aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/BigN/NMake_gen.ml
blob: 0c15950edc74dda8b553daf96fa69891db6cac25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

(*S NMake_gen.ml : this file generates NMake.v *)


(*s The two parameters that control the generation: *)

let size = 6 (* how many times should we repeat the Z/nZ --> Z/2nZ
                process before relying on a generic construct *)
let gen_proof = true  (* should we generate proofs ? *)


(*s Some utilities *)

let t = "t"
let c = "N"
let pz n = if n == 0 then "ZnZ.zero" else "W0"
let rec gen2 n = if n == 0 then "1" else if n == 1 then "2"
                 else "2 * " ^ (gen2 (n - 1))
let rec genxO n s =
  if n == 0 then s else " (xO" ^ (genxO (n - 1) s) ^ ")"

let rec iter_str n s = if n = 0 then "" else (iter_str (n-1) s) ^ s

let rec iter_name i j base sep =
  if i >= j then base^(string_of_int i)
  else (iter_name i (j-1) base sep)^sep^" "^base^(string_of_int j)

(* Standard printer, with a final newline *)
let pr s = Printf.printf (s^^"\n")
(* Printing to /dev/null *)
let pn s = Printf.ifprintf stdout s
(* Proof printer : prints iff gen_proof is true *)
let pp = if gen_proof then pr else pn
(* Printer for admitted parts : prints iff gen_proof is false *)
let pa = if not gen_proof then pr else pn
(* Same as before, but without the final newline *)
let pr0 = Printf.printf
let pp0 = if gen_proof then pr0 else pn


(*s The actual printing *)

let _ =

  pr "(************************************************************************)";
  pr "(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)";
  pr "(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)";
  pr "(*   \\VV/  **************************************************************)";
  pr "(*    //   *      This file is distributed under the terms of the       *)";
  pr "(*         *       GNU Lesser General Public License Version 2.1        *)";
  pr "(************************************************************************)";
  pr "(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)";
  pr "(************************************************************************)";
  pr "";
  pr "(** * NMake_gen *)";
  pr "";
  pr "(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)";
  pr "";
  pr "(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)";
  pr "";
  pr "Require Import BigNumPrelude ZArith CyclicAxioms";
  pr " DoubleType DoubleMul DoubleDivn1 DoubleCyclic Nbasic";
  pr " Wf_nat StreamMemo.";
  pr "";
  pr "Module Make (W0:CyclicType) <: NAbstract.";
  pr "";

  pr " (** * The word types *)";
  pr "";

  pr " Local Notation w0 := W0.t.";
  for i = 1 to size do
    pr " Definition w%i := zn2z w%i." i (i-1)
  done;
  pr "";

  pr " (** * The operation type classes for the word types *)";
  pr "";

  pr " Local Notation w0_op := W0.ops.";
  for i = 1 to min 3 size do
    pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops w%i_op." i i (i-1)
  done;
  for i = 4 to size do
    pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops_karatsuba w%i_op." i i (i-1)
  done;
  for i = size+1 to size+3 do
    pr " Instance w%i_op : ZnZ.Ops (word w%i %i%%nat) := mk_zn2z_ops_karatsuba w%i_op." i size (i-size) (i-1)
  done;
  pr "";

  pr " Section Make_op.";
  pr "  Variable mk : forall w', ZnZ.Ops w' -> ZnZ.Ops (zn2z w').";
  pr "";
  pr "  Fixpoint make_op_aux (n:nat) : ZnZ.Ops (word w%i (S n)):=" size;
  pr "   match n return ZnZ.Ops (word w%i (S n)) with" size;
  pr "   | O => w%i_op" (size+1);
  pr "   | S n1 =>";
  pr "     match n1 return ZnZ.Ops (word w%i (S (S n1))) with" size;
  pr "     | O => w%i_op" (size+2);
  pr "     | S n2 =>";
  pr "       match n2 return ZnZ.Ops (word w%i (S (S (S n2)))) with" size;
  pr "       | O => w%i_op" (size+3);
  pr "       | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))";
  pr "       end";
  pr "     end";
  pr "   end.";
  pr "";
  pr " End Make_op.";
  pr "";
  pr " Definition omake_op := make_op_aux mk_zn2z_ops_karatsuba.";
  pr "";
  pr "";
  pr " Definition make_op_list := dmemo_list _ omake_op.";
  pr "";
  pr " Instance make_op n : ZnZ.Ops (word w%i (S n))" size;
  pr "  := dmemo_get _ omake_op n make_op_list.";
  pr "";

  pr "";
  pr " Lemma make_op_omake: forall n, make_op n = omake_op n.";
  pr " intros n; unfold make_op, make_op_list.";
  pr " refine (dmemo_get_correct _ _ _).";
  pr " Qed.";
  pr "";


  pr " (** * The main type [t], isomorphic with [exists n, word w0 n] *)";
  pr "";

  pr " Inductive %s_ :=" t;
  for i = 0 to size do
    pr "  | %s%i : w%i -> %s_" c i i t
  done;
  pr "  | %sn : forall n, word w%i (S n) -> %s_." c size t;
  pr "";
  pr " Definition %s := %s_." t t;
  pr "";

  pr " (** * A generic toolbox for building and deconstructing [t] *)";
  pr "";

  pr " Local Notation SizePlus n := %sn%s."
    (iter_str size "(S ") (iter_str size ")");
  pr "";

  pr " Definition dom_t n := match n with";
  for i = 0 to size do
    pr "  | %i => w%i" i i;
  done;
  pr "  | %sn => word w%i n" (if size=0 then "" else "SizePlus ") size;
  pr " end.";
  pr "";

  pr " Instance dom_op n : ZnZ.Ops (dom_t n) | 10.";
  pa " Admitted.";
  pp " Proof.";
  pp "  do %i (destruct n; [simpl;auto with *|])." (size+1);
  pp "  unfold dom_t. auto with *.";
  pp " Defined.";
  pr "";

  pr " Definition iter_t {A:Type}(f : forall n, dom_t n -> A)(x:t) : A :=";
  pr "  match x with";
  for i = 0 to size do
    pr "   | %s%i wx => f %i wx" c i i;
  done;
  pr "   | %sn n wx => f (SizePlus (S n)) wx" c;
  pr "  end.";
  pr "";

  pr " Definition mk_t (n:nat) : dom_t n -> t :=";
  pr "  match n as n' return dom_t n' -> t with";
  for i = 0 to size do
    pr "   | %i => %s%i" i c i;
  done;
  pr "   | %s(S n) => %sn n" (if size=0 then "" else "SizePlus ") c;
  pr "  end.";
  pr "";

pr "
 Definition level := iter_t (fun n _ => n).

 Inductive View_t : t -> Prop :=
  Mk_t : forall n (x : dom_t n), View_t (mk_t n x).

 Lemma destr_t : forall x, View_t x.
 Proof.
 intros x. generalize (Mk_t (level x)). destruct x; simpl; auto.
 Qed.
";

pr "
 Lemma iter_mk_t : forall A (f:forall n, dom_t n -> A),
 forall n x, iter_t f (mk_t n x) = f n x.
 Proof.
 do %i (destruct n; try reflexivity).
 Qed.
" (size+1);

pr "
 (** * Projection to ZArith *)

 Definition to_Z : t -> Z :=
  Eval lazy beta iota delta [iter_t dom_t dom_op] in
  iter_t (fun _ x => ZnZ.to_Z x).
";

  pr " Open Scope Z_scope.";
  pr " Notation \"[ x ]\" := (to_Z x).";
  pr "";

pr "
 Theorem spec_mk_t : forall n (x:dom_t n), [mk_t n x] = ZnZ.to_Z x.
 Proof.
 intros. change to_Z with (iter_t (fun _ x => ZnZ.to_Z x)).
 rewrite iter_mk_t; auto.
 Qed.
";

  pp " (* Regular make op (no karatsuba) *)";
  pp " Fixpoint nmake_op (ww:Type) (ww_op: ZnZ.Ops ww) (n: nat) :";
  pp "       ZnZ.Ops (word ww n) :=";
  pp "  match n return ZnZ.Ops (word ww n) with";
  pp "   O => ww_op";
  pp "  | S n1 => mk_zn2z_ops (nmake_op ww ww_op n1)";
  pp "  end.";
  pp "";
  pp " (* Simplification by rewriting for nmake_op *)";
  pp " Theorem nmake_op_S: forall ww (w_op: ZnZ.Ops ww) x,";
  pp "   nmake_op _ w_op (S x) = mk_zn2z_ops (nmake_op _ w_op x).";
  pp " auto.";
  pp " Qed.";
  pp "";


  pr " (* Eval and extend functions for each level *)";
  for i = 0 to size do
    pp " Let nmake_op%i := nmake_op _ w%i_op." i i;
    pp " Let eval%in n := ZnZ.to_Z (Ops:=nmake_op%i n)." i i;
    if i == 0 then
      pr " Let extend%i := DoubleBase.extend (WW (ZnZ.zero:w0))." i
    else
      pr " Let extend%i := DoubleBase.extend (WW (W0: w%i))." i i;
  done;
  pr "";


  pp " Theorem digits_doubled:forall n ww (w_op: ZnZ.Ops ww),";
  pp "    ZnZ.digits (nmake_op _ w_op n) =";
  pp "    DoubleBase.double_digits (ZnZ.digits w_op) n.";
  pp " Proof.";
  pp " intros n; elim n; auto; clear n.";
  pp " intros n Hrec ww ww_op; simpl DoubleBase.double_digits.";
  pp " rewrite <- Hrec; auto.";
  pp " Qed.";
  pp "";
  pp " Theorem nmake_double: forall n ww (w_op: ZnZ.Ops ww),";
  pp "    ZnZ.to_Z (Ops:=nmake_op _ w_op n) =";
  pp "    @DoubleBase.double_to_Z _ (ZnZ.digits w_op) (ZnZ.to_Z (Ops:=w_op)) n.";
  pp " Proof.";
  pp " intros n; elim n; auto; clear n.";
  pp " intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z.";
  pp " rewrite <- Hrec; auto.";
  pp " unfold DoubleBase.double_wB; rewrite <- digits_doubled; auto.";
  pp " Qed.";
  pp "";


  pp " Theorem digits_nmake:forall n ww (w_op: ZnZ.Ops ww),";
  pp "    ZnZ.digits (nmake_op _ w_op (S n)) =";
  pp "    xO (ZnZ.digits (nmake_op _ w_op n)).";
  pp " Proof.";
  pp " auto.";
  pp " Qed.";
  pp "";


  pp " Theorem znz_nmake_op: forall ww ww_op n xh xl,";
  pp "  ZnZ.to_Z (Ops:=nmake_op ww ww_op (S n)) (WW xh xl) =";
  pp "   ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xh *";
  pp "    base (ZnZ.digits (nmake_op ww ww_op n)) +";
  pp "   ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xl.";
  pp " Proof.";
  pp " auto.";
  pp " Qed.";
  pp "";

  pp " Theorem make_op_S: forall n,";
  pp "   make_op (S n) = mk_zn2z_ops_karatsuba (make_op n).";
  pp " intro n.";
  pp " do 2 rewrite make_op_omake.";
  pp " pattern n; apply lt_wf_ind; clear n.";
  pp " intros n; case n; clear n.";
  pp "   intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 2);
  pp " intros n; case n; clear n.";
  pp "   intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 3);
  pp " intros n; case n; clear n.";
  pp "   intros _; unfold omake_op, make_op_aux, w%i_op, w%i_op; apply refl_equal." (size + 3) (size + 2);
  pp " intros n Hrec.";
  pp "   change (omake_op (S (S (S (S n))))) with";
  pp "          (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (omake_op (S n))))).";
  pp "   change (omake_op (S (S (S n)))) with";
  pp "         (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (omake_op n)))).";
  pp "   rewrite Hrec; auto with arith.";
  pp " Qed.";
  pp "";

pr "
 Lemma dom_t_S : forall n, zn2z (dom_t n) = dom_t (S n).
 Proof.
  do %i (destruct n; try reflexivity).
 Defined.

 Definition cast w w' (H:w=w') (x:w) : w' :=
   match H in _=y return y with
   | eq_refl => x
   end.

 Definition mk_t_S n (x:zn2z (dom_t n)) : t :=
  Eval lazy beta delta [cast dom_t_S] in
  mk_t (S n) (cast _ _ (dom_t_S n) x).

 Theorem spec_mk_t_S : forall n (x:zn2z (dom_t n)),
  [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.
 Proof.
 intros.
 do %i (destruct n; [reflexivity|]).
 simpl. rewrite !make_op_S. reflexivity.
 Qed.

 Lemma mk_t_S_level : forall n x, level (mk_t_S n x) = S n.
 Proof.
 do %i (destruct n; try reflexivity).
 Qed.
" (size+1) (size+1) (size+1);

  pr " (** * The specification proofs for the word operators *)";
  pr "";

  if size <> 0 then
  pr " Typeclasses Opaque %s." (iter_name 1 size "w" " ");
  pr "";

  pp " Instance w0_spec: ZnZ.Specs w0_op := W0.specs.";
  for i = 1 to min 3 size do
    pp " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs w%i_spec." i i (i-1)
  done;
  for i = 4 to size do
    pp " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." i i (i-1)
  done;
  for i = size+1 to size+3 do
    pp " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." i i (i-1)
  done;
  pp "";

  pp " Instance wn_spec (n:nat) : ZnZ.Specs (make_op n).";
  pp " Proof.";
  pp "  intros n; elim n; clear n.";
  pp "    exact w%i_spec." (size + 1);
  pp "  intros n Hrec; rewrite make_op_S.";
  pp "  exact (mk_zn2z_specs_karatsuba Hrec).";
  pp " Qed.";
  pp "";

pr "
 Instance dom_spec n : ZnZ.Specs (dom_op n) | 10.
 Proof.
  do %i (destruct n; auto with *). apply wn_spec.
 Qed.
" (size+1);

  for i = 1 to size + 2 do
    pp " Let to_Z_%i: forall x y," i;
    pp "   ZnZ.to_Z (Ops:=w%i_op) (WW x y) =" i;
    pp "    ZnZ.to_Z (Ops:=w%i_op) x * base (ZnZ.digits w%i_op) + ZnZ.to_Z (Ops:=w%i_op) y." (i-1) (i-1) (i-1);
    pp " Proof.";
    pp " auto.";
    pp " Qed.";
    pp "";
  done;

  pp " Let to_Z_n: forall n x y,";
  pp "   ZnZ.to_Z (Ops:=make_op (S n)) (WW x y) =";
  pp "    ZnZ.to_Z (Ops:=make_op n) x * base (ZnZ.digits (make_op n)) + ZnZ.to_Z (Ops:=make_op n) y.";
  pp " Proof.";
  pp " intros n x y; rewrite make_op_S; auto.";
  pp " Qed.";
  pp "";

  for i = 0 to size do
    pp " Theorem digits_w%i:  ZnZ.digits w%i_op = ZnZ.digits (nmake_op _ w0_op %i)." i i i;
    if i == 0 then
      pp " auto."
    else
      pp " rewrite digits_nmake; rewrite <- digits_w%i; auto." (i - 1);
    pp " Qed.";
    pp "";
    pp " Let spec_double_eval%in: forall n, eval%in n = DoubleBase.double_to_Z (ZnZ.digits w%i_op) (ZnZ.to_Z (Ops:=w%i_op)) n." i i i i;
    pp " Proof.";
    pp "  intros n; exact (nmake_double n w%i w%i_op)." i i;
    pp " Qed.";
    pp "";
  done;

  for i = 0 to size do
    for j = 0 to (size - i) do
      pp " Theorem digits_w%in%i: ZnZ.digits w%i_op = ZnZ.digits (nmake_op _ w%i_op %i)." i j (i + j) i j;
      pp " Proof.";
      if j == 0 then
        if i == 0 then
          pp " auto."
        else
          begin
            pp " apply trans_equal with (xO (ZnZ.digits w%i_op))." (i + j -1);
            pp "  auto.";
            pp "  unfold nmake_op; auto.";
          end
      else
        begin
          pp " apply trans_equal with (xO (ZnZ.digits w%i_op))." (i + j -1);
          pp "  auto.";
          pp " rewrite digits_nmake.";
          pp " rewrite digits_w%in%i." i (j - 1);
          pp " auto.";
        end;
      pp " Qed.";
      pp "";
      pp " Let spec_eval%in%i: forall x, [%s%i x] = eval%in %i x." i j c (i + j) i j;
      pp " Proof.";
      if j == 0 then
        pp " intros x; rewrite spec_double_eval%in; unfold DoubleBase.double_to_Z, to_Z; auto." i
      else
        begin
          pp " intros x; case x.";
          pp "   auto.";
          pp " intros xh xl; unfold to_Z; rewrite to_Z_%i." (i + j);
          pp " rewrite digits_w%in%i." i (j - 1);
          pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (j - 1);
          pp " unfold eval%in, nmake_op%i." i i;
          pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (j - 1);
        end;
      pp " Qed.";
      if i + j <> size  then
        begin
          pp " Let spec_extend%in%i: forall x, [%s%i x] = [%s%i (extend%i %i x)]." i (i + j + 1) c i c (i + j + 1) i j;
          if j == 0 then
            begin
              pp " intros x; change (extend%i 0 x) with (WW (ZnZ.zero (Ops:=w%i_op)) x)." i (i + j);
              pp " unfold to_Z; rewrite to_Z_%i." (i + j + 1);
              pp " rewrite ZnZ.spec_0; auto.";
            end
          else
            begin
              pp " intros x; change (extend%i %i x) with (WW (ZnZ.zero (Ops:=w%i_op)) (extend%i %i x))." i j (i + j) i (j - 1);
              pp " unfold to_Z; rewrite to_Z_%i." (i + j + 1);
              pp " rewrite ZnZ.spec_0.";
              pp " generalize (spec_extend%in%i x); unfold to_Z." i (i + j);
              pp " intros HH; rewrite <- HH; auto.";
            end;
          pp " Qed.";
          pp "";
        end;
    done;

    pp " Theorem digits_w%in%i: ZnZ.digits w%i_op = ZnZ.digits (nmake_op _ w%i_op %i)." i (size - i + 1) (size + 1) i (size - i + 1);
    pp " Proof.";
    pp " apply trans_equal with (xO (ZnZ.digits w%i_op))." size;
    pp "  auto.";
    pp " rewrite digits_nmake.";
    pp " rewrite digits_w%in%i." i (size - i);
    pp " auto.";
    pp " Qed.";
    pp "";

    pp " Let spec_eval%in%i: forall x, [%sn 0  x] = eval%in %i x." i (size - i + 1) c i (size - i + 1);
    pp " Proof.";
    pp " intros x; case x.";
    pp "   auto.";
    pp " intros xh xl; unfold to_Z; rewrite to_Z_%i." (size + 1);
    pp " rewrite digits_w%in%i." i (size - i);
    pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (size - i);
    pp " unfold eval%in, nmake_op%i." i i;
    pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size - i);
    pp " Qed.";
    pp "";

    pp " Let spec_eval%in%i: forall x, [%sn 1  x] = eval%in %i x." i (size - i + 2) c i (size - i + 2);
    pp " intros x; case x.";
    pp "   auto.";
    pp " intros xh xl; unfold to_Z; rewrite to_Z_%i." (size + 2);
    pp " rewrite digits_w%in%i." i (size + 1 - i);
    pp " generalize (spec_eval%in%i); unfold to_Z; change (make_op 0) with (w%i_op); intros HH; repeat rewrite HH." i (size + 1 - i) (size + 1);
    pp " unfold eval%in, nmake_op%i." i i;
    pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size + 1 - i);
    pp " Qed.";
    pp "";
  done;

  pp " Let digits_w%in: forall n," size;
  pp "   ZnZ.digits (make_op n) = ZnZ.digits (nmake_op _ w%i_op (S n))." size;
  pp " intros n; elim n; clear n.";
  pp "  change (ZnZ.digits (make_op 0)) with (xO (ZnZ.digits w%i_op))." size;
  pp "  rewrite nmake_op_S; apply sym_equal; auto.";
  pp "  intros  n Hrec.";
  pp "  replace (ZnZ.digits (make_op (S n))) with (xO (ZnZ.digits (make_op n))).";
  pp "  rewrite Hrec.";
  pp "  rewrite nmake_op_S; apply sym_equal; auto.";
  pp "  rewrite make_op_S; apply sym_equal; auto.";
  pp " Qed.";
  pp "";

  pp " Let spec_eval%in: forall n x, [%sn n x] = eval%in (S n) x." size c size;
  pp " intros n; elim n; clear n.";
  pp "   exact spec_eval%in1." size;
  pp " intros n Hrec x; case x; clear x.";
  pp "  unfold to_Z, eval%in, nmake_op%i." size size;
  pp "    rewrite make_op_S; rewrite nmake_op_S; auto.";
  pp " intros xh xl.";
  pp "  unfold to_Z in Hrec |- *.";
  pp "  rewrite to_Z_n.";
  pp "  rewrite digits_w%in." size;
  pp "  repeat rewrite Hrec.";
  pp "  unfold eval%in, nmake_op%i." size size;
  pp "  apply sym_equal; rewrite nmake_op_S; auto.";
  pp " Qed.";
  pp "";

  pp " Let spec_extend%in: forall n x, [%s%i x] = [%sn n (extend%i n x)]." size c size c size ;
  pp " intros n; elim n; clear n.";
  pp "   intros x; change (extend%i 0 x) with (WW (ZnZ.zero (Ops:=w%i_op)) x)." size size;
  pp "   unfold to_Z.";
  pp "   change (make_op 0) with w%i_op." (size + 1);
  pp "   rewrite to_Z_%i; rewrite ZnZ.spec_0; auto." (size + 1);
  pp " intros n Hrec x.";
  pp "   change (extend%i (S n) x) with (WW W0 (extend%i n x))." size size;
  pp "   unfold to_Z in Hrec |- *; rewrite to_Z_n; auto.";
  pp "   rewrite <- Hrec.";
  pp "  replace (ZnZ.to_Z (Ops:=make_op n) W0) with 0; auto.";
  pp "  case n; auto; intros; rewrite make_op_S; auto.";
  pp " Qed.";
  pp "";

pr "
 Lemma digits_dom_op : forall n,
  Zpos (ZnZ.digits (dom_op n)) = Zpos (ZnZ.digits W0.ops) * 2 ^ Z_of_nat n.
 Proof.
 intros. rewrite Zmult_comm.
 do %i (destruct n; try reflexivity).
 simpl.
 rewrite <- shift_pos_correct. f_equal.
 rewrite shift_pos_nat.
 rewrite ?nat_of_P_succ_morphism, nat_of_P_o_P_of_succ_nat_eq_succ.
 unfold shift_nat. simpl.
 generalize (digits_w%in n); simpl; intros ->.
 rewrite digits_doubled.
 rewrite digits_w%i, ?digits_nmake. simpl.
 induction n; simpl; congruence.
 Qed.
" (size+1) size size;

  pp " Let spec_extendn_0: forall n wx, [%sn n (extend n _ wx)] = [%sn 0 wx]." c c;
  pp " intros n; elim n; auto.";
  pp " intros n1 Hrec wx; simpl extend; rewrite <- Hrec; auto.";
  pp " unfold to_Z.";
  pp " case n1; auto; intros n2; repeat rewrite make_op_S; auto.";
  pp " Qed.";
  pp "";
  pp " Let spec_extendn0_0: forall n wx, [%sn (S n) (WW W0 wx)] = [%sn n wx]." c c;
  pp " Proof.";
  pp " intros n x; unfold to_Z.";
  pp " rewrite to_Z_n.";
  pp " rewrite <- (Zplus_0_l (ZnZ.to_Z (Ops:=make_op n) x)).";
  pp " apply (f_equal2 Zplus); auto.";
  pp " case n; auto.";
  pp " intros n1; rewrite make_op_S; auto.";
  pp " Qed.";
  pp "";
  pp " Let spec_extend_tr: forall m n (w: word _ (S n)),";
  pp " [%sn (m + n) (extend_tr w m)] = [%sn n w]." c c;
  pp " Proof.";
  pp " induction m; auto.";
  pp " intros n x; simpl extend_tr.";
  pp " simpl plus; rewrite spec_extendn0_0; auto.";
  pp " Qed.";
  pp "";
  pp " Let spec_cast_l: forall n m x1,";
  pp " [%sn (Max.max n m)" c;
  pp " (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))] =";
  pp " [%sn n x1]." c;
  pp " Proof.";
  pp " intros n m x1; case (diff_r n m); simpl castm.";
  pp " rewrite spec_extend_tr; auto.";
  pp " Qed.";
  pp "";
  pp " Let spec_cast_r: forall n m x1,";
  pp " [%sn (Max.max n m)" c;
  pp "  (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))] =";
  pp " [%sn m x1]." c;
  pp " Proof.";
  pp " intros n m x1; case (diff_l n m); simpl castm.";
  pp " rewrite spec_extend_tr; auto.";
  pp " Qed.";
  pp "";

  pr " Section SameLevel.";
  pr "";
  pr "  Variable res: Type.";
  pr "  Variable P : Z -> Z -> res -> Prop.";
  pr "  Variable f : forall n, dom_t n -> dom_t n -> res.";
  pr "  Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).";
  pr "";
  for i = 0 to size do
    pr "  Let f%i : w%i -> w%i -> res := f %i." i i i i;
  done;
  pr "  Let fn n := f (SizePlus (S n)).";
  pr "";
  for i = 0 to size do
    pr "  Let Pf%i : forall x y : w%i, P [%s%i x] [%s%i y] (f%i x y) := Pf %i." i i c i c i i i;
  done;
  pr "  Let Pfn n : forall x y, P [%sn n x] [%sn n y] (fn n x y) := Pf (SizePlus (S n))." c c;
  pr "";
  pr "  (* We level the two arguments before applying *)";
  pr "  (* the functions at each level                *)";
  pr "";
  pr "  Definition same_level (x y: t_): res := Eval lazy zeta beta iota delta";
  pr "   [ DoubleBase.extend DoubleBase.extend_aux %s ]" (iter_name 0 (size-1) "extend" "");
  pr "  in match x, y with";
  for i = 0 to size do
    for j = 0 to i - 1 do
      pr "  | %s%i wx, %s%i wy => f%i wx (extend%i %i wy)" c i c j i j (i - j -1);
    done;
    pr "  | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
    for j = i + 1 to size do
      pr "  | %s%i wx, %s%i wy => f%i (extend%i %i wx) wy" c i c j j i (j - i - 1);
    done;
    if i == size then
      pr "  | %s%i wx, %sn m wy => fn m (extend%i m wx) wy" c size c size
    else
      pr "  | %s%i wx, %sn m wy => fn m (extend%i m (extend%i %i wx)) wy" c i c size i (size - i - 1);
  done;
  for i = 0 to size do
    if i == size then
      pr "  | %sn n wx, %s%i wy => fn n wx (extend%i n wy)" c c size size
    else
      pr "  | %sn n wx, %s%i wy => fn n wx (extend%i n (extend%i %i wy))" c c i size i (size - i - 1);
  done;
  pr "  | %sn n wx, Nn m wy =>" c;
  pr "    let mn := Max.max n m in";
  pr "    let d := diff n m in";
  pr "     fn mn";
  pr "       (castm (diff_r n m) (extend_tr wx (snd d)))";
  pr "       (castm (diff_l n m) (extend_tr wy (fst d)))";
  pr "  end.";
  pr "";

  pp "  Lemma spec_same_level_0: forall x y, P [x] [y] (same_level x y).";
  pp "  Proof.";
  pp "  intros x; case x; clear x; unfold same_level.";
  for i = 0 to size do
    pp "    intros x y; case y; clear y.";
    for j = 0 to i - 1 do
      pp "     intros y; rewrite spec_extend%in%i; apply Pf%i." j i i;
    done;
    pp "     intros y; apply Pf%i." i;
    for j = i + 1 to size do
      pp "     intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
    done;
    if i == size then
      pp "     intros m y; rewrite (spec_extend%in m); apply (Pfn m)." size
    else
      pp "     intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply (Pfn m)." i size size;
  done;
  pp "    intros n x y; case y; clear y.";
  for i = 0 to size do
    if i == size then
      pp "    intros y; rewrite (spec_extend%in n); apply (Pfn n)." size
    else
      pp "    intros y; rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply (Pfn n)." i size size;
  done;
  pp "    intros m y; rewrite <- (spec_cast_l n m x);";
  pp "          rewrite <- (spec_cast_r n m y); apply (Pfn (Max.max n m)).";
  pp "  Qed.";
  pp "";

  pr " End SameLevel.";
  pr "";
  pr " Implicit Arguments same_level [res].";

pr "
 Theorem spec_same_level_dep :
  forall res
   (P : nat -> Z -> Z -> res -> Prop)
   (Pantimon : forall n m z z' r, (n <= m)%%nat -> P m z z' r -> P n z z' r)
   (f : forall n, dom_t n -> dom_t n -> res)
   (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)),
   forall x y, P (level y) [x] [y] (same_level f x y).
 Proof.
 intros res P Pantimon f Pf.
 set (f' := fun n x y => (n, f n x y)).
 set (P' := fun z z' r => P (fst r) z z' (snd r)).
 assert (FST : forall x y, (level y <= fst (same_level f' x y))%%nat)
  by (destruct x, y; simpl; omega with * ).
 assert (SND : forall x y, same_level f x y = snd (same_level f' x y))
  by (destruct x, y; reflexivity).
 intros. eapply Pantimon; [eapply FST|].
 rewrite SND. eapply (@spec_same_level_0 _ P' f'); eauto.
 Qed.
";

  pr "";
  pr " Section Iter.";
  pr "";
  pr "  Variable res: Type.";
  pr "  Variable P: Z -> Z -> res -> Prop.";
  pr "  (* Abstraction function for each level *)";
  for i = 0 to size do
    pr "  Variable f%i: w%i -> w%i -> res." i i i;
    pr "  Variable f%in: forall n, w%i -> word w%i (S n) -> res." i i i;
    pr "  Variable fn%i: forall n, word w%i (S n) -> w%i -> res." i i i;
    pp "  Variable Pf%i: forall x y, P [%s%i x] [%s%i y] (f%i x y)." i c i c i i;
    if i == size then
      begin
        pp "  Variable Pf%in: forall n x y, P [%s%i x] (eval%in (S n) y) (f%in n x y)." i c i i i;
        pp "  Variable Pfn%i: forall n x y, P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i i c i i;
      end
    else
      begin
        pp "  Variable Pf%in: forall n x y, Z_of_nat n <= %i -> P [%s%i x] (eval%in (S n) y) (f%in n x y)." i (size - i) c i i i;
        pp "  Variable Pfn%i: forall n x y, Z_of_nat n <= %i -> P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i (size - i) i c i i;
      end;
    pr "";
  done;
  pr "  Variable fnn: forall n, word w%i (S n) -> word w%i (S n) -> res." size size;
  pp "  Variable Pfnn: forall n x y, P [%sn n x] [%sn n y] (fnn n x y)." c c;
  pr "  Variable fnm: forall n m, word w%i (S n) -> word w%i (S m) -> res." size size;
  pp "  Variable Pfnm: forall n m x y, P [%sn n x] [%sn m y] (fnm n m x y)." c c;
  pr "";

  pr "  (* We iter the smaller argument with the bigger  *)";
  pr "";
  pr "  Definition iter (x y: t_): res :=";
  pr0 "    Eval lazy zeta beta iota delta [";
  for i = 0 to size do
    pr0 "extend%i " i;
  done;
  pr "";
  pr "                                         DoubleBase.extend DoubleBase.extend_aux";
  pr "                                         ] in";
  pr "  match x, y with";
  for i = 0 to size do
    for j = 0 to i - 1 do
      pr "  | %s%i wx, %s%i wy => fn%i %i wx wy" c i c j j (i - j - 1);
    done;
    pr "  | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
    for j = i + 1 to size do
      pr "  | %s%i wx, %s%i wy => f%in %i wx wy" c i c j i (j - i - 1);
    done;
    if i == size then
      pr "  | %s%i wx, %sn m wy => f%in m wx wy" c size c size
    else
      pr "  | %s%i wx, %sn m wy => f%in m (extend%i %i wx) wy" c i c size i (size - i - 1);
  done;
  for i = 0 to size do
    if i == size then
      pr "  | %sn n wx, %s%i wy => fn%i n wx wy" c c size size
    else
      pr "  | %sn n wx, %s%i wy => fn%i n wx (extend%i %i wy)" c c i size i (size - i - 1);
  done;
  pr "  | %sn n wx, %sn m wy => fnm n m wx wy" c c;
  pr "  end.";
  pr "";
  let break_eq0 v =
    pp "    generalize (ZnZ.spec_eq0 %s); case ZnZ.eq0; intros H." v;
    pp "      intros; simpl [N0 %s]; rewrite H; trivial." v;
    pp "    clear H."
  in
  pp "  Ltac zg_tac := try";
  pp "    (red; simpl Zcompare; auto;";
  pp "     let t := fresh \"H\" in (intros t; discriminate t)).";
  pp "";
  pp "  Lemma spec_iter: forall x y, P [x] [y] (iter x y).";
  pp "  Proof.";
  pp "  intros x; case x; clear x; unfold iter.";
  for i = 0 to size do
    pp "    intros x y; case y; clear y.";
    for j = 0 to i - 1 do
      pp "     intros y; rewrite spec_eval%in%i;  apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
    done;
    pp "     intros y; apply Pf%i." i;
    for j = i + 1 to size do
      pp "     intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
    done;
    if i == size then
      pp "     intros m y; rewrite spec_eval%in; apply Pf%in." size size
    else
      pp "     intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
  done;
  pp "    intros n x y; case y; clear y.";
  for i = 0 to size do
    if i == size then
      pp "     intros y; rewrite spec_eval%in; apply Pfn%i." size size
    else
      pp "      intros y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
  done;
  pp "  intros m y; apply Pfnm.";
  pp "  Qed.";
  pp "";


  pr "  (* We iter the smaller argument with the bigger *)";
  pr "  (* with special zero functions *)";
  pr "";
  pr "  Variable f0t:  t_ -> res.";
  pp "  Variable Pf0t: forall x, P 0 [x] (f0t x).";
  pr "  Variable ft0:  t_ -> res.";
  pp "  Variable Pft0: forall x, P [x] 0 (ft0 x).";
  pr "";
  pr "  Definition iter0 (x y: t_): res :=";
  pr0 "    Eval lazy zeta beta iota delta [";
  for i = 0 to size do
    pr0 "extend%i " i;
  done;
  pr "";
  pr "                                         DoubleBase.extend DoubleBase.extend_aux";
  pr "                                         ] in";
  pr "  match x with";
  for i = 0 to size do
    pr "  | %s%i wx =>" c i;
    if i == 0 then
      pr "    if ZnZ.eq0 wx then f0t y else";
    pr "    match y with";
    for j = 0 to i - 1 do
      pr "    | %s%i wy =>" c j;
      if j == 0 then
        pr "       if ZnZ.eq0 wy then ft0 x else";
      pr "       fn%i %i wx wy" j (i - j - 1);
    done;
    pr "    | %s%i wy => f%i wx wy" c i i;
    for j = i + 1 to size do
      pr "    | %s%i wy => f%in %i wx wy" c j i (j - i - 1);
    done;
    if i == size then
      pr "    | %sn m wy => f%in m wx wy" c size
    else
      pr "    | %sn m wy => f%in m (extend%i %i wx) wy" c size i (size - i - 1);
    pr "    end";
  done;
  pr "  | %sn n wx =>" c;
  pr "    match y with";
  for i = 0 to size do
    pr "    | %s%i wy =>" c i;
    if i == 0 then
      pr "      if ZnZ.eq0 wy then ft0 x else";
    if i == size then
      pr "      fn%i n wx wy" size
    else
      pr "      fn%i n wx (extend%i %i wy)" size i (size - i - 1);
  done;
  pr "    | %sn m wy => fnm n m wx wy" c;
  pr "    end";
  pr "  end.";
  pr "";

  pp "  Lemma spec_iter0: forall x y, P [x] [y] (iter0 x y).";
  pp "  Proof.";
  pp "  intros x; case x; clear x; unfold iter0.";
  for i = 0 to size do
    pp "    intros x.";
    if i == 0 then break_eq0 "x";
    pp "    intros y; case y; clear y.";
    for j = 0 to i - 1 do
      pp "     intros y.";
      if j == 0 then break_eq0 "y";
      pp "     rewrite spec_eval%in%i;  apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
    done;
    pp "     intros y; apply Pf%i." i;
    for j = i + 1 to size do
      pp "     intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
    done;
    if i == size then
      pp "     intros m y; rewrite spec_eval%in; apply Pf%in." size size
    else
      pp "     intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
  done;
  pp "    intros n x y; case y; clear y.";
  for i = 0 to size do
    pp "    intros y.";
    if i = 0 then break_eq0 "y";
    if i == size then
      pp "     rewrite spec_eval%in; apply Pfn%i." size size
    else
      pp "      rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
  done;
  pp "  intros m y; apply Pfnm.";
  pp "  Qed.";
  pp "";


  pr "  End Iter.";
  pr "";


  pr " (***************************************************************)";
  pr " (*                                                             *)";
  pr " (** *                        Reduction                         *)";
  pr " (*                                                             *)";
  pr " (***************************************************************)";
  pr "";

  pr " Definition reduce_0 (x:w0) := %s0 x." c;
  for i = 1 to size do
   pr " Definition reduce_%i :=" i;
   pr "  Eval lazy beta iota delta[reduce_n1] in";
   pr "   reduce_n1 _ _ (N0 ZnZ.zero) (ZnZ.eq0 (Ops:=w%i_op)) %s%i %s%i."
      (i-1) (if i = 1 then c else "reduce_") (i-1) c i
  done;
  pr " Definition reduce_%i :=" (size+1);
  pr "  Eval lazy beta iota delta[reduce_n1] in";
  pr "   reduce_n1 _ _ (N0 ZnZ.zero) (ZnZ.eq0 (Ops:=w%i_op)) reduce_%i (%sn 0)."
    size size c;

  pr " Definition reduce_n n :=";
  pr "  Eval lazy beta iota delta[reduce_n] in";
  pr "   reduce_n _ _ (N0 ZnZ.zero) reduce_%i %sn n." (size + 1) c;
  pr "";

  pp " Let spec_reduce_0: forall x, [reduce_0 x] = [%s0 x]." c;
  pp " Proof.";
  pp " intros x; unfold to_Z, reduce_0.";
  pp " auto.";
  pp " Qed.";
  pp "";

  for i = 1 to size + 1 do
    if i == size + 1 then
      pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%sn 0 x]." i i c
    else
      pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%s%i x]." i i c i;
    pp " Proof.";
    pp " intros x; case x; unfold reduce_%i." i;
    pp " exact ZnZ.spec_0.";
    pp " intros x1 y1.";
    pp " generalize (ZnZ.spec_eq0 x1);";
    pp "   case ZnZ.eq0; intros H1; auto.";
    if i <> 1 then
      pp " rewrite spec_reduce_%i." (i - 1);
    pp " unfold to_Z; rewrite to_Z_%i." i;
    pp " unfold to_Z in H1; rewrite H1; auto.";
    pp " Qed.";
    pp "";
  done;

  pp " Let spec_reduce_n: forall n x, [reduce_n n x] = [%sn n x]." c;
  pp " Proof.";
  pp " intros n; elim n; simpl reduce_n.";
  pp "   intros x; rewrite <- spec_reduce_%i; auto." (size + 1);
  pp " intros n1 Hrec x; case x.";
  pp " unfold to_Z; rewrite make_op_S; auto.";
  pp " exact ZnZ.spec_0.";
  pp " intros x1 y1; case x1; auto.";
  pp " rewrite Hrec.";
  pp " rewrite spec_extendn0_0; auto.";
  pp " Qed.";
  pp "";

pr " Definition reduce n : dom_t n -> t :=";
pr "  match n with";
for i = 0 to size do
pr "   | %i => reduce_%i" i i;
 done;
pr "   | %s(S n) => reduce_n n" (if size=0 then "" else "SizePlus ");
pr "  end%%nat.";
pr "";

pr " Lemma spec_reduce : forall n (x:dom_t n), [reduce n x] = ZnZ.to_Z x.";
pa " Admitted";
pp " Proof.";
for i = 0 to size do
pp "  destruct n. apply spec_reduce_%i." i;
done;
pp "  apply spec_reduce_n.";
pp " Qed.";
pr "";

  pr " (***************************************************************)";
  pr " (*                                                             *)";
  pr " (** *                        Comparison                        *)";
  pr " (*                                                             *)";
  pr " (***************************************************************)";
  pr "";

  for i = 0 to size do
    pr " Definition compare_%i := ZnZ.compare (Ops:=w%i_op)." i i;
    pr " Definition comparen_%i :=" i;
    pr "  compare_mn_1 w%i w%i %s compare_%i (compare_%i %s) compare_%i." i i (pz i) i i (pz i) i
  done;
  pr "";

  pr " Definition comparenm n m wx wy :=";
  pr "    let mn := Max.max n m in";
  pr "    let d := diff n m in";
  pr "    let op := make_op mn in";
  pr "    ZnZ.compare";
  pr "       (castm (diff_r n m) (extend_tr wx (snd d)))";
  pr "       (castm (diff_l n m) (extend_tr wy (fst d))).";
  pr "";

  pr " Local Notation compare_folded :=";
  pr "   (iter _";
  for i = 0 to size do
    pr "      compare_%i" i;
    pr "      (fun n x y => CompOpp (comparen_%i (S n) y x))" i;
    pr "      (fun n => comparen_%i (S n))" i;
  done;
  pr "      comparenm).";
  pr " Definition compare : t -> t -> comparison :=";
  pr "  Eval lazy beta delta [iter] in compare_folded.";
  pr "";

  for i = 0 to size do
    pp " Let spec_compare_%i: forall x y," i;
    pp "  compare_%i x y = Zcompare [%s%i x] [%s%i y]." i c i c i;
    pp " Proof.";
    pp "  unfold compare_%i, to_Z; exact ZnZ.spec_compare." i;
    pp " Qed.";
    pp "";

    pp "  Let spec_comparen_%i:" i;
    pp "  forall (n : nat) (x : word w%i n) (y : w%i)," i i;
    pp "   comparen_%i n x y = Zcompare (eval%in n x) [%s%i y]." i i c i;
    pp "  Proof.";
    pp "  intros n x y.";
    pp "  unfold comparen_%i, to_Z; rewrite spec_double_eval%in." i i;
    pp "  apply spec_compare_mn_1.";
    pp "  exact ZnZ.spec_0.";
    pp "  intros x1; exact (ZnZ.spec_compare %s x1)." (pz i);
    pp "  exact ZnZ.spec_to_Z.";
    pp "  exact ZnZ.spec_compare.";
    pp "  exact ZnZ.spec_compare.";
    pp "  exact ZnZ.spec_to_Z.";
    pp "  Qed.";
    pp "";
  done;

  pr " Theorem spec_compare : forall x y,";
  pr "   compare x y = Zcompare [x] [y].";
  pa " Admitted.";
  pp " Proof.";
  pp "  intros x y. change compare with compare_folded. apply spec_iter; clear x y.";
  for i = 0 to size - 1 do
    pp "  exact spec_compare_%i." i;
    pp "  intros n x y H; rewrite spec_comparen_%i; apply Zcompare_antisym." i;
    pp "  intros n x y H; exact (spec_comparen_%i (S n) x y)." i;
  done;
  pp "  exact spec_compare_%i." size;
  pp "  intros n x y; rewrite spec_comparen_%i; apply Zcompare_antisym." size;
  pp "  intros n; exact (spec_comparen_%i (S n))." size;
  pp "  intros n m x y; unfold comparenm.";
  pp "  rewrite <- (spec_cast_l n m x); rewrite <- (spec_cast_r n m y).";
  pp "  unfold to_Z; apply ZnZ.spec_compare.";
  pp " Qed.";
  pr "";

  pr " (***************************************************************)";
  pr " (*                                                             *)";
  pr " (** *                        Multiplication                    *)";
  pr " (*                                                             *)";
  pr " (***************************************************************)";
  pr "";

  for i = 0 to size do
    pr " Definition w%i_mul_add :=" i;
    pr "   Eval lazy beta delta [w_mul_add] in";
    pr "     @w_mul_add w%i %s ZnZ.succ ZnZ.add_c ZnZ.mul_c." i (pz i)
  done;
  pr "";

  for i = 0 to size do
    pr " Definition w%i_0W := ZnZ.OW (ops:=w%i_op)." i i
  done;
  pr "";

  for i = 0 to size do
    pr " Definition w%i_WW := ZnZ.WW (ops:=w%i_op)." i i
  done;
  pr "";

  for i = 0 to size do
    pr " Definition w%i_mul_add_n1 :=" i;
    pr "  @double_mul_add_n1 w%i %s w%i_WW w%i_0W w%i_mul_add."  i (pz i) i i i
  done;
  pr "";

  for i = 0 to size - 1 do
    pr "  Let to_Z%i n :=" i;
    pr "  match n return word w%i (S n) -> t_ with" i;
    for j = 0 to size - i do
      if (i + j) == size then
        begin
          pr "  | %i%s => fun x => %sn 0 x" j "%nat" c;
          pr "  | %i%s => fun x => %sn 1 x" (j + 1) "%nat" c
        end
      else
        pr "  | %i%s => fun x => %s%i x" j "%nat" c (i + j + 1)
    done;
    pr   "  | _   => fun _ => N0 ZnZ.zero";
    pr "  end.";
    pr "";
  done;


  for i = 0 to size - 1 do
    pp "Theorem to_Z%i_spec:" i;
    pp "  forall n x, Z_of_nat n <= %i -> [to_Z%i n x] = ZnZ.to_Z (Ops:=nmake_op _ w%i_op (S n)) x." (size + 1 - i) i i;
    for j = 1 to size + 2 - i do
      pp " intros n; case n; clear n.";
      pp "   unfold to_Z%i." i;
      pp "   intros x H; rewrite spec_eval%in%i; auto." i j;
    done;
    pp " intros n x.";
    pp " repeat rewrite inj_S; unfold Zsucc; auto with zarith.";
    pp " Qed.";
    pp "";
  done;


  for i = 0 to size do
    pr " Definition w%i_mul n x y :=" i;
    pr " let (w,r) := w%i_mul_add_n1 (S n) x y %s in" i (pz i);
    if i == size then
      begin
        pr " if ZnZ.eq0 w then %sn n r" c;
        pr " else %sn (S n) (WW (extend%i n w) r)." c i;
      end
    else
      begin
        pr " if ZnZ.eq0 w then to_Z%i n r" i;
        pr " else to_Z%i (S n) (WW (extend%i n w) r)." i i;
      end;
    pr "";
  done;

  pr " Definition mulnm n m x y :=";
  pr "    let mn := Max.max n m in";
  pr "    let d := diff n m in";
  pr "    let op := make_op mn in";
  pr "     reduce_n (S mn) (ZnZ.mul_c";
  pr "       (castm (diff_r n m) (extend_tr x (snd d)))";
  pr "       (castm (diff_l n m) (extend_tr y (fst d)))).";
  pr "";

  pr " Local Notation mul_folded :=";
  pr "  (iter0 t_";
  for i = 0 to size do
    pr "    (fun x y => reduce_%i (ZnZ.mul_c x y))" (i + 1);
    pr "    (fun n x y => w%i_mul n y x)" i;
    pr "    w%i_mul" i;
  done;
  pr "    mulnm";
  pr "    (fun _ => N0 ZnZ.zero)";
  pr "    (fun _ => N0 ZnZ.zero)";
  pr "  ).";
  pr " Definition mul : t -> t -> t :=";
  pr "  Eval lazy beta delta [iter0] in mul_folded.";
  pr "";
  for i = 0 to size do
    pp " Let spec_w%i_mul_add: forall x y z," i;
    pp "  let (q,r) := w%i_mul_add x y z in" i;
    pp "  ZnZ.to_Z (Ops:=w%i_op) q * (base (ZnZ.digits w%i_op))  +  ZnZ.to_Z (Ops:=w%i_op) r =" i i i;
    pp "  ZnZ.to_Z (Ops:=w%i_op) x * ZnZ.to_Z (Ops:=w%i_op) y + ZnZ.to_Z (Ops:=w%i_op) z :=" i i i ;
    pp "   spec_mul_add.";
    pp "";
  done;

  for i = 0 to size do
    pp " Theorem spec_w%i_mul_add_n1: forall n x y z," i;
    pp "  let (q,r) := w%i_mul_add_n1 n x y z in" i;
    pp "  ZnZ.to_Z (Ops:=w%i_op) q * (base (ZnZ.digits (nmake_op _ w%i_op n)))  +" i i;
    pp "  ZnZ.to_Z (Ops:=nmake_op _ w%i_op n) r =" i;
    pp "  ZnZ.to_Z (Ops:=nmake_op _ w%i_op n) x * ZnZ.to_Z (Ops:=w%i_op) y +" i i;
    pp "  ZnZ.to_Z (Ops:=w%i_op) z." i;
    pp " Proof.";
    pp " intros n x y z; unfold w%i_mul_add_n1." i;
    pp " rewrite nmake_double.";
    pp " rewrite digits_doubled.";
    pp " change (base (DoubleBase.double_digits (ZnZ.digits w%i_op) n)) with" i;
    pp "        (DoubleBase.double_wB (ZnZ.digits w%i_op) n)." i;
    pp " apply spec_double_mul_add_n1; auto.";
    if i == 0 then pp " exact ZnZ.spec_0.";
    pp " exact ZnZ.spec_WW.";
    pp " exact ZnZ.spec_OW.";
    pp " exact spec_mul_add.";
    pp " Qed.";
    pp "";
  done;

  pp "  Lemma nmake_op_WW: forall ww ww1 n x y,";
  pp "    ZnZ.to_Z (Ops:=nmake_op ww ww1 (S n)) (WW x y) =";
  pp "    ZnZ.to_Z (Ops:=nmake_op ww ww1 n) x * base (ZnZ.digits (nmake_op ww ww1 n)) +";
  pp "    ZnZ.to_Z (Ops:=nmake_op ww ww1 n) y.";
  pp "  Proof.";
  pp "    auto.";
  pp "  Qed.";
  pp "";

  for i = 0 to size do
    pp "  Lemma extend%in_spec: forall n x1," i;
    pp "  ZnZ.to_Z (Ops:=nmake_op _ w%i_op (S n)) (extend%i n x1) =" i i;
    pp "  ZnZ.to_Z (Ops:=w%i_op) x1." i;
    pp "  Proof.";
    pp "    intros n1 x2; rewrite nmake_double.";
    pp "    unfold extend%i." i;
    pp "    rewrite DoubleBase.spec_extend; auto.";
    if i == 0 then
      pp "    intros l; simpl; rewrite ZnZ.spec_0; ring.";
    pp "  Qed.";
    pp "";
  done;

  pp "  Lemma spec_muln:";
  pp "    forall n (x: word _ (S n)) y,";
  pp "     [%sn (S n) (ZnZ.mul_c (Ops:=make_op n) x y)] = [%sn n x] * [%sn n y]." c c c;
  pp "  Proof.";
  pp "    intros n x y; unfold to_Z.";
  pp "    rewrite <- ZnZ.spec_mul_c.";
  pp "    rewrite make_op_S.";
  pp "    case ZnZ.mul_c; auto.";
  pp "  Qed.";
  pr "";

  pr "  Theorem spec_mul: forall x y, [mul x y] = [x] * [y].";
  pa "  Admitted.";
  pp "  Proof.";
  for i = 0 to size do
    pp "    assert(F%i:" i;
    pp "    forall n x y,";
    if i <> size then
      pp0 "    Z_of_nat n <= %i -> "   (size - i);
    pp "    [w%i_mul n x y] = eval%in (S n) x * [%s%i y])." i i c i;
    if i == size then
      pp "    intros n x y; unfold w%i_mul." i
    else
      pp "    intros n x y H; unfold w%i_mul." i;
    pp "    generalize (spec_w%i_mul_add_n1 (S n) x y %s)." i (pz i);
    pp "    case w%i_mul_add_n1; intros x1 y1." i;
    pp "    change (ZnZ.to_Z x) with (eval%in (S n) x)." i;
    pp "    change (ZnZ.to_Z y) with ([%s%i y])." c i;
    if i == 0 then
      pp "    rewrite ZnZ.spec_0; rewrite Zplus_0_r."
    else
      pp "    change (ZnZ.to_Z W0) with 0; rewrite Zplus_0_r.";
    pp "    intros H1; rewrite <- H1; clear H1.";
    pp "    generalize (ZnZ.spec_eq0 x1); case ZnZ.eq0; intros HH.";
    pp "    unfold to_Z in HH; rewrite HH by trivial.";
    if i == size then
      begin
        pp "    rewrite spec_eval%in; unfold eval%in, nmake_op%i; auto." i i i;
        pp "    rewrite spec_eval%in; unfold eval%in, nmake_op%i." i i i
      end
    else
      begin
        pp "    rewrite to_Z%i_spec; auto with zarith." i;
        pp "    rewrite to_Z%i_spec; try (rewrite inj_S; auto with zarith)." i
      end;
    pp "    rewrite nmake_op_WW; rewrite extend%in_spec; auto." i;
  done;
  pp "    intros x y. change mul with mul_folded. apply spec_iter0; clear x y.";
  for i = 0 to size do
    pp "    intros x y; rewrite spec_reduce_%i." (i + 1);
    pp "    unfold to_Z.";
    pp "    generalize (ZnZ.spec_mul_c x y).";
    pp "    intros HH; rewrite <- HH; clear HH; auto.";
    if i == size then
      begin
        pp "    intros n x y; rewrite F%i; auto with zarith." i;
        pp "    intros n x y; rewrite F%i; auto with zarith." i;
      end
    else
      begin
        pp "    intros n x y H; rewrite F%i; auto with zarith." i;
        pp "    intros n x y H; rewrite F%i; auto with zarith." i;
      end;
  done;
  pp "    intros n m x y; unfold mulnm.";
  pp "    rewrite spec_reduce_n.";
  pp "    rewrite <- (spec_cast_l n m x).";
  pp "    rewrite <- (spec_cast_r n m y).";
  pp "    rewrite spec_muln; rewrite spec_cast_l; rewrite spec_cast_r; auto.";
  pp "    intros x; simpl; rewrite ZnZ.spec_0; ring.";
  pp "    intros x; simpl; rewrite ZnZ.spec_0; ring.";
  pp "  Qed.";
  pr "";

  pr " (***************************************************************)";
  pr " (*                                                             *)";
  pr " (** *                        Division                          *)";
  pr " (*                                                             *)";
  pr " (***************************************************************)";
  pr "";

  pp " Let spec_divn1 ww (ww_op: ZnZ.Ops ww) (ww_spec: ZnZ.Specs ww_op) :=";
  pp "   (spec_double_divn1";
  pp "    (ZnZ.zdigits ww_op) ZnZ.zero";
  pp "    ZnZ.WW ZnZ.head0";
  pp "    ZnZ.add_mul_div ZnZ.div21";
  pp "    ZnZ.compare ZnZ.sub ZnZ.to_Z";
  pp "    ZnZ.spec_to_Z";
  pp "    ZnZ.spec_zdigits";
  pp "    ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0";
  pp "    ZnZ.spec_add_mul_div ZnZ.spec_div21";
  pp "    ZnZ.spec_compare ZnZ.spec_sub).";
  pp "";

  for i = 0 to size do
    pr " Definition w%i_divn1 n x y :="  i;
    pr "  let (u, v) :=";
    pr "  double_divn1 (ZnZ.zdigits w%i_op) ZnZ.zero" i;
    pr "    ZnZ.WW ZnZ.head0";
    pr "    ZnZ.add_mul_div ZnZ.div21";
    pr "    ZnZ.compare ZnZ.sub (S n) x y in";
    if i == size then
      pr "   (%sn _ u, %s%i v)." c c i
    else
      pr "   (to_Z%i _ u, %s%i v)." i c i;
    pr "";
  done;

  for i = 0 to size do
    pp " Lemma spec_get_end%i: forall n x y," i;
    pp "    eval%in n x  <= [%s%i y] ->" i c i;
    pp "     [%s%i (DoubleBase.get_low %s n x)] = eval%in n x." c i (pz i) i;
    pp " Proof.";
    pp " intros n x y H.";
    pp " rewrite spec_double_eval%in; unfold to_Z." i;
    pp " apply DoubleBase.spec_get_low.";
    pp " exact ZnZ.spec_0.";
    pp " exact ZnZ.spec_to_Z.";
    pp " apply Zle_lt_trans with [%s%i y]; auto." c i;
    pp "   rewrite <- spec_double_eval%in; auto." i;
    pp " unfold to_Z; case (ZnZ.spec_to_Z y); auto.";
    pp " Qed.";
    pp "";
  done;

  for i = 0 to size do
    pr " Let div_gt%i (x y:w%i) := let (u,v) := ZnZ.div_gt x y in (reduce_%i u, reduce_%i v)." i i i i;
  done;
  pr "";


  pr " Let div_gtnm n m wx wy :=";
  pr "    let mn := Max.max n m in";
  pr "    let d := diff n m in";
  pr "    let op := make_op mn in";
  pr "    let (q, r):= ZnZ.div_gt";
  pr "         (castm (diff_r n m) (extend_tr wx (snd d)))";
  pr "         (castm (diff_l n m) (extend_tr wy (fst d))) in";
  pr "    (reduce_n mn q, reduce_n mn r).";
  pr "";

  pr " Local Notation div_gt_folded :=";
  pr "   (iter _";
  for i = 0 to size do
    pr "      div_gt%i" i;
    pr "      (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
    pr "      w%i_divn1" i;
  done;
  pr "      div_gtnm).";
  pr " Definition div_gt := Eval lazy beta delta [iter] in div_gt_folded.";
  pr "";

  pr " Theorem spec_div_gt: forall x y,";
  pr "       [x] > [y] -> 0 < [y] ->";
  pr "      let (q,r) := div_gt x y in";
  pr "      [q] = [x] / [y] /\\ [r] = [x] mod [y].";
  pa " Admitted.";
  pp " Proof.";
  pp " assert (FO:";
  pp "   forall x y, [x] > [y] -> 0 < [y] ->";
  pp "      let (q,r) := div_gt x y in";
  pp "      [x] = [q] * [y] + [r] /\\ 0 <= [r] < [y]).";
  pp "   intros x y. change div_gt with div_gt_folded. apply spec_iter; clear x y.";
  for i = 0 to size do
    pp "   (* %i *)" i;
    pp "   intros x y H1 H2; unfold div_gt%i." i;
    pp "    generalize (ZnZ.spec_div_gt x y H1 H2); case ZnZ.div_gt.";
    pp "    intros xx yy; repeat rewrite spec_reduce_%i; auto." i;
    if i == size then
     pp "   intros n x y H2 H3; unfold div_gt%i." i
    else
     pp "   intros n x y H1 H2 H3; unfold div_gt%i." i;
    pp "    generalize (ZnZ.spec_div_gt x";
    pp "                (DoubleBase.get_low %s (S n) y))." (pz i);
    pp "    case ZnZ.div_gt.";
    pp "    intros xx yy H4; repeat rewrite spec_reduce_%i." i;
    pp "    generalize (spec_get_end%i (S n) y x); unfold to_Z; intros H5." i;
    pp "    unfold to_Z in H2; rewrite H5 in H4; auto with zarith.";
    if i == size then
     pp "   intros n x y H2 H3."
    else
     pp "   intros n x y H1 H2 H3.";
    pp "    generalize";
    pp "     (spec_divn1 w%i w%i_op w%i_spec (S n) x y H3)." i i i;
    pp "    unfold w%i_divn1; case double_divn1." i;
    pp "    intros xx yy H4.";
    if i == size then
      begin
        pp "    repeat rewrite <- spec_double_eval%in in H4; auto." i;
        pp "    rewrite spec_eval%in; auto." i;
      end
    else
      begin
        pp "    rewrite to_Z%i_spec; auto with zarith." i;
        pp "    repeat rewrite <- spec_double_eval%in in H4; auto." i;
      end;
  done;
  pp "    intros n m x y H1 H2; unfold div_gtnm.";
  pp "    generalize (ZnZ.spec_div_gt";
  pp "                   (castm (diff_r n m)";
  pp "                     (extend_tr x (snd (diff n m))))";
  pp "                   (castm (diff_l n m)";
  pp "                     (extend_tr y (fst (diff n m))))).";
  pp "    case ZnZ.div_gt.";
  pp "    intros xx yy HH.";
  pp "    repeat rewrite spec_reduce_n.";
  pp "    rewrite <- (spec_cast_l n m x).";
  pp "    rewrite <- (spec_cast_r n m y).";
  pp "    unfold to_Z; apply HH.";
  pp "    rewrite <- (spec_cast_l n m x) in H1; auto.";
  pp "    rewrite <- (spec_cast_r n m y) in H1; auto.";
  pp "    rewrite <- (spec_cast_r n m y) in H2; auto.";
  pp "  intros x y H1 H2; generalize (FO x y H1 H2); case div_gt.";
  pp "  intros q r (H3, H4); split.";
  pp "  apply (Zdiv_unique [x] [y] [q] [r]); auto.";
  pp "  rewrite Zmult_comm; auto.";
  pp "  apply (Zmod_unique [x] [y] [q] [r]); auto.";
  pp "  rewrite Zmult_comm; auto.";
  pp "  Qed.";
  pr "";

  pr " (***************************************************************)";
  pr " (*                                                             *)";
  pr " (** *                        Modulo                            *)";
  pr " (*                                                             *)";
  pr " (***************************************************************)";
  pr "";

  for i = 0 to size do
    pr " Definition w%i_modn1 :=" i;
    pr "  double_modn1 (ZnZ.zdigits w%i_op) (ZnZ.zero (Ops:=w%i_op))" i i;
    pr "    ZnZ.head0 ZnZ.add_mul_div ZnZ.div21";
    pr "    ZnZ.compare ZnZ.sub.";
  done;
  pr "";

  pr " Let mod_gtnm n m wx wy :=";
  pr "    let mn := Max.max n m in";
  pr "    let d := diff n m in";
  pr "    let op := make_op mn in";
  pr "    reduce_n mn (ZnZ.modulo_gt";
  pr "         (castm (diff_r n m) (extend_tr wx (snd d)))";
  pr "         (castm (diff_l n m) (extend_tr wy (fst d)))).";
  pr "";

  pr " Local Notation mod_gt_folded :=";
  pr "   (iter _";
  for i = 0 to size do
    pr "      (fun x y => reduce_%i (ZnZ.modulo_gt x y))" i;
    pr "      (fun n x y => reduce_%i (ZnZ.modulo_gt x (DoubleBase.get_low %s (S n) y)))" i (pz i);
    pr "      (fun n x y => reduce_%i (w%i_modn1 (S n) x y))" i i;
  done;
  pr "      mod_gtnm).";
  pr " Definition mod_gt := Eval lazy beta delta[iter] in mod_gt_folded.";
  pr "";

  pp " Let spec_modn1 ww (ww_op: ZnZ.Ops ww) (ww_spec: ZnZ.Specs ww_op) :=";
  pp "   spec_double_modn1";
  pp "    (ZnZ.zdigits ww_op) ZnZ.zero";
  pp "    ZnZ.WW ZnZ.head0";
  pp "    ZnZ.add_mul_div ZnZ.div21";
  pp "    ZnZ.compare ZnZ.sub ZnZ.to_Z";
  pp "    ZnZ.spec_to_Z";
  pp "    ZnZ.spec_zdigits";
  pp "    ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0";
  pp "    ZnZ.spec_add_mul_div ZnZ.spec_div21";
  pp "    ZnZ.spec_compare ZnZ.spec_sub.";
  pp "";

  pr " Theorem spec_mod_gt:";
  pr "   forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y].";
  pa " Admitted.";
  pp " Proof.";
  pp " intros x y. change mod_gt with mod_gt_folded. apply spec_iter; clear x y.";
  for i = 0 to size do
    pp " intros x y H1 H2; rewrite spec_reduce_%i." i;
    pp "   exact (ZnZ.spec_modulo_gt x y H1 H2).";
    if i == size then
      pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
    else
      pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
    pp " rewrite <- (spec_get_end%i (S n) y x); auto with zarith." i;
    pp " unfold to_Z; apply ZnZ.spec_modulo_gt; auto.";
    pp " rewrite <- (spec_get_end%i (S n) y x) in H2; auto with zarith." i;
    pp " rewrite <- (spec_get_end%i (S n) y x) in H3; auto with zarith." i;
    if i == size then
      pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
    else
      pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
    pp " unfold w%i_modn1, to_Z; rewrite spec_double_eval%in." i i;
    pp " apply (spec_modn1 _ _ w%i_spec); auto." i;
  done;
  pp " intros n m x y H1 H2; unfold mod_gtnm.";
  pp "    repeat rewrite spec_reduce_n.";
  pp "    rewrite <- (spec_cast_l n m x).";
  pp "    rewrite <- (spec_cast_r n m y).";
  pp "    unfold to_Z; apply ZnZ.spec_modulo_gt.";
  pp "    rewrite <- (spec_cast_l n m x) in H1; auto.";
  pp "    rewrite <- (spec_cast_r n m y) in H1; auto.";
  pp "    rewrite <- (spec_cast_r n m y) in H2; auto.";
  pp " Qed.";
  pr "";

  pr "End Make.";
  pr "";