aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Peano/NPeano.v
blob: c1fc14a8aea8e5f8fa123c22da48eba3cfa6bb89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
Require Import Minus.

Require Export NPlus.
Require Export NDepRec.
Require Export NTimesOrder.
Require Export NMinus.
Require Export NMiscFunct.

(* First we define the functions that will be suppled as
implementations. The parameters in module types, to which these
functions are going to be assigned, are declared Inline,
so in the properties functors the definitions are going to
be unfolded and the theorems proved in these functors
will contain these functions in their statements. *)

(* Decidable equality *)
Fixpoint e (x y : nat) {struct x} : bool :=
match x, y with
| 0, 0 => true
| S x', S y' => e x' y'
| _, _ => false
end.

(* The boolean < function can be defined as follows using the
standard library:

fun n m => proj1_sig (nat_lt_ge_bool n m)

However, this definition seems too complex. First, there are many
functions involved: nat_lt_ge_bool is defined (in Coq.Arith.Bool_nat)
using bool_of_sumbool and

lt_ge_dec : forall x y : nat, {x < y} + {x >= y},

where the latter function is defined using sumbool_not and

le_lt_dec : forall n m : nat, {n <= m} + {m < n}.

Second, this definition is not the most efficient, especially since
le_lt_dec is proved using tactics, not by giving the explicit proof
term. *)

Fixpoint lt (n m : nat) {struct n} : bool :=
match n, m with
| _, 0 => false
| 0, S _ => true
| S n', S m' => lt n' m'
end.

Fixpoint le (n m : nat) {struct n} : bool :=
match n, m with
| 0, _ => true
| S n', S m' => le n' m'
| S _, 0 => false
end.

Delimit Scope NatScope with Nat.
Open Scope NatScope.

(* Domain *)

Module Export NPeanoDomain <: NDomainEqSignature.

Definition N := nat.
Definition E := (@eq nat).
Definition e := e.

Theorem E_equiv_e : forall x y : N, E x y <-> e x y.
Proof.
induction x; destruct y; simpl; try now split; intro.
rewrite <- IHx; split; intro H; [now injection H | now rewrite H].
Qed.

Definition E_equiv : equiv N E := eq_equiv N.

Add Relation N E
 reflexivity proved by (proj1 E_equiv)
 symmetry proved by (proj2 (proj2 E_equiv))
 transitivity proved by (proj1 (proj2 E_equiv))
as E_rel.

End NPeanoDomain.

Module Export PeanoNat <: NatSignature.
Module (*Import*) NDomainModule := NPeanoDomain.

Definition O := 0.
Definition S := S.

Add Morphism S with signature E ==> E as S_wd.
Proof.
congruence.
Qed.

Theorem induction :
  forall P : nat -> Prop, pred_wd (@eq nat) P ->
    P 0 -> (forall n, P n -> P (S n)) -> forall n, P n.
Proof.
intros P W Base Step n; elim n; assumption.
Qed.

Definition recursion := fun A : Set => nat_rec (fun _ => A).
Implicit Arguments recursion [A].

Theorem recursion_wd :
forall (A : Set) (EA : relation A),
  forall a a' : A, EA a a' ->
    forall f f' : N -> A -> A, eq_fun2 E EA EA f f' ->
      forall x x' : N, x = x' ->
        EA (recursion a f x) (recursion a' f' x').
Proof.
unfold fun2_wd, E.
intros A EA a a' Eaa' f f' Eff'.
induction x as [| n IH]; intros x' H; rewrite <- H; simpl.
assumption.
apply Eff'; [reflexivity | now apply IH].
Qed.

Theorem recursion_0 :
  forall (A : Set) (a : A) (f : N -> A -> A), recursion a f O = a.
Proof.
reflexivity.
Qed.

Theorem recursion_S :
forall (A : Set) (EA : relation A) (a : A) (f : N -> A -> A),
  EA a a -> fun2_wd E EA EA f ->
    forall n : N, EA (recursion a f (S n)) (f n (recursion a f n)).
Proof.
intros A EA a f EAaa f_wd. unfold fun2_wd, E in *.
induction n; simpl; now apply f_wd.
Qed.

End PeanoNat.

Module Export NPeanoDepRec <: NDepRecSignature.
Module Import NDomainModule := NPeanoDomain.
Module Import NatModule := PeanoNat.

Definition dep_recursion := nat_rec.

Theorem dep_recursion_0 :
  forall (A : N -> Set) (a : A 0) (f : forall n, A n -> A (S n)),
    dep_recursion A a f 0 = a.
Proof.
reflexivity.
Qed.

Theorem dep_recursion_S :
  forall (A : N -> Set) (a : A 0) (f : forall n, A n -> A (S n)) (n : N),
    dep_recursion A a f (S n) = f n (dep_recursion A a f n).
Proof.
reflexivity.
Qed.

End NPeanoDepRec.

Module Export NPeanoOrder <: NOrderSignature.
Module Import NatModule := PeanoNat.

Definition lt := lt.
Definition le := le.

Add Morphism lt with signature E ==> E ==> eq_bool as lt_wd.
Proof.
unfold E, eq_bool; congruence.
Qed.

Add Morphism le with signature E ==> E ==> eq_bool as le_wd.
Proof.
unfold E, eq_bool; congruence.
Qed.

(* It would be easier to prove the boolean lemma first because
|| is simplified by simpl unlike \/ *)
Lemma le_lt_bool : forall x y, le x y = (lt x y) || (e x y).
Proof.
induction x as [| x IH]; destruct y; simpl; (reflexivity || apply IH).
Qed.

Theorem le_lt : forall x y, le x y <-> lt x y \/ x = y.
Proof.
intros; rewrite E_equiv_e; rewrite <- eq_true_or;
rewrite <- eq_true_iff; apply le_lt_bool.
Qed.

Theorem lt_0 : forall x, ~ (lt x 0).
Proof.
destruct x as [|x]; simpl; now intro.
Qed.

Lemma lt_S_bool : forall x y, lt x (S y) = le x y.
Proof.
unfold lt, le; induction x as [| x IH]; destruct y as [| y];
simpl; try reflexivity.
destruct x; now simpl.
apply IH.
Qed.

Theorem lt_S : forall x y, lt x (S y) <-> le x y.
Proof.
intros; rewrite <- eq_true_iff; apply lt_S_bool.
Qed.

End NPeanoOrder.

Module Export NPeanoPlus <: NPlusSignature.
Module (*Import*) NatModule := PeanoNat.

Definition plus := plus.

Notation "x + y" := (plus x y) : NatScope.

Add Morphism plus with signature E ==> E ==> E as plus_wd.
Proof.
unfold E; congruence.
Qed.

Theorem plus_0_l : forall n, 0 + n = n.
Proof.
reflexivity.
Qed.

Theorem plus_S_l : forall n m, (S n) + m = S (n + m).
Proof.
reflexivity.
Qed.

End NPeanoPlus.

Module Export NPeanoTimes <: NTimesSignature.
Module Import NPlusModule := NPeanoPlus.

Definition times := mult.

Add Morphism times with signature E ==> E ==> E as times_wd.
Proof.
unfold E; congruence.
Qed.

Theorem times_0_r : forall n, n * 0 = 0.
Proof.
auto.
Qed.

Theorem times_S_r : forall n m, n * (S m) = n * m + n.
Proof.
auto.
Qed.

End NPeanoTimes.

Module Export NPeanoPred <: NPredSignature.
Module Export NatModule := PeanoNat.

Definition P (n : nat) :=
match n with
| 0 => 0
| S n' => n'
end.

Add Morphism P with signature E ==> E as P_wd.
Proof.
unfold E; congruence.
Qed.

Theorem P_0 : P 0 = 0.
Proof.
reflexivity.
Qed.

Theorem P_S : forall n, P (S n) = n.
Proof.
now intro.
Qed.

End NPeanoPred.

Module Export NPeanoMinus <: NMinusSignature.
Module Import NPredModule := NPeanoPred.

Definition minus := minus.

Add Morphism minus with signature E ==> E ==> E as minus_wd.
Proof.
unfold E; congruence.
Qed.

Theorem minus_0_r : forall n, n - 0 = n.
Proof.
now destruct n.
Qed.

Theorem minus_S_r : forall n m, n - (S m) = P (n - m).
Proof.
induction n as [| n IH]; simpl.
now intro.
destruct m; simpl; [apply minus_0_r | apply IH].
Qed.

End NPeanoMinus.

(* Obtaining properties for +, *, <, and their combinations *)

Module Export NPeanoTimesOrderProperties := NTimesOrderProperties NPeanoTimes NPeanoOrder.
Module Export NPeanoDepRecTimesProperties :=
  NDepRecTimesProperties NPeanoDepRec NPeanoTimes.
Module Export NPeanoMinusProperties :=
  NMinusProperties NPeanoMinus NPeanoPlus NPeanoOrder.

Module MiscFunctModule := MiscFunctFunctor PeanoNat.
(* The instruction above adds about 0.5M to the size of the .vo file !!! *)

(*Lemma e_implies_E : forall n m, e n m = true -> n = m.
Proof.
intros n m H; rewrite <- eq_true_unfold_pos in H;
now apply <- E_equiv_e.
Qed.

Add Ring SR : semi_ring (decidable e_implies_E).

Goal forall x y : nat, x + y = y + x. intros. ring.*)