aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/BigN/NBigN.v
blob: e933b65780e547d976e6724b99af79fb1ad89b8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

Require Import Nnat.
Require Import NMinus.
Require Export BigN.

(** * [BigN] implements [NAxiomsSig] *)

Module BigNAxiomsMod <: NAxiomsSig.
Import BigN.
Open Local Scope bigN_scope.
Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
Module Export NZAxiomsMod <: NZAxiomsSig.

Definition NZ := bigN.
Definition NZeq n m := (to_Z n = to_Z m).
Definition NZ0 := 0.
Definition NZsucc := succ.
Definition NZpred := pred.
Definition NZplus := add.
Definition NZminus := sub.
Definition NZtimes := mul.

Delimit Scope IntScope with Int.
Bind Scope IntScope with NZ.
Open Local Scope IntScope.
Notation "[ x ]" := (to_Z x).
Notation "x == y"  := (NZeq x y) (at level 70) : IntScope.
Notation "x ~= y" := (~ NZeq x y) (at level 70) : IntScope.
Notation "0" := NZ0 : IntScope.
Notation "'S'" := NZsucc : IntScope.
Notation "'P'" := NZpred : IntScope.
Notation "x + y" := (NZplus x y) : IntScope.
Notation "x - y" := (NZminus x y) : IntScope.
Notation "x * y" := (NZtimes x y) : IntScope.

Theorem NZeq_equiv : equiv NZ NZeq.
Proof.
unfold NZeq; repeat split; repeat red; intros; auto; congruence.
Qed.

Add Relation NZ NZeq
 reflexivity proved by (proj1 NZeq_equiv)
 symmetry proved by (proj2 (proj2 NZeq_equiv))
 transitivity proved by (proj1 (proj2 NZeq_equiv))
 as NZeq_rel.

Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Proof.
unfold NZeq; intros; rewrite 2 spec_succ; f_equal; auto.
Qed.

Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
Proof.
unfold NZeq; intros.
generalize (spec_pos y) (spec_pos x) (spec_eq_bool x 0).
destruct eq_bool; change (to_Z 0) with 0%Z; intros.
rewrite 2 spec_pred0; congruence.
rewrite 2 spec_pred; f_equal; auto; try omega.
Qed.

Add Morphism NZplus with signature NZeq ==> NZeq ==> NZeq as NZplus_wd.
Proof.
unfold NZeq; intros; rewrite 2 spec_add; f_equal; auto.
Qed.

Add Morphism NZminus with signature NZeq ==> NZeq ==> NZeq as NZminus_wd.
Proof.
unfold NZeq; intros x x' Hx y y' Hy.
destruct (Z_lt_le_dec [x] [y]).
rewrite 2 spec_sub0; f_equal; congruence.
rewrite 2 spec_sub; f_equal; congruence.
Qed.

Add Morphism NZtimes with signature NZeq ==> NZeq ==> NZeq as NZtimes_wd.
Proof.
unfold NZeq; intros; rewrite 2 spec_mul; f_equal; auto.
Qed.

Theorem NZpred_succ : forall n : NZ, P (S n) == n.
Proof.
unfold NZeq; intros.
rewrite BigN.spec_pred; rewrite BigN.spec_succ.
omega.
generalize (BigN.spec_pos n); omega.
Qed.

Definition of_Z z := of_N (Zabs_N z).

Section Induction.

Variable A : NZ -> Prop.
Hypothesis A_wd : predicate_wd NZeq A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n : NZ, A n <-> A (S n). 

Add Morphism A with signature NZeq ==> iff as A_morph.
Proof. apply A_wd. Qed.

Let B (z : Z) := A (of_Z z).

Lemma B0 : B 0.
Proof.
exact A0.
Qed.

Lemma BS : forall z : Z, 0 <= z -> B z -> B (z + 1).
Proof.
intros z H1 H2.
unfold B in *. apply -> AS in H2.
setoid_replace (of_Z (z + 1)) with (S (of_Z z)); auto.
unfold NZeq. rewrite spec_succ.
unfold of_Z.
rewrite 2 spec_of_N, 2 Z_of_N_abs, 2 Zabs_eq; auto with zarith.
Qed.

Lemma B_holds : forall z : Z, 0 <= z -> B z.
Proof.
exact (natlike_ind B B0 BS).
Qed.

Theorem NZinduction : forall n : NZ, A n.
Proof.
intro n. setoid_replace n with (of_Z (to_Z n)).
apply B_holds. apply spec_pos.
red; unfold of_Z.
rewrite spec_of_N, Z_of_N_abs, Zabs_eq; auto.
apply spec_pos.
Qed.

End Induction.

Theorem NZplus_0_l : forall n : NZ, 0 + n == n.
Proof.
intros; red; rewrite spec_add; auto with zarith.
Qed.

Theorem NZplus_succ_l : forall n m : NZ, (S n) + m == S (n + m).
Proof.
intros; red; rewrite spec_add, 2 spec_succ, spec_add; auto with zarith.
Qed.

Theorem NZminus_0_r : forall n : NZ, n - 0 == n.
Proof.
intros; red; rewrite spec_sub; change [0] with 0%Z; auto with zarith.
apply spec_pos.
Qed.

Theorem NZminus_succ_r : forall n m : NZ, n - (S m) == P (n - m).
Proof.
intros; red.
destruct (Z_lt_le_dec [n] [S m]) as [H|H].
rewrite spec_sub0; auto.
rewrite spec_succ in H.
rewrite spec_pred0; auto.
destruct (Z_eq_dec [n] [m]).
rewrite spec_sub; auto with zarith.
rewrite spec_sub0; auto with zarith.

rewrite spec_sub, spec_succ in *; auto.
rewrite spec_pred, spec_sub; auto with zarith.
rewrite spec_sub; auto with zarith.
Qed.

Theorem NZtimes_0_l : forall n : NZ, 0 * n == 0.
Proof.
intros; red.
rewrite spec_mul; auto with zarith.
Qed.

Theorem NZtimes_succ_l : forall n m : NZ, (S n) * m == n * m + m.
Proof.
intros; red.
rewrite spec_add, 2 spec_mul, spec_succ; ring.
Qed.

End NZAxiomsMod.

Open Scope bigN_scope.
Open Scope IntScope.

Definition NZlt n m := (compare n m = Lt).
Definition NZle n m := (compare n m <> Gt).
Definition NZmin n m := match compare n m with Gt => m | _ => n end.
Definition NZmax n m := match compare n m with Lt => m | _ => n end.

Infix "<=" := NZle : IntScope.
Infix "<" := NZlt : IntScope.

Lemma spec_compare_alt : forall x y, (x ?= y) = ([x] ?= [y])%Z.
Proof.
 intros; generalize (spec_compare x y).
 destruct (x ?= y); auto.
 intros H; rewrite H; symmetry; apply Zcompare_refl.
Qed.

Lemma spec_lt : forall x y, (x<y) <-> ([x]<[y])%Z.
Proof.
 intros; unfold NZlt, Zlt; rewrite spec_compare_alt; intuition.
Qed.

Lemma spec_le : forall x y, (x<=y) <-> ([x]<=[y])%Z.
Proof.
 intros; unfold NZle, Zle; rewrite spec_compare_alt; intuition.
Qed.

Lemma spec_min : forall x y, [NZmin x y] = Zmin [x] [y].
Proof.
 intros; unfold NZmin, Zmin.
 rewrite spec_compare_alt; destruct Zcompare; auto.
Qed.

Lemma spec_max : forall x y, [NZmax x y] = Zmax [x] [y].
Proof.
 intros; unfold NZmax, Zmax.
 rewrite spec_compare_alt; destruct Zcompare; auto.
Qed.

Add Morphism compare with signature NZeq ==> NZeq ==> (@eq comparison) as compare_wd.
Proof. 
intros x x' Hx y y' Hy.
rewrite 2 spec_compare_alt; rewrite Hx, Hy; intuition.
Qed.

Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
Proof.
intros x x' Hx y y' Hy; unfold NZlt; rewrite Hx, Hy; intuition.
Qed.

Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
Proof.
intros x x' Hx y y' Hy; unfold NZle; rewrite Hx, Hy; intuition.
Qed.

Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
Proof.
intros; red; rewrite 2 spec_min; congruence.
Qed.

Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
Proof.
intros; red; rewrite 2 spec_max; congruence.
Qed.

Theorem NZlt_eq_cases : forall n m : NZ, n <= m <-> n < m \/ n == m.
Proof.
intros.
unfold NZeq; rewrite spec_lt, spec_le; omega.
Qed.

Theorem NZlt_irrefl : forall n : NZ, ~ n < n.
Proof.
intros; rewrite spec_lt; auto with zarith.
Qed.

Theorem NZlt_succ_r : forall n m : NZ, n < (NZsucc m) <-> n <= m.
Proof.
intros; rewrite spec_lt, spec_le, spec_succ; omega.
Qed.

Theorem NZmin_l : forall n m : NZ, n <= m -> NZmin n m == n.
Proof.
intros n m; unfold NZeq; rewrite spec_le, spec_min.
generalize (Zmin_spec [n] [m]); omega.
Qed.

Theorem NZmin_r : forall n m : NZ, m <= n -> NZmin n m == m.
Proof.
intros n m; unfold NZeq; rewrite spec_le, spec_min.
generalize (Zmin_spec [n] [m]); omega.
Qed.

Theorem NZmax_l : forall n m : NZ, m <= n -> NZmax n m == n.
Proof.
intros n m; unfold NZeq; rewrite spec_le, spec_max.
generalize (Zmax_spec [n] [m]); omega.
Qed.

Theorem NZmax_r : forall n m : NZ, n <= m -> NZmax n m == m.
Proof.
intros n m; unfold NZeq; rewrite spec_le, spec_max.
generalize (Zmax_spec [n] [m]); omega.
Qed.

End NZOrdAxiomsMod.

Theorem pred_0 : P 0 == 0.
Proof.
reflexivity.
Qed.

Definition to_N n := Zabs_N (to_Z n).

Definition recursion (A : Type) (a : A) (f : NZ -> A -> A) (n : NZ) :=
  Nrect (fun _ => A) a (fun n a => f (of_N n) a) (to_N n).
Implicit Arguments recursion [A].

Theorem recursion_wd :
forall (A : Type) (Aeq : relation A),
  forall a a' : A, Aeq a a' ->
    forall f f' : NZ -> A -> A, fun2_eq NZeq Aeq Aeq f f' ->
      forall x x' : NZ, x == x' ->
        Aeq (recursion a f x) (recursion a' f' x').
Proof.
unfold fun2_wd, NZeq, fun2_eq.
intros A Aeq a a' Eaa' f f' Eff' x x' Exx'.
unfold recursion.
unfold to_N.
rewrite <- Exx'; clear x' Exx'.
replace (Zabs_N [x]) with (N_of_nat (Zabs_nat [x])).
induction (Zabs_nat [x]).
simpl; auto.
rewrite N_of_S, 2 Nrect_step; auto.
destruct [x]; simpl; auto.
change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
Qed.

Theorem recursion_0 :
  forall (A : Type) (a : A) (f : NZ -> A -> A), recursion a f 0 = a.
Proof.
intros A a f; unfold recursion; now rewrite Nrect_base.
Qed.

Theorem recursion_succ :
  forall (A : Type) (Aeq : relation A) (a : A) (f : NZ -> A -> A),
    Aeq a a -> fun2_wd NZeq Aeq Aeq f ->
      forall n : NZ, Aeq (recursion a f (S n)) (f n (recursion a f n)).
Proof.
unfold NZeq, recursion, fun2_wd; intros A Aeq a f EAaa f_wd n.
replace (to_N (S n)) with (Nsucc (to_N n)).
rewrite Nrect_step.
apply f_wd; auto.
unfold to_N.
rewrite spec_of_N, Z_of_N_abs, Zabs_eq; auto.
 apply spec_pos.

fold (recursion a f n).
apply recursion_wd; auto.
red; auto.
red; auto.
unfold to_N.

rewrite spec_succ.
change ([n]+1)%Z with (Zsucc [n]).
apply Z_of_N_eq_rev.
rewrite Z_of_N_succ.
rewrite 2 Z_of_N_abs.
rewrite 2 Zabs_eq; auto.
generalize (spec_pos n); auto with zarith.
apply spec_pos; auto.
Qed.

End BigNAxiomsMod.

Module Export BigNMinusPropMod := NMinusPropFunct BigNAxiomsMod.