aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
blob: 175b1ad2c28bda054a800c6208c5b691e6a452f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
(************************************************************************)

(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import ZArith Nnat Ndigits NAxioms NDiv NSig.

(** * The interface [NSig.NType] implies the interface [NAxiomsSig] *)

Module NTypeIsNAxioms (Import N : NType').

Hint Rewrite
 spec_0 spec_1 spec_2 spec_succ spec_add spec_mul spec_pred spec_sub
 spec_div spec_modulo spec_gcd spec_compare spec_eq_bool spec_sqrt
 spec_log2 spec_max spec_min spec_pow_pos spec_pow_N spec_pow
 spec_even spec_odd spec_testbit spec_shiftl spec_shiftr
 spec_land spec_lor spec_ldiff spec_lxor spec_div2 spec_of_N
 : nsimpl.
Ltac nsimpl := autorewrite with nsimpl.
Ltac ncongruence := unfold eq, to_N; repeat red; intros; nsimpl; congruence.
Ltac zify := unfold eq, lt, le, to_N in *; nsimpl.

Local Obligation Tactic := ncongruence.

Instance eq_equiv : Equivalence eq.
Proof. unfold eq. firstorder. Qed.

Program Instance succ_wd : Proper (eq==>eq) succ.
Program Instance pred_wd : Proper (eq==>eq) pred.
Program Instance add_wd : Proper (eq==>eq==>eq) add.
Program Instance sub_wd : Proper (eq==>eq==>eq) sub.
Program Instance mul_wd : Proper (eq==>eq==>eq) mul.

Theorem pred_succ : forall n, pred (succ n) == n.
Proof.
intros. zify. generalize (spec_pos n); omega with *.
Qed.

Theorem one_succ : 1 == succ 0.
Proof.
now zify.
Qed.

Theorem two_succ : 2 == succ 1.
Proof.
now zify.
Qed.

Definition N_of_Z z := of_N (Zabs_N z).

Section Induction.

Variable A : N.t -> Prop.
Hypothesis A_wd : Proper (eq==>iff) A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (succ n).

Let B (z : Z) := A (N_of_Z z).

Lemma B0 : B 0.
Proof.
unfold B, N_of_Z; simpl.
rewrite <- (A_wd 0); auto.
red; rewrite spec_0, spec_of_N; auto.
Qed.

Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1).
Proof.
intros z H1 H2.
unfold B in *. apply -> AS in H2.
setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto.
unfold eq. rewrite spec_succ.
unfold N_of_Z.
rewrite 2 spec_of_N, 2 Z_of_N_abs, 2 Zabs_eq; auto with zarith.
Qed.

Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z.
Proof.
exact (natlike_ind B B0 BS).
Qed.

Theorem bi_induction : forall n, A n.
Proof.
intro n. setoid_replace n with (N_of_Z (to_Z n)).
apply B_holds. apply spec_pos.
red; unfold N_of_Z.
rewrite spec_of_N, Z_of_N_abs, Zabs_eq; auto.
apply spec_pos.
Qed.

End Induction.

Theorem add_0_l : forall n, 0 + n == n.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m).
Proof.
intros. zify. auto with zarith.
Qed.

Theorem sub_0_r : forall n, n - 0 == n.
Proof.
intros. zify. generalize (spec_pos n); omega with *.
Qed.

Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m).
Proof.
intros. zify. omega with *.
Qed.

Theorem mul_0_l : forall n, 0 * n == 0.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m.
Proof.
intros. zify. ring.
Qed.

(** Order *)

Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
 intros. zify. destruct (Zcompare_spec [x] [y]); auto.
Qed.

Definition eqb := eq_bool.

Lemma eqb_eq : forall x y, eq_bool x y = true <-> x == y.
Proof.
 intros. zify. symmetry. apply Zeq_is_eq_bool.
Qed.

Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare.
Proof.
intros x x' Hx y y' Hy. rewrite 2 spec_compare, Hx, Hy; intuition.
Qed.

Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
Proof.
intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition.
Qed.

Theorem lt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
Proof.
intros. zify. omega.
Qed.

Theorem lt_irrefl : forall n, ~ n < n.
Proof.
intros. zify. omega.
Qed.

Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m.
Proof.
intros. zify. omega.
Qed.

Theorem min_l : forall n m, n <= m -> min n m == n.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem min_r : forall n m, m <= n -> min n m == m.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem max_l : forall n m, m <= n -> max n m == n.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem max_r : forall n m, n <= m -> max n m == m.
Proof.
intros n m. zify. omega with *.
Qed.

(** Properties specific to natural numbers, not integers. *)

Theorem pred_0 : pred 0 == 0.
Proof.
zify. auto.
Qed.

(** Power *)

Program Instance pow_wd : Proper (eq==>eq==>eq) pow.

Lemma pow_0_r : forall a, a^0 == 1.
Proof.
 intros. now zify.
Qed.

Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b.
Proof.
 intros a b. zify. intro Hb.
 rewrite Zpower_exp; auto with zarith.
 simpl. unfold Zpower_pos; simpl. ring.
Qed.

Lemma pow_neg_r : forall a b, b<0 -> a^b == 0.
Proof.
 intros a b. zify. intro Hb. exfalso.
 generalize (spec_pos b); omega.
Qed.

Lemma pow_pow_N : forall a b, a^b == pow_N a (to_N b).
Proof.
 intros. zify. f_equal.
 now rewrite Z_of_N_abs, Zabs_eq by apply spec_pos.
Qed.

Lemma pow_N_pow : forall a b, pow_N a b == a^(of_N b).
Proof.
 intros. now zify.
Qed.

Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p).
Proof.
 intros. now zify.
Qed.

(** Sqrt *)

Lemma sqrt_spec : forall n, 0<=n ->
 (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)).
Proof.
 intros n. zify. apply Zsqrt_spec.
Qed.

Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0.
Proof.
 intros n. zify. intro H. exfalso.
 generalize (spec_pos n); omega.
Qed.

(** Log2 *)

Lemma log2_spec : forall n, 0<n ->
 2^(log2 n) <= n /\ n < 2^(succ (log2 n)).
Proof.
 intros n. zify. change (Zlog2 [n]+1)%Z with (Zsucc (Zlog2 [n])).
 apply Zlog2_spec.
Qed.

Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0.
Proof.
 intros n. zify. apply Zlog2_nonpos.
Qed.

(** Even / Odd *)

Definition Even n := exists m, n == 2*m.
Definition Odd n := exists m, n == 2*m+1.

Lemma even_spec : forall n, even n = true <-> Even n.
Proof.
 intros n. unfold Even. zify.
 rewrite Zeven_bool_iff, Zeven_ex_iff.
 split; intros (m,Hm).
 exists (of_N (Zabs_N m)).
 zify. rewrite Z_of_N_abs, Zabs_eq; trivial.
 generalize (spec_pos n); auto with zarith.
 exists [m]. revert Hm. now zify.
Qed.

Lemma odd_spec : forall n, odd n = true <-> Odd n.
Proof.
 intros n. unfold Odd. zify.
 rewrite Zodd_bool_iff, Zodd_ex_iff.
 split; intros (m,Hm).
 exists (of_N (Zabs_N m)).
 zify. rewrite Z_of_N_abs, Zabs_eq; trivial.
 generalize (spec_pos n); auto with zarith.
 exists [m]. revert Hm. now zify.
Qed.

(** Div / Mod *)

Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.

Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b).
Proof.
intros a b. zify. intros. apply Z_div_mod_eq_full; auto.
Qed.

Theorem mod_bound_pos : forall a b, 0<=a -> 0<b ->
 0 <= modulo a b /\ modulo a b < b.
Proof.
intros a b. zify. apply Z.mod_bound_pos.
Qed.

(** Gcd *)

Definition divide n m := exists p, n*p == m.
Local Notation "( x | y )" := (divide x y) (at level 0).

Lemma spec_divide : forall n m, (n|m) <-> Zdivide' [n] [m].
Proof.
 intros n m. split.
 intros (p,H). exists [p]. revert H; now zify.
 intros (z,H). exists (of_N (Zabs_N z)). zify.
 rewrite Z_of_N_abs.
 rewrite <- (Zabs_eq [n]) by apply spec_pos.
 rewrite <- Zabs_Zmult, H.
 apply Zabs_eq, spec_pos.
Qed.

Lemma gcd_divide_l : forall n m, (gcd n m | n).
Proof.
 intros n m. apply spec_divide. zify. apply Zgcd_divide_l.
Qed.

Lemma gcd_divide_r : forall n m, (gcd n m | m).
Proof.
 intros n m. apply spec_divide. zify. apply Zgcd_divide_r.
Qed.

Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m).
Proof.
 intros n m p. rewrite !spec_divide. zify. apply Zgcd_greatest.
Qed.

Lemma gcd_nonneg : forall n m, 0 <= gcd n m.
Proof.
 intros. zify. apply Zgcd_nonneg.
Qed.

(** Bitwise operations *)

Lemma testbit_spec : forall a n, 0<=n ->
  exists l, exists h, (0<=l /\ l<2^n) /\
    a == l + ((if testbit a n then 1 else 0) + 2*h)*2^n.
Proof.
 intros a n _. zify.
 assert (Ha := spec_pos a).
 assert (Hn := spec_pos n).
 destruct (Ntestbit_spec (Zabs_N [a]) (Zabs_N [n])) as (l & h & (_,Hl) & EQ).
 exists (of_N l), (of_N h).
 zify.
 apply Z_of_N_lt in Hl.
 apply Z_of_N_eq in EQ.
 revert Hl EQ.
 rewrite <- Ztestbit_of_N.
 rewrite Z_of_N_plus, Z_of_N_mult, <- !Zpower_Npow, Z_of_N_plus,
  Z_of_N_mult, !Z_of_N_abs, !Zabs_eq by trivial.
 simpl (Z_of_N 2).
 repeat split; trivial using Z_of_N_le_0.
 destruct Ztestbit; now zify.
Qed.

Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false.
Proof.
 intros a n. zify. apply Ztestbit_neg_r.
Qed.

Lemma shiftr_spec : forall a n m, 0<=m ->
 testbit (shiftr a n) m = testbit a (m+n).
Proof.
 intros a n m. zify. apply Zshiftr_spec.
Qed.

Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m ->
 testbit (shiftl a n) m = testbit a (m-n).
Proof.
 intros a n m. zify. intros Hn H. rewrite Zmax_r by auto with zarith.
 now apply Zshiftl_spec_high.
Qed.

Lemma shiftl_spec_low : forall a n m, m<n ->
 testbit (shiftl a n) m = false.
Proof.
 intros a n m. zify. intros H. now apply Zshiftl_spec_low.
Qed.

Lemma land_spec : forall a b n,
 testbit (land a b) n = testbit a n && testbit b n.
Proof.
 intros a n m. zify. now apply Zand_spec.
Qed.

Lemma lor_spec : forall a b n,
 testbit (lor a b) n = testbit a n || testbit b n.
Proof.
 intros a n m. zify. now apply Zor_spec.
Qed.

Lemma ldiff_spec : forall a b n,
 testbit (ldiff a b) n = testbit a n && negb (testbit b n).
Proof.
 intros a n m. zify. now apply Zdiff_spec.
Qed.

Lemma lxor_spec : forall a b n,
 testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
Proof.
 intros a n m. zify. now apply Zxor_spec.
Qed.

Lemma div2_spec : forall a, div2 a == shiftr a 1.
Proof.
 intros a. zify. now apply Zdiv2_spec.
Qed.

(** Recursion *)

Definition recursion (A : Type) (a : A) (f : N.t -> A -> A) (n : N.t) :=
  Nrect (fun _ => A) a (fun n a => f (N.of_N n) a) (N.to_N n).
Implicit Arguments recursion [A].

Instance recursion_wd (A : Type) (Aeq : relation A) :
 Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A).
Proof.
unfold eq.
intros a a' Eaa' f f' Eff' x x' Exx'.
unfold recursion.
unfold N.to_N.
rewrite <- Exx'; clear x' Exx'.
replace (Zabs_N [x]) with (N_of_nat (Zabs_nat [x])).
induction (Zabs_nat [x]).
simpl; auto.
rewrite N_of_S, 2 Nrect_step; auto. apply Eff'; auto.
destruct [x]; simpl; auto.
change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
Qed.

Theorem recursion_0 :
  forall (A : Type) (a : A) (f : N.t -> A -> A), recursion a f 0 = a.
Proof.
intros A a f; unfold recursion, N.to_N; rewrite N.spec_0; simpl; auto.
Qed.

Theorem recursion_succ :
  forall (A : Type) (Aeq : relation A) (a : A) (f : N.t -> A -> A),
    Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
      forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)).
Proof.
unfold N.eq, recursion; intros A Aeq a f EAaa f_wd n.
replace (N.to_N (succ n)) with (Nsucc (N.to_N n)).
rewrite Nrect_step.
apply f_wd; auto.
unfold N.to_N.
rewrite N.spec_of_N, Z_of_N_abs, Zabs_eq; auto.
 apply N.spec_pos.

fold (recursion a f n).
apply recursion_wd; auto.
red; auto.
unfold N.to_N.

rewrite N.spec_succ.
change ([n]+1)%Z with (Zsucc [n]).
apply Z_of_N_eq_rev.
rewrite Z_of_N_succ.
rewrite 2 Z_of_N_abs.
rewrite 2 Zabs_eq; auto.
generalize (spec_pos n); auto with zarith.
apply spec_pos; auto.
Qed.

End NTypeIsNAxioms.

Module NType_NAxioms (N : NType)
 <: NAxiomsSig <: HasCompare N <: HasEqBool N <: HasMinMax N
 := N <+ NTypeIsNAxioms.