aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Peano/NPeano.v
blob: a3109fc6d4813c1c10a990b935fb2819fa176705 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
Require Import Arith.
Require Import NMinus.

Module NPeanoAxiomsMod <: NAxiomsSig.
Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
Module Export NZAxiomsMod <: NZAxiomsSig.

Definition NZ := nat.
Definition NZeq := (@eq nat).
Definition NZ0 := 0.
Definition NZsucc := S.
Definition NZpred := pred.
Definition NZplus := plus.
Definition NZminus := minus.
Definition NZtimes := mult.

Theorem NZE_equiv : equiv nat NZeq.
Proof (eq_equiv nat).

Add Relation nat NZeq
 reflexivity proved by (proj1 NZE_equiv)
 symmetry proved by (proj2 (proj2 NZE_equiv))
 transitivity proved by (proj1 (proj2 NZE_equiv))
as NZE_rel.

(* If we say "Add Relation nat (@eq nat)" instead of "Add Relation nat NZeq"
then the theorem generated for succ_wd below is forall x, succ x = succ x,
which does not match the axioms in NAxiomsSig *)

Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Proof.
congruence.
Qed.

Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
Proof.
congruence.
Qed.

Add Morphism NZplus with signature NZeq ==> NZeq ==> NZeq as NZplus_wd.
Proof.
congruence.
Qed.

Add Morphism NZminus with signature NZeq ==> NZeq ==> NZeq as NZminus_wd.
Proof.
congruence.
Qed.

Add Morphism NZtimes with signature NZeq ==> NZeq ==> NZeq as NZtimes_wd.
Proof.
congruence.
Qed.

Theorem NZinduction :
  forall A : nat -> Prop, predicate_wd (@eq nat) A ->
    A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
Proof.
intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
Qed.

Theorem NZpred_succ : forall n : nat, pred (S n) = n.
Proof.
reflexivity.
Qed.

Theorem NZplus_0_l : forall n : nat, 0 + n = n.
Proof.
reflexivity.
Qed.

Theorem NZplus_succ_l : forall n m : nat, (S n) + m = S (n + m).
Proof.
reflexivity.
Qed.

Theorem NZminus_0_r : forall n : nat, n - 0 = n.
Proof.
intro n; now destruct n.
Qed.

Theorem NZminus_succ_r : forall n m : nat, n - (S m) = pred (n - m).
Proof.
intros n m; induction n m using nat_double_ind; simpl; auto. apply NZminus_0_r.
Qed.

Theorem NZtimes_0_r : forall n : nat, n * 0 = 0.
Proof.
exact mult_0_r.
Qed.

Theorem NZtimes_succ_r : forall n m : nat, n * (S m) = n * m + n.
Proof.
intros n m; symmetry; apply mult_n_Sm.
Qed.

End NZAxiomsMod.

Definition NZlt := lt.
Definition NZle := le.

Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Theorem NZle_lt_or_eq : forall n m : nat, n <= m <-> n < m \/ n = m.
Proof.
intros n m; split.
apply le_lt_or_eq.
intro H; destruct H as [H | H].
now apply lt_le_weak. rewrite H; apply le_refl.
Qed.

Theorem NZlt_irrefl : forall n : nat, ~ (n < n).
Proof.
exact lt_irrefl.
Qed.

Theorem NZlt_succ_le : forall n m : nat, n < S m <-> n <= m.
Proof.
intros n m; split; [apply lt_n_Sm_le | apply le_lt_n_Sm].
Qed.

End NZOrdAxiomsMod.

Definition recursion : forall A : Set, A -> (nat -> A -> A) -> nat -> A :=
  fun A : Set => nat_rec (fun _ => A).
Implicit Arguments recursion [A].

Theorem succ_neq_0 : forall n : nat, S n <> 0.
Proof.
intros; discriminate.
Qed.

Theorem pred_0 : pred 0 = 0.
Proof.
reflexivity.
Qed.

Theorem recursion_wd : forall (A : Set) (Aeq : relation A),
  forall a a' : A, Aeq a a' ->
    forall f f' : nat -> A -> A, eq_fun2 (@eq nat) Aeq Aeq f f' ->
      forall n n' : nat, n = n' ->
        Aeq (recursion a f n) (recursion a' f' n').
Proof.
unfold eq_fun2; induction n; intros n' Enn'; rewrite <- Enn' in *; simpl; auto.
Qed.

Theorem recursion_0 :
  forall (A : Set) (a : A) (f : nat -> A -> A), recursion a f 0 = a.
Proof.
reflexivity.
Qed.

Theorem recursion_succ :
  forall (A : Set) (Aeq : relation A) (a : A) (f : nat -> A -> A),
    Aeq a a -> fun2_wd (@eq nat) Aeq Aeq f ->
      forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
Proof.
unfold eq_fun2; induction n; simpl; auto.
Qed.

End NPeanoAxiomsMod.

(* Now we apply the largest property functor *)

Module Export NPeanoMinusPropMod := NMinusPropFunct NPeanoAxiomsMod.