub_mask_pos' p q :
q < p -> exists r, sub_mask p q = IsPos r /\ q + r = p.
Proof.
rewrite lt_iff_add. intros (r,Hr). exists r. split; trivial.
now apply sub_mask_pos_iff.
Qed.
Lemma sub_mask_pos p q :
q < p -> exists r, sub_mask p q = IsPos r.
Proof.
intros H. destruct (sub_mask_pos' p q H) as (r & Hr & _). now exists r.
Qed.
Theorem sub_add p q : q < p -> (p-q)+q = p.
Proof.
intros H. destruct (sub_mask_pos p q H) as (r,U).
unfold sub. rewrite U. rewrite add_comm. now apply sub_mask_add.
Qed.
Lemma add_sub p q : (p+q)-q = p.
Proof.
intros. apply add_reg_r with q.
rewrite sub_add; trivial.
rewrite add_comm. apply lt_add_r.
Qed.
Lemma mul_sub_distr_l p q r : r<q -> p*(q-r) = p*q-p*r.
Proof.
intros H.
apply add_reg_r with (p*r).
rewrite <- mul_add_distr_l.
rewrite sub_add; trivial.
symmetry. apply sub_add; trivial.
now apply mul_lt_mono_l.
Qed.
Lemma mul_sub_distr_r p q r : q<p -> (p-q)*r = p*r-q*r.
Proof.
intros H. rewrite 3 (mul_comm _ r). now apply mul_sub_distr_l.
Qed.
Lemma sub_lt_mono_l p q r: q<p -> p<r -> r-p < r-q.
Proof.
intros Hqp Hpr.
apply (add_lt_mono_r p).
rewrite sub_add by trivial.
apply le_lt_trans with ((r-q)+q).
rewrite sub_add by (now apply lt_trans with p).
apply le_refl.
now apply add_lt_mono_l.
Qed.
Lemma sub_compare_mono_l p q r :
q<p -> r<p -> (p-q ?= p-r) = (r ?= q).
Proof.
intros Hqp Hrp.
case (compare_spec r q); intros H. subst. apply compare_refl.
apply sub_lt_mono_l; trivial.
apply lt_gt, sub_lt_mono_l; trivial.
Qed.
Lemma sub_compare_mono_r p q r :
p<q -> p<r -> (q-p ?= r-p) = (q ?= r).
Proof.
intros. rewrite <- (add_compare_mono_r p), 2 sub_add; trivial.
Qed.
Lemma sub_lt_mono_r p q r : q<p -> r<q -> q-r < p-r.
Proof.
intros. unfold lt. rewrite sub_compare_mono_r; trivial.
now apply lt_trans with q.
Qed.
Lemma sub_decr n m : m<n -> n-m < n.
Proof.
intros.
apply add_lt_mono_r with m.
rewrite sub_add; trivial.
apply lt_add_r.
Qed.
Lemma add_sub_assoc p q r : r<q -> p+(q-r) = p+q-r.
Proof.
intros.
apply add_reg_r with r.
rewrite <- add_assoc, !sub_add; trivial.
rewrite add_comm. apply lt_trans with q; trivial using lt_add_r.
Qed.
Lemma sub_add_distr p q r : q+r < p -> p-(q+r) = p-q-r.
Proof.
intros.
assert (q < p)
by (apply lt_trans with (q+r); trivial using lt_add_r).
rewrite (add_comm q r) in *.
apply add_reg_r with (r+q).
rewrite sub_add by trivial.
rewrite add_assoc, !sub_add; trivial.
apply (add_lt_mono_r q). rewrite sub_add; trivial.
Qed.
Lemma sub_sub_distr p q r : r<q -> q-r < p -> p-(q-r) = p+r-q.
Proof.
intros.
apply add_reg_r with ((q-r)+r).
rewrite add_assoc, !sub_add; trivial.
rewrite <- (sub_add q r); trivial.
now apply add_lt_mono_r.
Qed.
(** Recursive equations for [sub] *)
Lemma sub_xO_xO n m : m<n -> n~0 - m~0 = (n-m)~0.
Proof.
intros H. unfold sub. simpl.
now destruct (sub_mask_pos n m H) as (p, ->).
Qed.
Lemma sub_xI_xI n m : m<n -> n~1 - m~1 = (n-m)~0.
Proof.
intros H. unfold sub. simpl.
now destruct (sub_mask_pos n m H) as (p, ->).
Qed.
Lemma sub_xI_xO n m : m<n -> n~1 - m~0 = (n-m)~1.
Proof.
intros H. unfold sub. simpl.
now destruct (sub_mask_pos n m) as (p, ->).
Qed.
Lemma sub_xO_xI n m : n~0 - m~1 = pred_double (n-m).
Proof.
unfold sub. simpl. rewrite sub_mask_carry_spec.
now destruct (sub_mask n m) as [|[r|r|]|].
Qed.
(** Properties of subtraction with underflow *)
Lemma sub_mask_neg_iff' p q : sub_mask p q = IsNeg <-> p < q.
Proof.
rewrite lt_iff_add. apply sub_mask_neg_iff.
Qed.
Lemma sub_mask_neg p q : p<q -> sub_mask p q = IsNeg.
Proof.
apply sub_mask_neg_iff'.
Qed.
Lemma sub_le p q : p<=q -> p-q = 1.
Proof.
unfold le, sub. rewrite compare_sub_mask.
destruct sub_mask; easy'.
Qed.
Lemma sub_lt p q : p<q -> p-q = 1.
Proof.
intros. now apply sub_le, lt_le_incl.
Qed.
Lemma sub_diag p : p-p = 1.
Proof.
unfold sub. now rewrite sub_mask_diag.
Qed.
(** ** Results concerning [size] and [size_nat] *)
Lemma size_nat_monotone p q : p<q -> (size_nat p <= size_nat q)%nat.
Proof.
assert (le0 : forall n, (0<=n)%nat) by (induction n; auto).
assert (leS : forall n m, (n<=m -> S n <= S m)%nat) by (induction 1; auto).
revert q.
induction p; destruct q; simpl; intros; auto; easy || apply leS;
red in H; simpl_compare_in H.
apply IHp. red. now destruct (p?=q).
destruct (compare_spec p q); subst; now auto.
Qed.
Lemma size_gt p : p < 2^(size p).
Proof.
induction p; simpl; try rewrite pow_succ_r; try easy.
apply le_succ_l in IHp. now apply le_succ_l.
Qed.
Lemma size_le p : 2^(size p) <= p~0.
Proof.
induction p; simpl; try rewrite pow_succ_r; try easy.
apply mul_le_mono_l.
apply le_lteq; left. rewrite xI_succ_xO. apply lt_succ_r, IHp.
Qed.
(** ** Properties of [min] and [max] *)
(** First, the specification *)
Lemma max_l : forall x y, y<=x -> max x y = x.
Proof.
intros x y H. unfold max. case compare_spec; auto.
intros H'. apply le_nlt in H. now elim H.
Qed.
Lemma max_r : forall x y, x<=y -> max x y = y.
Proof.
unfold le, max. intros x y. destruct compare; easy'.
Qed.
Lemma min_l : forall x y, x<=y -> min x y = x.
Proof.
unfold le, min. intros x y. destruct compare; easy'.
Qed.
Lemma min_r : forall x y, y<=x -> min x y = y.
Proof.
intros x y H. unfold min. case compare_spec; auto.
intros H'. apply le_nlt in H. now elim H'.
Qed.
(** We hence obtain all the generic properties of [min] and [max]. *)
Include UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
Ltac order := Private_Tac.order.
(** Minimum, maximum and constant one *)
Lemma max_1_l n : max 1 n = n.
Proof.
unfold max. case compare_spec; auto.
intros H. apply lt_nle in H. elim H. apply le_1_l.
Qed.
Lemma max_1_r n : max n 1 = n.
Proof. rewrite max_comm. apply max_1_l. Qed.
Lemma min_1_l n : min 1 n = 1.
Proof.
unfold min. case compare_spec; auto.
intros H. apply lt_nle in H. elim H. apply le_1_l.
Qed.
Lemma min_1_r n : min n 1 = 1.
Proof. rewrite min_comm. apply min_1_l. Qed.
(** Minimum, maximum and operations (consequences of monotonicity) *)
Lemma succ_max_distr n m : succ (max n m) = max (succ n) (succ m).
Proof.
symmetry. apply max_monotone.
intros x x'. apply succ_le_mono.
Qed.
Lemma succ_min_distr n m : succ (min n m) = min (succ n) (succ m).
Proof.
symmetry. apply min_monotone.
intros x x'. apply succ_le_mono.
Qed.
Lemma add_max_distr_l n m p : max (p + n) (p + m) = p + max n m.
Proof.
apply max_monotone. intros x x'. apply add_le_mono_l.
Qed.
Lemma add_max_distr_r n m p : max (n + p) (m + p) = max n m + p.
Proof.
rewrite 3 (add_comm _ p). apply add_max_distr_l.
Qed.
Lemma add_min_distr_l n m p : min (p + n) (p + m) = p + min n m.
Proof.
apply min_monotone. intros x x'. apply add_le_mono_l.
Qed.
Lemma add_min_distr_r n m p : min (n + p) (m + p) = min n m + p.
Proof.
rewrite 3 (add_comm _ p). apply add_min_distr_l.
Qed.
Lemma mul_max_distr_l n m p : max (p * n) (p * m) = p * max n m.
Proof.
apply max_monotone. intros x x'. apply mul_le_mono_l.
Qed.
Lemma mul_max_distr_r n m p : max (n * p) (m * p) = max n m * p.
Proof.
rewrite 3 (mul_comm _ p). apply mul_max_distr_l.
Qed.
Lemma mul_min_distr_l n m p : min (p * n) (p * m) = p * min n m.
Proof.
apply min_monotone. intros x x'. apply mul_le_mono_l.
Qed.
Lemma mul_min_distr_r n m p : min (n * p) (m * p) = min n m * p.
Proof.
rewrite 3 (mul_comm _ p). apply mul_min_distr_l.
Qed.
(** ** Results concerning [iter_op] *)
Lemma iter_op_succ : forall A (op:A->A->A),
(forall x y z, op x (op y z) = op (op x y) z) ->
forall p a,
iter_op op (succ p) a = op a (iter_op op p a).
Proof.
induction p; simpl; intros; trivial.
rewrite H. apply IHp.
Qed.
(** ** Results about [of_nat] and [of_succ_nat] *)
Lemma of_nat_succ (n:nat) : of_succ_nat n = of_nat (S n).
Proof.
induction n. trivial. simpl. f_equal. now rewrite IHn.
Qed.
Lemma pred_of_succ_nat (n:nat) : pred (of_succ_nat n) = of_nat n.
Proof.
destruct n. trivial. simpl pred. rewrite pred_succ. apply of_nat_succ.
Qed.
Lemma succ_of_nat (n:nat) : n<>O -> succ (of_nat n) = of_succ_nat n.
Proof.
rewrite of_nat_succ. destruct n; trivial. now destruct 1.
Qed.
(** ** Correctness proofs for the square root function *)
Inductive SqrtSpec : positive*mask -> positive -> Prop :=
| SqrtExact s x : x=s*s -> SqrtSpec (s,IsNul) x
| SqrtApprox s r x : x=s*s+r -> r <= s~0 -> SqrtSpec (s,IsPos r) x.
Lemma sqrtrem_step_spec f g p x :
(f=xO \/ f=xI) -> (g=xO \/ g=xI) ->
SqrtSpec p x -> SqrtSpec (sqrtrem_step f g p) (g (f x)).
Proof.
intros Hf Hg [ s _ -> | s r _ -> Hr ].
(* exact *)
unfold sqrtrem_step.
destruct Hf,Hg; subst; simpl; constructor; now rewrite ?square_xO.
(* approx *)
assert (Hfg : forall p q, g (f (p+q)) = p~0~0 + g (f q))
by (intros; destruct Hf, Hg; now subst).
unfold sqrtrem_step, leb.
case compare_spec; [intros EQ | intros LT | intros GT].
(* - EQ *)
rewrite <- EQ, sub_mask_diag. constructor.
destruct Hg; subst g; destr_eq EQ.
destruct Hf; subst f; destr_eq EQ.
subst. now rewrite square_xI.
(* - LT *)
destruct (sub_mask_pos' _ _ LT) as (y & -> & H). constructor.
rewrite Hfg, <- H. now rewrite square_xI, add_assoc. clear Hfg.
rewrite <- lt_succ_r in Hr. change (r < s~1) in Hr.
rewrite <- lt_succ_r, (add_lt_mono_l (s~0~1)), H. simpl.
rewrite add_carry_spec, add_diag. simpl.
destruct Hf,Hg; subst; red; simpl_compare; now rewrite Hr.
(* - GT *)
constructor. now rewrite Hfg, square_xO. apply lt_succ_r, GT.
Qed.
Lemma sqrtrem_spec p : SqrtSpec (sqrtrem p) p.
Proof.
revert p. fix 1.
destruct p; try destruct p; try (constructor; easy);
apply sqrtrem_step_spec; auto.
Qed.
Lemma sqrt_spec p :
let s := sqrt p in s*s <= p < (succ s)*(succ s).
Proof.
simpl.
assert (H:=sqrtrem_spec p).
unfold sqrt in *. destruct sqrtrem as (s,rm); simpl.
inversion_clear H; subst.
(* exact *)
split. reflexivity. apply mul_lt_mono; apply lt_succ_diag_r.
(* approx *)
split.
apply lt_le_incl, lt_add_r.
rewrite <- add_1_l, mul_add_distr_r, !mul_add_distr_l, !mul_1_r, !mul_1_l.
rewrite add_assoc, (add_comm _ r). apply add_lt_mono_r.
now rewrite <- add_assoc, add_diag, add_1_l, lt_succ_r.
Qed.
(** ** Correctness proofs for the gcd function *)
Lemma divide_add_cancel_l p q r : (p | r) -> (p | q + r) -> (p | q).
Proof.
intros (s,Hs) (t,Ht).
exists (t-s).
rewrite mul_sub_distr_r.
rewrite <- Hs, <- Ht.
symmetry. apply add_sub.
apply mul_lt_mono_r with p.
rewrite <- Hs, <- Ht, add_comm.
apply lt_add_r.
Qed.
Lemma divide_xO_xI p q r : (p | q~0) -> (p | r~1) -> (p | q).
Proof.
intros (s,Hs) (t,Ht).
destruct p.
destruct s; try easy. simpl in Hs. destr_eq Hs. now exists s.
rewrite mul_xO_r in Ht; discriminate.
exists q; now rewrite mul_1_r.
Qed.
Lemma divide_xO_xO p q : (p~0|q~0) <-> (p|q).
Proof.
split; intros (r,H); simpl in *.
rewrite mul_xO_r in H. destr_eq H. now exists r.
exists r; simpl. rewrite mul_xO_r. f_equal; auto.
Qed.
Lemma divide_mul_l p q r : (p|q) -> (p|q*r).
Proof.
intros (s,H). exists (s*r).
rewrite <- mul_assoc, (mul_comm r p), mul_assoc. now f_equal.
Qed.
Lemma divide_mul_r p q r : (p|r) -> (p|q*r).
Proof.
rewrite mul_comm. apply divide_mul_l.
Qed.
(** The first component of ggcd is gcd *)
Lemma ggcdn_gcdn : forall n a b,
fst (ggcdn n a b) = gcdn n a b.
Proof.
induction n.
simpl; auto.
destruct a, b; simpl; auto; try case compare_spec; simpl; trivial;
rewrite <- IHn; destruct ggcdn as (g,(u,v)); simpl; auto.
Qed.
Lemma ggcd_gcd : forall a b, fst (ggcd a b) = gcd a b.
Proof.
unfold ggcd, gcd. intros. apply ggcdn_gcdn.
Qed.
(** The other components of ggcd are indeed the correct factors. *)
Ltac destr_pggcdn IHn :=
match goal with |- context [ ggcdn _ ?x ?y ] =>
generalize (IHn x y); destruct ggcdn as (g,(u,v)); simpl
end.
Lemma ggcdn_correct_divisors : forall n a b,
let '(g,(aa,bb)) := ggcdn n a b in
a = g*aa /\ b = g*bb.
Proof.
induction n.
simpl; auto.
destruct a, b; simpl; auto; try case compare_spec; try destr_pggcdn IHn.
(* Eq *)
intros ->. now rewrite mul_comm.
(* Lt *)
intros (H',H) LT; split; auto.
rewrite mul_add_distr_l, mul_xO_r, <- H, <- H'.
simpl. f_equal. symmetry.
rewrite add_comm. now apply sub_add.
(* Gt *)
intros (H',H) LT; split; auto.
rewrite mul_add_distr_l, mul_xO_r, <- H, <- H'.
simpl. f_equal. symmetry.
rewrite add_comm. now apply sub_add.
(* Then... *)
intros (H,H'); split; auto. rewrite mul_xO_r, H'; auto.
intros (H,H'); split; auto. rewrite mul_xO_r, H; auto.
intros (H,H'); split; subst; auto.
Qed.
Lemma ggcd_correct_divisors : forall a b,
let '(g,(aa,bb)) := ggcd a b in
a=g*aa /\ b=g*bb.
Proof.
unfold ggcd. intros. apply ggcdn_correct_divisors.
Qed.
(** We can use this fact to prove a part of the gcd correctness *)
Lemma gcd_divide_l : forall a b, (gcd a b | a).
Proof.
intros a b. rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
destruct ggcd as (g,(aa,bb)); simpl. intros (H,_). exists aa.
now rewrite mul_comm.
Qed.
Lemma gcd_divide_r : forall a b, (gcd a b | b).
Proof.
intros a b. rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
destruct ggcd as (g,(aa,bb)); simpl. intros (_,H). exists bb.
now rewrite mul_comm.
Qed.
(** We now prove directly that gcd is the greatest amongst common divisors *)
Lemma gcdn_greatest : forall n a b, (size_nat a + size_nat b <= n)%nat ->
forall p, (p|a) -> (p|b) -> (p|gcdn n a b).
Proof.
induction n.
destruct a, b; simpl; inversion 1.
destruct a, b; simpl; try case compare_spec; simpl; auto.
(* Lt *)
intros LT LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
apply le_S_n in LE. eapply Le.le_trans; [|eapply LE].
rewrite plus_comm, <- plus_n_Sm, <- plus_Sn_m.
apply plus_le_compat; trivial.
apply size_nat_monotone, sub_decr, LT.
apply divide_xO_xI with a; trivial.
apply (divide_add_cancel_l p _ a~1); trivial.
now rewrite <- sub_xI_xI, sub_add.
(* Gt *)
intros LT LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
apply le_S_n in LE. eapply Le.le_trans; [|eapply LE].
apply plus_le_compat; trivial.
apply size_nat_monotone, sub_decr, LT.
apply divide_xO_xI with b; trivial.
apply (divide_add_cancel_l p _ b~1); trivial.
now rewrite <- sub_xI_xI, sub_add.
(* a~1 b~0 *)
intros LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
apply le_S_n in LE. simpl. now rewrite plus_n_Sm.
apply divide_xO_xI with a; trivial.
(* a~0 b~1 *)
intros LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
simpl. now apply le_S_n.
apply divide_xO_xI with b; trivial.
(* a~0 b~0 *)
intros LE p Hp1 Hp2.
destruct p.
change (gcdn n a b)~0 with (2*(gcdn n a b)).
apply divide_mul_r.
apply IHn; clear IHn.
apply le_S_n in LE. apply le_Sn_le. now rewrite plus_n_Sm.
apply divide_xO_xI with p; trivial. now exists 1.
apply divide_xO_xI with p; trivial. now exists 1.
apply divide_xO_xO.
apply IHn; clear IHn.
apply le_S_n in LE. apply le_Sn_le. now rewrite plus_n_Sm.
now apply divide_xO_xO.
now apply divide_xO_xO.
exists (gcdn n a b)~0. now rewrite mul_1_r.
Qed.
Lemma gcd_greatest : forall a b p, (p|a) -> (p|b) -> (p|gcd a b).
Proof.
intros. apply gcdn_greatest; auto.
Qed.
(** As a consequence, the rests after division by gcd are relatively prime *)
Lemma ggcd_greatest : forall a b,
let (aa,bb) := snd (ggcd a b) in
forall p, (p|aa) -> (p|bb) -> p=1.
Proof.
intros. generalize (gcd_greatest a b) (ggcd_correct_divisors a b).
rewrite <- ggcd_gcd. destruct ggcd as (g,(aa,bb)); simpl.
intros H (EQa,EQb) p Hp1 Hp2; subst.
assert (H' : (g*p | g)).
apply H.
destruct Hp1 as (r,Hr). exists r.
now rewrite mul_assoc, (mul_comm r g), <- mul_assoc, <- Hr.
destruct Hp2 as (r,Hr). exists r.
now rewrite mul_assoc, (mul_comm r g), <- mul_assoc, <- Hr.
destruct H' as (q,H').
rewrite (mul_comm g p), mul_assoc in H'.
apply mul_eq_1 with q; rewrite mul_comm.
now apply mul_reg_r with g.
Qed.
End Pos.
Bind Scope positive_scope with Pos.t positive.
(** Exportation of notations *)
Infix "+" := Pos.add : positive_scope.
Infix "-" := Pos.sub : positive_scope.
Infix "*" := Pos.mul : positive_scope.
Infix "^" := Pos.pow : positive_scope.
Infix "?=" := Pos.compare (at level 70, no associativity) : positive_scope.
Infix "=?" := Pos.eqb (at level 70, no associativity) : positive_scope.
Infix "<=?" := Pos.leb (at level 70, no associativity) : positive_scope.
Infix "<?" := Pos.ltb (at level 70, no associativity) : positive_scope.
Infix "<=" := Pos.le : positive_scope.
Infix "<" := Pos.lt : positive_scope.
Infix ">=" := Pos.ge : positive_scope.
Infix ">" := Pos.gt : positive_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
Notation "( p | q )" := (Pos.divide p q) (at level 0) : positive_scope.
(** Compatibility notations *)
Notation positive := positive (only parsing).
Notation positive_rect := positive_rect (only parsing).
Notation positive_rec := positive_rec (only parsing).
Notation positive_ind := positive_ind (only parsing).
Notation xI := xI (only parsing).
Notation xO := xO (only parsing).
Notation xH := xH (only parsing).
Notation IsNul := Pos.IsNul (only parsing).
Notation IsPos := Pos.IsPos (only parsing).
Notation IsNeg := Pos.IsNeg (only parsing).
Notation Psucc := Pos.succ (compat "8.3").
Notation Pplus := Pos.add (compat "8.3").
Notation Pplus_carry := Pos.add_carry (compat "8.3").
Notation Ppred := Pos.pred (compat "8.3").
Notation Piter_op := Pos.iter_op (compat "8.3").
Notation Piter_op_succ := Pos.iter_op_succ (compat "8.3").
Notation Pmult_nat := (Pos.iter_op plus) (compat "8.3").
Notation nat_of_P := Pos.to_nat (compat "8.3").
Notation P_of_succ_nat := Pos.of_succ_nat (compat "8.3").
Notation Pdouble_minus_one := Pos.pred_double (compat "8.3").
Notation positive_mask := Pos.mask (compat "8.3").
Notation positive_mask_rect := Pos.mask_rect (compat "8.3").
Notation positive_mask_ind := Pos.mask_ind (compat "8.3").
Notation positive_mask_rec := Pos.mask_rec (compat "8.3").
Notation Pdouble_plus_one_mask := Pos.succ_double_mask (compat "8.3").
Notation Pdouble_mask := Pos.double_mask (compat "8.3").
Notation Pdouble_minus_two := Pos.double_pred_mask (compat "8.3").
Notation Pminus_mask := Pos.sub_mask (compat "8.3").
Notation Pminus_mask_carry := Pos.sub_mask_carry (compat "8.3").
Notation Pminus := Pos.sub (compat "8.3").
Notation Pmult := Pos.mul (compat "8.3").
Notation iter_pos := @Pos.iter (compat "8.3").
Notation Ppow := Pos.pow (compat "8.3").
Notation Pdiv2 := Pos.div2 (compat "8.3").
Notation Pdiv2_up := Pos.div2_up (compat "8.3").
Notation Psize := Pos.size_nat (compat "8.3").
Notation Psize_pos := Pos.size (compat "8.3").
Notation Pcompare x y m := (Pos.compare_cont m x y) (compat "8.3").
Notation Plt := Pos.lt (compat "8.3").
Notation Pgt := Pos.gt (compat "8.3").
Notation Ple := Pos.le (compat "8.3").
Notation Pge := Pos.ge (compat "8.3").
Notation Pmin := Pos.min (compat "8.3").
Notation Pmax := Pos.max (compat "8.3").
Notation Peqb := Pos.eqb (compat "8.3").
Notation positive_eq_dec := Pos.eq_dec (compat "8.3").
Notation xI_succ_xO := Pos.xI_succ_xO (compat "8.3").
Notation Psucc_discr := Pos.succ_discr (compat "8.3").
Notation Psucc_o_double_minus_one_eq_xO :=
Pos.succ_pred_double (compat "8.3").
Notation Pdouble_minus_one_o_succ_eq_xI :=
Pos.pred_double_succ (compat "8.3").
Notation xO_succ_permute := Pos.double_succ (compat "8.3").
Notation double_moins_un_xO_discr :=
Pos.pred_double_xO_discr (compat "8.3").
Notation Psucc_not_one := Pos.succ_not_1 (compat "8.3").
Notation Ppred_succ := Pos.pred_succ (compat "8.3").
Notation Psucc_pred := Pos.succ_pred_or (compat "8.3").
Notation Psucc_inj := Pos.succ_inj (compat "8.3").
Notation Pplus_carry_spec := Pos.add_carry_spec (compat "8.3").
Notation Pplus_comm := Pos.add_comm (compat "8.3").
Notation Pplus_succ_permute_r := Pos.add_succ_r (compat "8.3").
Notation Pplus_succ_permute_l := Pos.add_succ_l (compat "8.3").
Notation Pplus_no_neutral := Pos.add_no_neutral (compat "8.3").
Notation Pplus_carry_plus := Pos.add_carry_add (compat "8.3").
Notation Pplus_reg_r := Pos.add_reg_r (compat "8.3").
Notation Pplus_reg_l := Pos.add_reg_l (compat "8.3").
Notation Pplus_carry_reg_r := Pos.add_carry_reg_r (compat "8.3").
Notation Pplus_carry_reg_l := Pos.add_carry_reg_l (compat "8.3").
Notation Pplus_assoc := Pos.add_assoc (compat "8.3").
Notation Pplus_xO := Pos.add_xO (compat "8.3").
Notation Pplus_xI_double_minus_one := Pos.add_xI_pred_double (compat "8.3").
Notation Pplus_xO_double_minus_one := Pos.add_xO_pred_double (compat "8.3").
Notation Pplus_diag := Pos.add_diag (compat "8.3").
Notation PeanoView := Pos.PeanoView (compat "8.3").
Notation PeanoOne := Pos.PeanoOne (compat "8.3").
Notation PeanoSucc := Pos.PeanoSucc (compat "8.3").
Notation PeanoView_rect := Pos.PeanoView_rect (compat "8.3").
Notation PeanoView_ind := Pos.PeanoView_ind (compat "8.3").
Notation PeanoView_rec := Pos.PeanoView_rec (compat "8.3").
Notation peanoView_xO := Pos.peanoView_xO (compat "8.3").
Notation peanoView_xI := Pos.peanoView_xI (compat "8.3").
Notation peanoView := Pos.peanoView (compat "8.3").
Notation PeanoView_iter := Pos.PeanoView_iter (compat "8.3").
Notation eq_dep_eq_positive := Pos.eq_dep_eq_positive (compat "8.3").
Notation PeanoViewUnique := Pos.PeanoViewUnique (compat "8.3").
Notation Prect := Pos.peano_rect (compat "8.3").
Notation Prect_succ := Pos.peano_rect_succ (compat "8.3").
Notation Prect_base := Pos.peano_rect_base (compat "8.3").
Notation Prec := Pos.peano_rec (compat "8.3").
Notation Pind := Pos.peano_ind (compat "8.3").
Notation Pcase := Pos.peano_case (compat "8.3").
Notation Pmult_1_r := Pos.mul_1_r (compat "8.3").
Notation Pmult_Sn_m := Pos.mul_succ_l (compat "8.3").
Notation Pmult_xO_permute_r := Pos.mul_xO_r (compat "8.3").
Notation Pmult_xI_permute_r := Pos.mul_xI_r (compat "8.3").
Notation Pmult_comm := Pos.mul_comm (compat "8.3").
Notation Pmult_plus_distr_l := Pos.mul_add_distr_l (compat "8.3").
Notation Pmult_plus_distr_r := Pos.mul_add_distr_r (compat "8.3").
Notation Pmult_assoc := Pos.mul_assoc (compat "8.3").
Notation Pmult_xI_mult_xO_discr := Pos.mul_xI_mul_xO_discr (compat "8.3").
Notation Pmult_xO_discr := Pos.mul_xO_discr (compat "8.3").
Notation Pmult_reg_r := Pos.mul_reg_r (compat "8.3").
Notation Pmult_reg_l := Pos.mul_reg_l (compat "8.3").
Notation Pmult_1_inversion_l := Pos.mul_eq_1_l (compat "8.3").
Notation Psquare_xO := Pos.square_xO (compat "8.3").
Notation Psquare_xI := Pos.square_xI (compat "8.3").
Notation iter_pos_swap_gen := Pos.iter_swap_gen (compat "8.3").
Notation iter_pos_swap := Pos.iter_swap (compat "8.3").
Notation iter_pos_succ := Pos.iter_succ (compat "8.3").
Notation iter_pos_plus := Pos.iter_add (compat "8.3").
Notation iter_pos_invariant := Pos.iter_invariant (compat "8.3").
Notation Ppow_1_r := Pos.pow_1_r (compat "8.3").
Notation Ppow_succ_r := Pos.pow_succ_r (compat "8.3").
Notation Peqb_refl := Pos.eqb_refl (compat "8.3").
Notation Peqb_eq := Pos.eqb_eq (compat "8.3").
Notation Pcompare_refl_id := Pos.compare_cont_refl (compat "8.3").
Notation Pcompare_eq_iff := Pos.compare_eq_iff (compat "8.3").
Notation Pcompare_Gt_Lt := Pos.compare_cont_Gt_Lt (compat "8.3").
Notation Pcompare_eq_Lt := Pos.compare_lt_iff (compat "8.3").
Notation Pcompare_Lt_Gt := Pos.compare_cont_Lt_Gt (compat "8.3").
Notation Pcompare_antisym := Pos.compare_cont_antisym (compat "8.3").
Notation ZC1 := Pos.gt_lt (compat "8.3").
Notation ZC2 := Pos.lt_gt (compat "8.3").
Notation Pcompare_spec := Pos.compare_spec (compat "8.3").
Notation Pcompare_p_Sp := Pos.lt_succ_diag_r (compat "8.3").
Notation Pcompare_succ_succ := Pos.compare_succ_succ (compat "8.3").
Notation Pcompare_1 := Pos.nlt_1_r (compat "8.3").
Notation Plt_1 := Pos.nlt_1_r (compat "8.3").
Notation Plt_1_succ := Pos.lt_1_succ (compat "8.3").
Notation Plt_lt_succ := Pos.lt_lt_succ (compat "8.3").
Notation Plt_irrefl := Pos.lt_irrefl (compat "8.3").
Notation Plt_trans := Pos.lt_trans (compat "8.3").
Notation Plt_ind := Pos.lt_ind (compat "8.3").
Notation Ple_lteq := Pos.le_lteq (compat "8.3").
Notation Ple_refl := Pos.le_refl (compat "8.3").
Notation Ple_lt_trans := Pos.le_lt_trans (compat "8.3").
Notation Plt_le_trans := Pos.lt_le_trans (compat "8.3").
Notation Ple_trans := Pos.le_trans (compat "8.3").
Notation Plt_succ_r := Pos.lt_succ_r (compat "8.3").
Notation Ple_succ_l := Pos.le_succ_l (compat "8.3").
Notation Pplus_compare_mono_l := Pos.add_compare_mono_l (compat "8.3").
Notation Pplus_compare_mono_r := Pos.add_compare_mono_r (compat "8.3").
Notation Pplus_lt_mono_l := Pos.add_lt_mono_l (compat "8.3").
Notation Pplus_lt_mono_r := Pos.add_lt_mono_r (compat "8.3").
Notation Pplus_lt_mono := Pos.add_lt_mono (compat "8.3").
Notation Pplus_le_mono_l := Pos.add_le_mono_l (compat "8.3").
Notation Pplus_le_mono_r := Pos.add_le_mono_r (compat "8.3").
Notation Pplus_le_mono := Pos.add_le_mono (compat "8.3").
Notation Pmult_compare_mono_l := Pos.mul_compare_mono_l (compat "8.3").
Notation Pmult_compare_mono_r := Pos.mul_compare_mono_r (compat "8.3").
Notation Pmult_lt_mono_l := Pos.mul_lt_mono_l (compat "8.3").
Notation Pmult_lt_mono_r := Pos.mul_lt_mono_r (compat "8.3").
Notation Pmult_lt_mono := Pos.mul_lt_mono (compat "8.3").
Notation Pmult_le_mono_l := Pos.mul_le_mono_l (compat "8.3").
Notation Pmult_le_mono_r := Pos.mul_le_mono_r (compat "8.3").
Notation Pmult_le_mono := Pos.mul_le_mono (compat "8.3").
Notation Plt_plus_r := Pos.lt_add_r (compat "8.3").
Notation Plt_not_plus_l := Pos.lt_not_add_l (compat "8.3").
Notation Ppow_gt_1 := Pos.pow_gt_1 (compat "8.3").
Notation Ppred_mask := Pos.pred_mask (compat "8.3").
Notation Pminus_mask_succ_r := Pos.sub_mask_succ_r (compat "8.3").
Notation Pminus_mask_carry_spec := Pos.sub_mask_carry_spec (compat "8.3").
Notation Pminus_succ_r := Pos.sub_succ_r (compat "8.3").
Notation Pminus_mask_diag := Pos.sub_mask_diag (compat "8.3").
Notation Pplus_minus_eq := Pos.add_sub (compat "8.3").
Notation Pmult_minus_distr_l := Pos.mul_sub_distr_l (compat "8.3").
Notation Pminus_lt_mono_l := Pos.sub_lt_mono_l (compat "8.3").
Notation Pminus_compare_mono_l := Pos.sub_compare_mono_l (compat "8.3").
Notation Pminus_compare_mono_r := Pos.sub_compare_mono_r (compat "8.3").
Notation Pminus_lt_mono_r := Pos.sub_lt_mono_r (compat "8.3").
Notation Pminus_decr := Pos.sub_decr (compat "8.3").
Notation Pminus_xI_xI := Pos.sub_xI_xI (compat "8.3").
Notation Pplus_minus_assoc := Pos.add_sub_assoc (compat "8.3").
Notation Pminus_plus_distr := Pos.sub_add_distr (compat "8.3").
Notation Pminus_minus_distr := Pos.sub_sub_distr (compat "8.3").
Notation Pminus_mask_Lt := Pos.sub_mask_neg (compat "8.3").
Notation Pminus_Lt := Pos.sub_lt (compat "8.3").
Notation Pminus_Eq := Pos.sub_diag (compat "8.3").
Notation Psize_monotone := Pos.size_nat_monotone (compat "8.3").
Notation Psize_pos_gt := Pos.size_gt (compat "8.3").
Notation Psize_pos_le := Pos.size_le (compat "8.3").
(** More complex compatibility facts, expressed as lemmas
(to preserve scopes for instance) *)
Lemma Peqb_true_eq x y : Pos.eqb x y = true -> x=y.
Proof. apply Pos.eqb_eq. Qed.
Lemma Pcompare_eq_Gt p q : (p ?= q) = Gt <-> p > q.
Proof. reflexivity. Qed.
Lemma Pplus_one_succ_r p : Pos.succ p = p + 1.
Proof (eq_sym (Pos.add_1_r p)).
Lemma Pplus_one_succ_l p : Pos.succ p = 1 + p.
Proof (eq_sym (Pos.add_1_l p)).
Lemma Pcompare_refl p : Pos.compare_cont Eq p p = Eq.
Proof (Pos.compare_cont_refl p Eq).
Lemma Pcompare_Eq_eq : forall p q, Pos.compare_cont Eq p q = Eq -> p = q.
Proof Pos.compare_eq.
Lemma ZC4 p q : Pos.compare_cont Eq p q = CompOpp (Pos.compare_cont Eq q p).
Proof (Pos.compare_antisym q p).
Lemma Ppred_minus p : Pos.pred p = p - 1.
Proof (eq_sym (Pos.sub_1_r p)).
Lemma Pminus_mask_Gt p q :
p > q ->
exists h : positive,
Pos.sub_mask p q = IsPos h /\
q + h = p /\ (h = 1 \/ Pos.sub_mask_carry p q = IsPos (Pos.pred h)).
Proof.
intros H. apply Pos.gt_lt in H.
destruct (Pos.sub_mask_pos p q H) as (r & U).
exists r. repeat split; trivial.
now apply Pos.sub_mask_pos_iff.
destruct (Pos.eq_dec r 1) as [EQ|NE]; [now left|right].
rewrite Pos.sub_mask_carry_spec, U. destruct r; trivial. now elim NE.
Qed.
Lemma Pplus_minus : forall p q, p > q -> q+(p-q) = p.
Proof.
intros. rewrite Pos.add_comm. now apply Pos.sub_add, Pos.gt_lt.
Qed.
(** Discontinued results of little interest and little/zero use
in user contributions:
Pplus_carry_no_neutral
Pplus_carry_pred_eq_plus
Pcompare_not_Eq
Pcompare_Lt_Lt
Pcompare_Lt_eq_Lt
Pcompare_Gt_Gt
Pcompare_Gt_eq_Gt
Psucc_lt_compat
Psucc_le_compat
ZC3
Pcompare_p_Sq
Pminus_mask_carry_diag
Pminus_mask_IsNeg
ZL10
ZL11
double_eq_zero_inversion
double_plus_one_zero_discr
double_plus_one_eq_one_inversion
double_eq_one_discr
Infix "/" := Pdiv2 : positive_scope.
*)
(** Old stuff, to remove someday *)
Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
Proof.
destruct r; auto.
Qed.
(** Incompatibilities :
- [(_ ?= _)%positive] expects no arg now, and designates [Pos.compare]
which is convertible but syntactically distinct to
[Pos.compare_cont .. .. Eq].
- [Pmult_nat] cannot be unfolded (unfold [Pos.iter_op] instead).
*)
|