aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Peano/NPeano.v
blob: ce8e03a5aa3cd68f0e8470d99c819f1bb3711608 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Import
 Bool Peano Peano_dec Compare_dec Plus Mult Minus Le Lt EqNat
 NAxioms NProperties.

(** Functions not already defined *)

Fixpoint pow n m :=
  match m with
    | O => 1
    | S m => n * (pow n m)
  end.

Infix "^" := pow : nat_scope.

Lemma pow_0_r : forall a, a^0 = 1.
Proof. reflexivity. Qed.

Lemma pow_succ_r : forall a b, 0<=b -> a^(S b) = a * a^b.
Proof. reflexivity. Qed.

Definition Even n := exists m, n = 2*m.
Definition Odd n := exists m, n = 2*m+1.

Fixpoint even n :=
  match n with
    | O => true
    | 1 => false
    | S (S n') => even n'
  end.

Definition odd n := negb (even n).

Lemma even_spec : forall n, even n = true <-> Even n.
Proof.
 fix 1.
  destruct n as [|[|n]]; simpl; try rewrite even_spec; split.
  now exists 0.
  trivial.
  discriminate.
  intros (m,H). destruct m. discriminate.
   simpl in H. rewrite <- plus_n_Sm in H. discriminate.
  intros (m,H). exists (S m). rewrite H. simpl. now rewrite plus_n_Sm.
  intros (m,H). destruct m. discriminate. exists m.
   simpl in H. rewrite <- plus_n_Sm in H. inversion H. reflexivity.
Qed.

Lemma odd_spec : forall n, odd n = true <-> Odd n.
Proof.
 unfold odd.
 fix 1.
  destruct n as [|[|n]]; simpl; try rewrite odd_spec; split.
  discriminate.
  intros (m,H). rewrite <- plus_n_Sm in H; discriminate.
  now exists 0.
  trivial.
  intros (m,H). exists (S m). rewrite H. simpl. now rewrite <- (plus_n_Sm m).
  intros (m,H). destruct m. discriminate. exists m.
   simpl in H. rewrite <- plus_n_Sm in H. inversion H. simpl.
   now rewrite <- !plus_n_Sm, <- !plus_n_O.
Qed.

(* A linear, tail-recursive, division for nat.

   In [divmod], [y] is the predecessor of the actual divisor,
   and [u] is [y] minus the real remainder
*)

Fixpoint divmod x y q u :=
  match x with
    | 0 => (q,u)
    | S x' => match u with
                | 0 => divmod x' y (S q) y
                | S u' => divmod x' y q u'
              end
  end.

Definition div x y :=
  match y with
    | 0 => 0
    | S y' => fst (divmod x y' 0 y')
  end.

Definition modulo x y :=
  match y with
    | 0 => 0
    | S y' => y' - snd (divmod x y' 0 y')
  end.

Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity) : nat_scope.

Lemma divmod_spec : forall x y q u, u <= y ->
 let (q',u') := divmod x y q u in
 x + (S y)*q + (y-u) = (S y)*q' + (y-u') /\ u' <= y.
Proof.
 induction x. simpl. intuition.
 intros y q u H. destruct u; simpl divmod.
 generalize (IHx y (S q) y (le_n y)). destruct divmod as (q',u').
 intros (EQ,LE); split; trivial.
 rewrite <- EQ, <- minus_n_O, minus_diag, <- plus_n_O.
 now rewrite !plus_Sn_m, plus_n_Sm, <- plus_assoc, mult_n_Sm.
 generalize (IHx y q u (le_Sn_le _ _ H)). destruct divmod as (q',u').
 intros (EQ,LE); split; trivial.
 rewrite <- EQ.
 rewrite !plus_Sn_m, plus_n_Sm. f_equal. now apply minus_Sn_m.
Qed.

Lemma div_mod : forall x y, y<>0 -> x = y*(x/y) + x mod y.
Proof.
 intros x y Hy.
 destruct y; [ now elim Hy | clear Hy ].
 unfold div, modulo.
 generalize (divmod_spec x y 0 y (le_n y)).
 destruct divmod as (q,u).
 intros (U,V).
 simpl in *.
 now rewrite <- mult_n_O, minus_diag, <- !plus_n_O in U.
Qed.

Lemma mod_upper_bound : forall x y, y<>0 -> x mod y < y.
Proof.
 intros x y Hy.
 destruct y; [ now elim Hy | clear Hy ].
 unfold modulo.
 apply le_n_S, le_minus.
Qed.

(** Square root *)

(** The following square root function is linear (and tail-recursive).
  With Peano representation, we can't do better. For faster algorithm,
  see Psqrt/Zsqrt/Nsqrt...

  We search the square root of n = k + p^2 + (q - r)
  with q = 2p and 0<=r<=q. We start with p=q=r=0, hence
  looking for the square root of n = k. Then we progressively
  decrease k and r. When k = S k' and r=0, it means we can use (S p)
  as new sqrt candidate, since (S k')+p^2+2p = k'+(S p)^2.
  When k reaches 0, we have found the biggest p^2 square contained
  in n, hence the square root of n is p.
*)

Fixpoint sqrt_iter k p q r :=
  match k with
    | O => p
    | S k' => match r with
                | O => sqrt_iter k' (S p) (S (S q)) (S (S q))
                | S r' => sqrt_iter k' p q r'
              end
  end.

Definition sqrt n := sqrt_iter n 0 0 0.

Lemma sqrt_iter_spec : forall k p q r,
 q = p+p -> r<=q ->
 let s := sqrt_iter k p q r in
 s*s <= k + p*p + (q - r) < (S s)*(S s).
Proof.
 induction k.
 (* k = 0 *)
 simpl; intros p q r Hq Hr.
 split.
 apply le_plus_l.
 apply le_lt_n_Sm.
 rewrite <- mult_n_Sm.
 rewrite plus_assoc, (plus_comm p), <- plus_assoc.
 apply plus_le_compat; trivial.
 rewrite <- Hq. apply le_minus.
 (* k = S k' *)
 destruct r.
 (* r = 0 *)
 intros Hq _.
 replace (S k + p*p + (q-0)) with (k + (S p)*(S p) + (S (S q) - S (S q))).
 apply IHk.
 simpl. rewrite <- plus_n_Sm. congruence.
 auto with arith.
 rewrite minus_diag, <- minus_n_O, <- plus_n_O. simpl.
 rewrite <- plus_n_Sm; f_equal. rewrite <- plus_assoc; f_equal.
 rewrite <- mult_n_Sm, (plus_comm p), <- plus_assoc. congruence.
 (* r = S r' *)
 intros Hq Hr.
 replace (S k + p*p + (q-S r)) with (k + p*p + (q - r)).
 apply IHk; auto with arith.
 simpl. rewrite plus_n_Sm. f_equal. rewrite minus_Sn_m; auto.
Qed.

Lemma sqrt_spec : forall n,
 (sqrt n)*(sqrt n) <= n < S (sqrt n) * S (sqrt n).
Proof.
 intros.
 set (s:=sqrt n).
 replace n with (n + 0*0 + (0-0)).
 apply sqrt_iter_spec; auto.
 simpl. now rewrite <- 2 plus_n_O.
Qed.


(** Base-2 logarithm *)

(** We search the log2 of n = k + 2^p + (q - r)
  with q = 2^p - 1 and 0<=r<=q. We start with p=q=r=0, hence
  looking for the log2 of n = k+1. Then we progressively
  decrease k and r. When k = S k' and r=0, it means we can use (S p)
  as new sqrt candidate, since (S k')+2^p+(2^p-1) = k'+2^(S p).
  When k reaches 0, we have found the biggest power 2^p
  contained in n, hence the log2 of n is p.
*)

Fixpoint log2_iter k p q r :=
  match k with
    | O => p
    | S k' => match r with
                | O => let q' := S (q+q) in
                       log2_iter k' (S p) q' q'
                | S r' => log2_iter k' p q r'
              end
  end.

Definition log2 n := log2_iter (pred n) 0 0 0.

Lemma log2_iter_spec : forall k p q r,
 S q = 2^p -> r<=q ->
 let s := log2_iter k p q r in
 2^s <= k + 2^p + (q - r) < 2^(S s).
Proof.
 induction k.
 (* k = 0 *)
 simpl; intros p q r Hq Hr.
 split.
 apply le_plus_l.
 apply plus_lt_compat_l. rewrite <- Hq.
 apply le_lt_trans with q.
 apply le_minus.
 rewrite <- plus_n_O. auto with arith.
 (* k = S k' *)
 destruct r.
 (* r = 0 *)
 intros Hq _.
 replace (S k + 2^p + (q-0)) with (k + 2^(S p) + (S (q+q) - S (q+q))).
 apply IHk.
 simpl. rewrite <- Hq. now rewrite <- plus_n_O, <- plus_n_Sm.
 auto with arith.
 rewrite minus_diag, <- minus_n_O, <- plus_n_O. simpl.
 rewrite plus_n_Sm, Hq. now rewrite  <- plus_n_O, plus_assoc.
 (* r = S r' *)
 intros Hq Hr.
 replace (S k + 2^p + (q-S r)) with (k + 2^p + (q - r)).
 apply IHk; auto with arith.
 simpl. rewrite plus_n_Sm. f_equal. rewrite minus_Sn_m; auto.
Qed.

Lemma log2_spec : forall n, 0<n ->
 2^(log2 n) <= n < 2^(S (log2 n)).
Proof.
 intros.
 set (s:=log2 n).
 replace n with (pred n + 2^0 + (0-0)).
 apply log2_iter_spec; auto.
 simpl. rewrite <- plus_n_Sm, <- !plus_n_O.
 symmetry. now apply S_pred with 0.
Qed.

Lemma log2_nonpos : forall n, n<=0 -> log2 n = 0.
Proof.
 inversion 1; now subst.
Qed.

(** * Gcd *)

(** We use Euclid algorithm, which is normally not structural,
    but Coq is now clever enough to accept this (behind modulo
    there is a subtraction, which now preserve being a subterm)
*)

Fixpoint gcd a b :=
  match a with
   | O => b
   | S a' => gcd (b mod (S a')) (S a')
  end.

Definition divide x y := exists z, x*z=y.
Notation "( x | y )" := (divide x y) (at level 0) : nat_scope.

Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b).
Proof.
 fix 1.
 intros [|a] b; simpl.
 split.
  exists 0; now rewrite <- mult_n_O.
  exists 1; now rewrite <- mult_n_Sm, <- mult_n_O.
 fold (b mod (S a)).
 destruct (gcd_divide (b mod (S a)) (S a)) as (H,H').
 set (a':=S a) in *.
 split; auto.
 rewrite (div_mod b a') at 2 by discriminate.
 destruct H as (u,Hu), H' as (v,Hv).
 exists ((b/a')*v + u).
 rewrite mult_plus_distr_l.
 now rewrite (mult_comm _ v), mult_assoc, Hv, Hu.
Qed.

Lemma gcd_divide_l : forall a b, (gcd a b | a).
Proof.
 intros. apply gcd_divide.
Qed.

Lemma gcd_divide_r : forall a b, (gcd a b | b).
Proof.
 intros. apply gcd_divide.
Qed.

Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b).
Proof.
 fix 1.
 intros [|a] b; simpl; auto.
 fold (b mod (S a)).
 intros c H H'. apply gcd_greatest; auto.
 set (a':=S a) in *.
 rewrite (div_mod b a') in H' by discriminate.
 destruct H as (u,Hu), H' as (v,Hv).
 exists (v - u * (b/a')).
 now rewrite mult_minus_distr_l, mult_assoc, Hu, Hv, minus_plus.
Qed.


(** * Implementation of [NAxiomsSig] by [nat] *)

Module Nat
 <: NAxiomsSig <: UsualDecidableTypeFull <: OrderedTypeFull <: TotalOrder.

(** Bi-directional induction. *)

Theorem bi_induction :
  forall A : nat -> Prop, Proper (eq==>iff) A ->
    A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
Proof.
intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
Qed.

(** Basic operations. *)

Definition eq_equiv : Equivalence (@eq nat) := eq_equivalence.
Local Obligation Tactic := simpl_relation.
Program Instance succ_wd : Proper (eq==>eq) S.
Program Instance pred_wd : Proper (eq==>eq) pred.
Program Instance add_wd : Proper (eq==>eq==>eq) plus.
Program Instance sub_wd : Proper (eq==>eq==>eq) minus.
Program Instance mul_wd : Proper (eq==>eq==>eq) mult.

Theorem pred_succ : forall n : nat, pred (S n) = n.
Proof.
reflexivity.
Qed.

Theorem one_succ : 1 = S 0.
Proof.
reflexivity.
Qed.

Theorem two_succ : 2 = S 1.
Proof.
reflexivity.
Qed.

Theorem add_0_l : forall n : nat, 0 + n = n.
Proof.
reflexivity.
Qed.

Theorem add_succ_l : forall n m : nat, (S n) + m = S (n + m).
Proof.
reflexivity.
Qed.

Theorem sub_0_r : forall n : nat, n - 0 = n.
Proof.
intro n; now destruct n.
Qed.

Theorem sub_succ_r : forall n m : nat, n - (S m) = pred (n - m).
Proof.
induction n; destruct m; simpl; auto. apply sub_0_r.
Qed.

Theorem mul_0_l : forall n : nat, 0 * n = 0.
Proof.
reflexivity.
Qed.

Theorem mul_succ_l : forall n m : nat, S n * m = n * m + m.
Proof.
assert (add_S_r : forall n m, n+S m = S(n+m)) by (induction n; auto).
assert (add_comm : forall n m, n+m = m+n).
 induction n; simpl; auto. intros; rewrite add_S_r; auto.
intros n m; now rewrite add_comm.
Qed.

(** Order on natural numbers *)

Program Instance lt_wd : Proper (eq==>eq==>iff) lt.

Theorem lt_succ_r : forall n m : nat, n < S m <-> n <= m.
Proof.
unfold lt; split. apply le_S_n. induction 1; auto.
Qed.


Theorem lt_eq_cases : forall n m : nat, n <= m <-> n < m \/ n = m.
Proof.
split.
inversion 1; auto. rewrite lt_succ_r; auto.
destruct 1; [|subst; auto]. rewrite <- lt_succ_r; auto.
Qed.

Theorem lt_irrefl : forall n : nat, ~ (n < n).
Proof.
induction n. intro H; inversion H. rewrite lt_succ_r; auto.
Qed.

(** Facts specific to natural numbers, not integers. *)

Theorem pred_0 : pred 0 = 0.
Proof.
reflexivity.
Qed.

(** Recursion fonction *)

Definition recursion {A} : A -> (nat -> A -> A) -> nat -> A :=
  nat_rect (fun _ => A).

Instance recursion_wd {A} (Aeq : relation A) :
 Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.
Proof.
intros a a' Ha f f' Hf n n' Hn. subst n'.
induction n; simpl; auto. apply Hf; auto.
Qed.

Theorem recursion_0 :
  forall {A} (a : A) (f : nat -> A -> A), recursion a f 0 = a.
Proof.
reflexivity.
Qed.

Theorem recursion_succ :
  forall {A} (Aeq : relation A) (a : A) (f : nat -> A -> A),
    Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
      forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
Proof.
unfold Proper, respectful in *; induction n; simpl; auto.
Qed.

(** The instantiation of operations.
    Placing them at the very end avoids having indirections in above lemmas. *)

Definition t := nat.
Definition eq := @eq nat.
Definition eqb := beq_nat.
Definition compare := nat_compare.
Definition zero := 0.
Definition one := 1.
Definition two := 2.
Definition succ := S.
Definition pred := pred.
Definition add := plus.
Definition sub := minus.
Definition mul := mult.
Definition lt := lt.
Definition le := le.

Definition min := min.
Definition max := max.
Definition max_l := max_l.
Definition max_r := max_r.
Definition min_l := min_l.
Definition min_r := min_r.

Definition eqb_eq := beq_nat_true_iff.
Definition compare_spec := nat_compare_spec.
Definition eq_dec := eq_nat_dec.

Definition Even := Even.
Definition Odd := Odd.
Definition even := even.
Definition odd := odd.
Definition even_spec := even_spec.
Definition odd_spec := odd_spec.

Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
Definition pow_0_r := pow_0_r.
Definition pow_succ_r := pow_succ_r.
Lemma pow_neg_r : forall a b, b<0 -> a^b = 0. inversion 1. Qed.
Definition pow := pow.

Definition log2_spec := log2_spec.
Definition log2_nonpos := log2_nonpos.
Definition log2 := log2.

Definition sqrt_spec a (Ha:0<=a) := sqrt_spec a.
Lemma sqrt_neg : forall a, a<0 -> sqrt a = 0. inversion 1. Qed.
Definition sqrt := sqrt.

Definition div := div.
Definition modulo := modulo.
Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
Definition div_mod := div_mod.
Definition mod_upper_bound := mod_upper_bound.

Definition divide := divide.
Definition gcd := gcd.
Definition gcd_divide_l := gcd_divide_l.
Definition gcd_divide_r := gcd_divide_r.
Definition gcd_greatest := gcd_greatest.
Lemma gcd_nonneg : forall a b, 0<=gcd a b.
Proof. intros. apply le_O_n. Qed.

(** Generic Properties *)

Include NProp
 <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.

End Nat.

(** [Nat] contains an [order] tactic for natural numbers *)

(** Note that [Nat.order] is domain-agnostic: it will not prove
    [1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)

Section TestOrder.
 Let test : forall x y, x<=y -> y<=x -> x=y.
 Proof.
 Nat.order.
 Qed.
End TestOrder.