aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Binary/NBinary.v
blob: abd98ebefdb8641a875cb200098d5419f7beffd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
Require Import NArith.
Require Import NMinus.

Module NBinaryAxiomsMod <: NAxiomsSig.
Open Local Scope N_scope.
Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
Module Export NZAxiomsMod <: NZAxiomsSig.

Definition NZ := N.
Definition NZeq := (@eq N).
Definition NZ0 := 0.
Definition NZsucc := Nsucc.
Definition NZpred := Npred.
Definition NZplus := Nplus.
Definition NZminus := Nminus.
Definition NZtimes := Nmult.

Theorem NZE_equiv : equiv N NZeq.
Proof (eq_equiv N).

Add Relation N NZeq
 reflexivity proved by (proj1 NZE_equiv)
 symmetry proved by (proj2 (proj2 NZE_equiv))
 transitivity proved by (proj1 (proj2 NZE_equiv))
as NZE_rel.

Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Proof.
congruence.
Qed.

Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
Proof.
congruence.
Qed.

Add Morphism NZplus with signature NZeq ==> NZeq ==> NZeq as NZplus_wd.
Proof.
congruence.
Qed.

Add Morphism NZminus with signature NZeq ==> NZeq ==> NZeq as NZminus_wd.
Proof.
congruence.
Qed.

Add Morphism NZtimes with signature NZeq ==> NZeq ==> NZeq as NZtimes_wd.
Proof.
congruence.
Qed.

Theorem NZinduction :
  forall A : N -> Prop, predicate_wd NZeq A ->
    A 0 -> (forall n, A n <-> A (Nsucc n)) -> forall n : N, A n.
Proof.
intros A A_wd A0 AS. apply Nind. assumption. intros; now apply -> AS.
Qed.

Theorem NZpred_succ : forall n : N, Npred (Nsucc n) = n.
Proof.
destruct n as [| p]; simpl. reflexivity.
case_eq (Psucc p); try (intros q H; rewrite <- H; now rewrite Ppred_succ).
intro H; false_hyp H Psucc_not_one.
Qed.

Theorem NZplus_0_l : forall n : N, 0 + n = n.
Proof Nplus_0_l.

Theorem NZplus_succ_l : forall n m : N, (Nsucc n) + m = Nsucc (n + m).
Proof Nplus_succ.

Theorem NZminus_0_r : forall n : N, n - 0 = n.
Proof Nminus_0_r.

Theorem NZminus_succ_r : forall n m : N, n - (Nsucc m) = Npred (n - m).
Proof Nminus_succ_r.

Theorem NZtimes_0_r : forall n : N, n * 0 = 0.
Proof.
intro n; rewrite Nmult_comm; apply Nmult_0_l.
Qed.

Theorem NZtimes_succ_r : forall n m : N, n * (Nsucc m) = n * m + n.
Proof.
intros n m; rewrite Nmult_comm, Nmult_Sn_m.
now rewrite Nplus_comm, Nmult_comm.
Qed.

End NZAxiomsMod.

Definition NZlt := Nlt.
Definition NZle := Nle.

Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Theorem NZle_lt_or_eq : forall n m : N, n <= m <-> n < m \/ n = m.
Proof.
intros n m.
assert (H : (n ?= m) = Eq <-> n = m).
split; intro H; [now apply Ncompare_Eq_eq | rewrite H; apply Ncompare_refl].
unfold Nle, Nlt. rewrite <- H.
destruct (n ?= m); split; intro H1; (try discriminate); try (now left); try now right.
now elim H1. destruct H1; discriminate.
Qed.

Theorem NZlt_irrefl : forall n : N, ~ n < n.
Proof Nlt_irrefl.

Theorem NZlt_succ_le : forall n m : N, n < (Nsucc m) <-> n <= m.
Proof.
intros x y. rewrite NZle_lt_or_eq.
unfold Nlt, Nle; apply Ncompare_n_Sm.
Qed.

End NZOrdAxiomsMod.

Definition recursion (A : Set) (a : A) (f : N -> A -> A) (n : N) :=
  Nrec (fun _ => A) a f n.
Implicit Arguments recursion [A].

Theorem succ_neq_0 : forall n : N, Nsucc n <> 0.
Proof Nsucc_0.

Theorem pred_0 : Npred 0 = 0.
Proof.
reflexivity.
Qed.

Theorem recursion_wd :
forall (A : Set) (Aeq : relation A),
  forall a a' : A, Aeq a a' ->
    forall f f' : N -> A -> A, fun2_eq NZeq Aeq Aeq f f' ->
      forall x x' : N, x = x' ->
        Aeq (recursion a f x) (recursion a' f' x').
Proof.
unfold fun2_wd, NZeq, fun2_eq.
intros A Aeq a a' Eaa' f f' Eff'.
intro x; pattern x; apply Nind.
intros x' H; now rewrite <- H.
clear x.
intros x IH x' H; rewrite <- H.
unfold recursion, Nrec in *; do 2 rewrite Nrect_step.
now apply Eff'; [| apply IH].
Qed.

Theorem recursion_0 :
  forall (A : Set) (a : A) (f : N -> A -> A), recursion a f 0 = a.
Proof.
intros A a f; unfold recursion; unfold Nrec; now rewrite Nrect_base.
Qed.

Theorem recursion_succ :
  forall (A : Set) (Aeq : relation A) (a : A) (f : N -> A -> A),
    Aeq a a -> fun2_wd NZeq Aeq Aeq f ->
      forall n : N, Aeq (recursion a f (Nsucc n)) (f n (recursion a f n)).
Proof.
unfold NZeq, recursion, Nrec, fun2_wd; intros A Aeq a f EAaa f_wd n; pattern n; apply Nind.
rewrite Nrect_step; rewrite Nrect_base; now apply f_wd.
clear n; intro n; do 2 rewrite Nrect_step; intro IH. apply f_wd; [reflexivity|].
now rewrite Nrect_step.
Qed.

End NBinaryAxiomsMod.

Module Export NBinaryMinusPropMod := NMinusPropFunct NBinaryAxiomsMod.

(* Some fun comparing the efficiency of the generic log defined
by strong (course-of-value) recursion and the log defined by recursion
on notation *)
(* Time Eval compute in (log 100000). *) (* 98 sec *)

(*
Fixpoint binposlog (p : positive) : N :=
match p with
| xH => 0
| xO p' => Nsucc (binposlog p')
| xI p' => Nsucc (binposlog p')
end.

Definition binlog (n : N) : N :=
match n with
| 0 => 0
| Npos p => binposlog p
end.
*)
(* Eval compute in (binlog 1000000000000000000). *) (* Works very fast *)