aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Peano/NPeano.v
blob: 9927bde0be6a03fd34af2c6bc263b8cd1c9d64be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
Require Export NDepRec.
Require Export NTimesOrder.
Require Export NMinus.
Require Export NMiscFunct.

Module NPeanoDomain <: NDomainEqSignature.
(*  with Definition N := nat
  with Definition E := (@eq nat)
  with Definition e := eq_nat_bool.*)

Delimit Scope NatScope with Nat.

Definition N := nat.
Definition E := (@eq nat).
Definition e := eq_nat_bool.

Theorem E_equiv_e : forall x y : N, E x y <-> e x y.
Proof.
unfold E, e; intros x y; split; intro H;
[rewrite H; apply eq_nat_bool_refl |
now apply eq_nat_bool_implies_eq].
Qed.

Definition E_equiv : equiv N E := eq_equiv N.

Add Relation N E
 reflexivity proved by (proj1 E_equiv)
 symmetry proved by (proj2 (proj2 E_equiv))
 transitivity proved by (proj1 (proj2 E_equiv))
as E_rel.

End NPeanoDomain.

Module PeanoNat <: NatSignature.
Module Export NDomainModule := NPeanoDomain.

Definition O := 0.
Definition S := S.

Add Morphism S with signature E ==> E as S_wd.
Proof.
congruence.
Qed.

Theorem induction :
  forall P : nat -> Prop, pred_wd (@eq nat) P ->
    P 0 -> (forall n, P n -> P (S n)) -> forall n, P n.
Proof.
intros P W Base Step n; elim n; assumption.
Qed.

Definition recursion := fun A : Set => nat_rec (fun _ => A).
Implicit Arguments recursion [A].

Theorem recursion_wd :
forall (A : Set) (EA : relation A),
  forall a a' : A, EA a a' ->
    forall f f' : N -> A -> A, eq_fun2 E EA EA f f' ->
      forall x x' : N, x = x' ->
        EA (recursion a f x) (recursion a' f' x').
Proof.
unfold fun2_wd, E.
intros A EA a a' Eaa' f f' Eff'.
induction x as [| n IH]; intros x' H; rewrite <- H; simpl.
assumption.
apply Eff'; [reflexivity | now apply IH].
Qed.

Theorem recursion_0 :
  forall (A : Set) (a : A) (f : N -> A -> A), recursion a f O = a.
Proof.
reflexivity.
Qed.

Theorem recursion_S :
forall (A : Set) (EA : relation A) (a : A) (f : N -> A -> A),
  EA a a -> fun2_wd E EA EA f ->
    forall n : N, EA (recursion a f (S n)) (f n (recursion a f n)).
Proof.
intros A EA a f EAaa f_wd. unfold fun2_wd, E in *.
induction n; simpl; now apply f_wd.
Qed.

End PeanoNat.

Module NPeanoDepRec <: NDepRecSignature.

Module Export NDomainModule := NPeanoDomain.
Module Export NatModule <: NatSignature := PeanoNat.

Definition dep_recursion := nat_rec.

Theorem dep_recursion_0 :
  forall (A : N -> Set) (a : A 0) (f : forall n, A n -> A (S n)),
    dep_recursion A a f 0 = a.
Proof.
reflexivity.
Qed.

Theorem dep_recursion_S :
  forall (A : N -> Set) (a : A 0) (f : forall n, A n -> A (S n)) (n : N),
    dep_recursion A a f (S n) = f n (dep_recursion A a f n).
Proof.
reflexivity.
Qed.

End NPeanoDepRec.

Module NPeanoPlus <: NPlusSignature.
Module Export NatModule := PeanoNat.

Definition plus := plus.

Add Morphism plus with signature E ==> E ==> E as plus_wd.
Proof.
unfold E; congruence.
Qed.

Theorem plus_0_n : forall n, 0 + n = n.
Proof.
reflexivity.
Qed.

Theorem plus_Sn_m : forall n m, (S n) + m = S (n + m).
Proof.
reflexivity.
Qed.

End NPeanoPlus.

Module NPeanoTimes <: NTimesSignature.
Module Export NPlusModule := NPeanoPlus.

Definition times := mult.

Add Morphism times with signature E ==> E ==> E as times_wd.
Proof.
unfold E; congruence.
Qed.

Theorem times_0_n : forall n, 0 * n = 0.
Proof.
auto.
Qed.

Theorem times_Sn_m : forall n m, (S n) * m = m + n * m.
Proof.
auto.
Qed.

End NPeanoTimes.

Module NPeanoLt <: NLtSignature.
Module Export NatModule := PeanoNat.

Definition lt := lt_bool.

Add Morphism lt with signature E ==> E ==> eq_bool as lt_wd.
Proof.
unfold E, eq_bool; congruence.
Qed.

Theorem lt_0 : forall x, ~ (lt x 0).
Proof.
exact lt_bool_0.
Qed.

Theorem lt_S : forall x y, lt x (S y) <-> lt x y \/ x = y.
Proof.
exact lt_bool_S.
Qed.

End NPeanoLt.

Module NPeanoPred <: NPredSignature.

(* Obtaining properties for +, *, <, and their combinations *)

Module Export NPeanoTimesLtProperties := NTimesLtProperties NPeanoTimes NPeanoLt.
Module Export NPeanoDepRecTimesProperties :=
  NDepRecTimesProperties NPeanoDepRec NPeanoTimes.

Module MiscFunctModule := MiscFunctFunctor PeanoNat.
(* The instruction above adds about 0.5M to the size of the .vo file !!! *)