aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Axioms/NPlus.v
blob: 29b65e3f4d4953e3a80e0ac5c897a4070d9e2130 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
Require Export NAxioms.

Module Type PlusSignature.
Declare Module Export NatModule : NatSignature.

Parameter Inline plus : N -> N -> N.

Notation "x + y" := (plus x y).

Add Morphism plus with signature E ==> E ==> E as plus_wd.

Axiom plus_0_n : forall n, 0 + n == n.
Axiom plus_Sn_m : forall n m, (S n) + m == S (n + m).

End PlusSignature.

Module PlusProperties (Export PlusModule : PlusSignature).

Module Export NatPropertiesModule := NatProperties NatModule.

Lemma plus_0_r : forall n, n + 0 == n.
Proof.
induct n.
now rewrite plus_0_n.
intros x IH.
rewrite plus_Sn_m.
now rewrite IH.
Qed.

Lemma plus_0_l : forall n, 0 + n == n.
Proof.
intro n.
now rewrite plus_0_n.
Qed.

Lemma plus_n_Sm : forall n m, n + S m == S (n + m).
Proof.
intros n m; generalize n; clear n. induct n.
now repeat rewrite plus_0_n.
intros x IH.
repeat rewrite plus_Sn_m; now rewrite IH.
Qed.

Lemma plus_Sn_m : forall n m, S n + m == S (n + m).
Proof.
intros.
now rewrite plus_Sn_m.
Qed.

Lemma plus_comm : forall n m, n + m == m + n.
Proof.
intros n m; generalize n; clear n. induct n.
rewrite plus_0_l; now rewrite plus_0_r.
intros x IH.
rewrite plus_Sn_m; rewrite plus_n_Sm; now rewrite IH.
Qed.

Lemma plus_assoc : forall n m p, n + (m + p) == (n + m) + p.
Proof.
intros n m p; generalize n; clear n. induct n.
now repeat rewrite plus_0_l.
intros x IH.
repeat rewrite plus_Sn_m; now rewrite IH.
Qed.

Lemma plus_1_l : forall n, 1 + n == S n.
Proof.
intro n; rewrite plus_Sn_m; now rewrite plus_0_n.
Qed.

Lemma plus_1_r : forall n, n + 1 == S n.
Proof.
intro n; rewrite plus_comm; apply plus_1_l.
Qed.

Lemma plus_cancel_l : forall n m p, p + n == p + m -> n == m.
Proof.
induct p.
do 2 rewrite plus_0_n; trivial.
intros p IH H. do 2 rewrite plus_Sn_m in H. apply S_inj in H. now apply IH.
Qed.

Lemma plus_cancel_r : forall n m p, n + p == m + p -> n == m.
Proof.
intros n m p.
rewrite plus_comm.
set (k := p + n); rewrite plus_comm; unfold k.
apply plus_cancel_l.
Qed.

Lemma plus_eq_0 : forall n m, n + m == 0 -> n == 0 /\ m == 0.
Proof.
intros n m; induct n.
rewrite plus_0_n; now split.
intros n IH H. rewrite plus_Sn_m in H.
absurd_hyp H; [|assumption]. unfold not; apply S_0.
Qed.

Lemma succ_plus_discr : forall n m, m # S (n + m).
Proof.
intro n; induct m.
intro H. apply S_0 with (n := (n + 0)). now apply (proj2 (proj2 E_equiv)). (* symmetry *)
intros m IH H. apply S_inj in H. rewrite plus_n_Sm in H.
unfold not in IH; now apply IH.
Qed.

Lemma n_SSn : forall n, n # S (S n).
Proof.
intro n. pose proof (succ_plus_discr 1 n) as H.
rewrite plus_Sn_m in H; now rewrite plus_0_n in H.
Qed.

Lemma n_SSSn : forall n, n # S (S (S n)).
Proof.
intro n. pose proof (succ_plus_discr (S (S 0)) n) as H.
do 2 rewrite plus_Sn_m in H. now rewrite plus_0_n in H.
Qed.

Lemma n_SSSSn : forall n, n # S (S (S (S n))).
Proof.
intro n. pose proof (succ_plus_discr (S (S (S 0))) n) as H.
do 3 rewrite plus_Sn_m in H. now rewrite plus_0_n in H.
Qed.

(* The following section is devoted to defining a function that, given
two numbers whose some equals 1, decides which number equals 1. The
main property of the function is also proved .*)

(* First prove a theorem with ordinary disjunction *)
Theorem plus_eq_1 :
  forall m n, m + n == 1 ->  (m == 0 /\ n == 1) \/ (m == 1 /\ n == 0).
induct m.
intros n H; rewrite plus_0_n in H; left; now split.
intros n IH m H; rewrite plus_Sn_m in H; apply S_inj in H;
apply plus_eq_0 in H; destruct H as [H1 H2];
now right; split; [apply S_wd |].
Qed.

Definition plus_eq_1_dec (m n : N) : bool := recursion true (fun _ _ => false) m.

Lemma plus_eq_1_dec_step_wd : fun2_wd E eq_bool eq_bool (fun _ _ => false).
Proof.
unfold fun2_wd; intros. unfold eq_bool. reflexivity.
Qed.

Add Morphism plus_eq_1_dec with signature E ==> E ==> eq_bool as plus_eq_1_dec_wd.
Proof.
unfold fun2_wd, plus_eq_1_dec.
intros x x' Exx' y y' Eyy'.
apply recursion_wd with (EA := eq_bool).
unfold eq_bool; reflexivity.
unfold eq_fun2; unfold eq_bool; reflexivity.
assumption.
Qed.

Lemma plus_eq_1_dec_0 : forall n, plus_eq_1_dec 0 n = true.
Proof.
intro n. unfold plus_eq_1_dec.
now apply recursion_0.
Qed.

Lemma plus_eq_1_dec_S : forall m n, plus_eq_1_dec (S n) m = false.
Proof.
intros n m. unfold plus_eq_1_dec.
now rewrite (recursion_S eq_bool);
[| unfold eq_bool | apply plus_eq_1_dec_step_wd].
Qed.

Theorem plus_eq_1_dec_correct :
  forall m n, m + n == 1 ->
    (plus_eq_1_dec m n = true  -> m == 0 /\ n == 1) /\
    (plus_eq_1_dec m n = false -> m == 1 /\ n == 0).
Proof.
intros m n; induct m.
intro H. rewrite plus_0_l in H.
rewrite plus_eq_1_dec_0.
split; [intros; now split | intro H1; discriminate H1].
intros m _ H. rewrite plus_eq_1_dec_S.
split; [intro H1; discriminate | intros _ ].
rewrite plus_Sn_m in H. apply S_inj in H.
apply plus_eq_0 in H; split; [apply S_wd | ]; tauto.
Qed.

End PlusProperties.