aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Axioms/NOrder.v
blob: 1b631ce646dc1063715cf13348ce246a4b3a5a54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
Require Export NAxioms.

Module Type NOrderSignature.
Declare Module Export NatModule : NatSignature.
Open Local Scope NatScope.

Parameter Inline lt : N -> N -> bool.
Parameter Inline le : N -> N -> bool.

Notation "x < y" := (lt x y) : NatScope.
Notation "x <= y" := (le x y) : NatScope.
Notation "x > y" := (lt y x) (only parsing) : NatScope.
Notation "x >= y" := (le y x) (only parsing) : NatScope.

Add Morphism lt with signature E ==> E ==> eq_bool as lt_wd.
Add Morphism le with signature E ==> E ==> eq_bool as le_wd.

Axiom le_lt : forall x y, x <= y <-> x < y \/ x == y.
Axiom lt_0 : forall x, ~ (x < 0).
Axiom lt_S : forall x y, x < S y <-> x <= y.
End NOrderSignature.

Module NOrderProperties (Import NOrderModule : NOrderSignature).
Module Export NatPropertiesModule := NatProperties NatModule.
Open Local Scope NatScope.

Ltac le_intro1 := rewrite le_lt; left.
Ltac le_intro2 := rewrite le_lt; right.
Ltac le_elim H := rewrite le_lt in H; destruct H as [H | H].

Lemma lt_stepl : forall x y z, x < y -> x == z -> z < y.
Proof.
intros x y z H1 H2; now rewrite <- H2.
Qed.

Lemma lt_stepr : forall x y z, x < y -> y == z -> x < z.
Proof.
intros x y z H1 H2; now rewrite <- H2.
Qed.

Lemma le_stepl : forall x y z, x <= y -> x == z -> z <= y.
Proof.
intros x y z H1 H2; now rewrite <- H2.
Qed.

Lemma le_stepr : forall x y z, x <= y -> y == z -> x <= z.
Proof.
intros x y z H1 H2; now rewrite <- H2.
Qed.

Declare Left  Step lt_stepl.
Declare Right Step lt_stepr.
Declare Left  Step le_stepl.
Declare Right Step le_stepr.

Theorem le_refl : forall n, n <= n.
Proof.
intro; now le_intro2.
Qed.

Theorem le_0_r : forall n, n <= 0 -> n == 0.
Proof.
intros n H; le_elim H; [false_hyp H lt_0 | assumption].
Qed.

Theorem lt_n_Sn : forall n, n < S n.
Proof.
intro n. apply <- lt_S. now le_intro2.
Qed.

Theorem lt_closed_S : forall n m, n < m -> n < S m.
Proof.
intros. apply <- lt_S. now le_intro1.
Qed.

Theorem lt_S_lt : forall n m, S n < m -> n < m.
Proof.
intro n; induct m.
intro H; absurd_hyp H; [apply lt_0 | assumption].
intros x IH H.
apply -> lt_S in H. le_elim H.
apply IH in H; now apply lt_closed_S.
rewrite <- H.
apply lt_closed_S; apply lt_n_Sn.
Qed.

Theorem lt_0_Sn : forall n, 0 < S n.
Proof.
induct n; [apply lt_n_Sn | intros x H; now apply lt_closed_S].
Qed.

Theorem lt_trans : forall n m p, n < m -> m < p -> n < p.
Proof.
intros n m p; induct m.
intros H1 H2; absurd_hyp H1; [ apply lt_0 | assumption].
intros x IH H1 H2.
apply -> lt_S in H1. le_elim H1.
apply IH; [assumption | apply lt_S_lt; assumption].
rewrite H1; apply lt_S_lt; assumption.
Qed.

Theorem le_trans : forall n m p, n <= m -> m <= p -> n <= p.
Proof.
intros n m p H1 H2; le_elim H1.
le_elim H2. le_intro1; now apply lt_trans with (m := m).
le_intro1; now rewrite <- H2. now rewrite H1.
Qed.

Theorem le_lt_trans : forall n m p, n <= m -> m < p -> n < p.
Proof.
intros n m p H1 H2; le_elim H1.
now apply lt_trans with (m := m). now rewrite H1.
Qed.

Theorem lt_le_trans : forall n m p, n < m -> m <= p -> n < p.
Proof.
intros n m p H1 H2; le_elim H2.
now apply lt_trans with (m := m). now rewrite <- H2.
Qed.

Theorem lt_positive : forall n m, n < m -> 0 < m.
Proof.
intros n m; induct n.
trivial.
intros x IH H.
apply lt_trans with (m := S x); [apply lt_0_Sn | apply H].
Qed.

Theorem lt_resp_S : forall n m, S n < S m <-> n < m.
Proof.
intros n m; split.
intro H; apply -> lt_S in H; le_elim H.
intros; apply lt_S_lt; assumption.
rewrite <- H; apply lt_n_Sn.
induct m.
intro H; false_hyp H lt_0.
intros x IH H.
apply -> lt_S in H; le_elim H.
apply lt_trans with (m := S x).
apply IH; assumption.
apply lt_n_Sn.
rewrite H; apply lt_n_Sn.
Qed.

Theorem le_resp_S : forall n m, S n <= S m <-> n <= m.
Proof.
intros n m; do 2 rewrite le_lt.
pose proof (S_wd n m); pose proof (S_inj n m); pose proof (lt_resp_S n m); tauto.
Qed.

Theorem lt_le_S_l : forall n m, n < m <-> S n <= m.
Proof.
intros n m; nondep_induct m.
split; intro H; [false_hyp H lt_0 |
le_elim H; [false_hyp H lt_0 | false_hyp H S_0]].
intros m; split; intro H.
apply -> lt_S in H. le_elim H; [le_intro1; now apply <- lt_resp_S | le_intro2; now apply S_wd].
le_elim H; [apply lt_trans with (m := S n); [apply lt_n_Sn | assumption] |
apply S_inj in H; rewrite H; apply lt_n_Sn].
Qed.

Theorem le_S_0 : forall n, ~ (S n <= 0).
Proof.
intros n H; apply <- lt_le_S_l in H; false_hyp H lt_0.
Qed.

Theorem le_S_l_le : forall n m, S n <= m -> n <= m.
Proof.
intros; le_intro1; now apply <- lt_le_S_l.
Qed.

Theorem lt_irr : forall n, ~ (n < n).
Proof.
induct n.
apply lt_0.
intro x; unfold not; intros H1 H2; apply H1; now apply -> lt_resp_S.
Qed.

Theorem le_antisym : forall n m, n <= m -> m <= n -> n == m.
Proof.
intros n m H1 H2; le_elim H1; le_elim H2.
elimtype False; apply lt_irr with (n := n); now apply lt_trans with (m := m).
now symmetry. assumption. assumption.
Qed.

Theorem neq_0_lt : forall n, 0 # n -> 0 < n.
Proof.
induct n.
intro H; now elim H.
intros; apply lt_0_Sn.
Qed.

Theorem lt_0_neq : forall n, 0 < n -> 0 # n.
Proof.
induct n.
intro H; absurd_hyp H; [apply lt_0 | assumption].
unfold not; intros; now apply S_0 with (n := n).
Qed.

Theorem lt_asymm : forall n m, ~ (n < m /\ m < n).
Proof.
unfold not; intros n m [H1 H2].
now apply (lt_trans n m n) in H1; [false_hyp H1 lt_irr|].
Qed.

Theorem le_0_l: forall n, 0 <= n.
Proof.
induct n; [now le_intro2 | intros; le_intro1; apply lt_0_Sn].
Qed.

Theorem lt_trichotomy : forall n m, n < m \/ n == m \/ m < n.
Proof.
intros n m; induct n.
assert (H : 0 <= m); [apply le_0_l | apply -> le_lt in H; tauto].
intros n IH. destruct IH as [H | H].
assert (H1 : S n <= m); [now apply -> lt_le_S_l | apply -> le_lt in H1; tauto].
destruct H as [H | H].
right; right; rewrite H; apply lt_n_Sn.
right; right; apply lt_trans with (m := n); [assumption | apply lt_n_Sn].
Qed.

(** The law of excluded middle for < *)
Theorem lt_em : forall n m, n < m \/ ~ n < m.
Proof.
intros n m; pose proof (lt_trichotomy n m) as H.
destruct H as [H1 | H1]; [now left |].
destruct H1 as [H2 | H2].
right; rewrite H2; apply lt_irr.
right; intro; apply (lt_asymm n m); split; assumption.
Qed.

Theorem not_lt : forall n m, ~ (n < m) <-> n >= m.
Proof.
intros n m; split; intro H.
destruct (lt_trichotomy n m) as [H1 | [H1 | H1]].
false_hyp H1 H. rewrite H1; apply le_refl. now le_intro1.
intro; now apply (le_lt_trans m n m) in H; [false_hyp H lt_irr |].
Qed.

Theorem lt_or_ge : forall n m, n < m \/ n >= m.
Proof.
intros n m; rewrite <- not_lt; apply lt_em.
Qed.

Theorem nat_total_order : forall n m, n # m -> n < m \/ m < n.
Proof.
intros n m H; destruct (lt_trichotomy n m) as [A | A]; [now left |].
now destruct A as [A | A]; [elim H | right].
Qed.

Theorem lt_exists_pred : forall n m, m < n -> exists p, n == S p.
Proof.
nondep_induct n.
intros m H; false_hyp H lt_0.
intros n _ _; now exists n.
Qed.

(** Elimination principles for < and <= *)

Section Induction1.

Variable Q : N -> Prop.
Hypothesis Q_wd : pred_wd E Q.
Variable n : N.

Add Morphism Q with signature E ==> iff as Q_morph1.
Proof Q_wd.

Theorem le_ind :
  Q n ->
  (forall m, n <= m -> Q m -> Q (S m)) ->
  forall m, n <= m -> Q m.
Proof.
intros Base Step. induct m.
intro H. apply le_0_r in H. now rewrite <- H.
intros m IH H. le_elim H.
apply -> lt_S in H. now apply Step; [| apply IH].
now rewrite <- H.
Qed.

Theorem lt_ind :
  Q (S n) ->
  (forall m, n < m -> Q m -> Q (S m)) ->
   forall m, n < m -> Q m.
Proof.
intros Base Step. induct m.
intro H; false_hyp H lt_0.
intros m IH H. apply -> lt_S in H. le_elim H.
now apply Step; [| apply IH]. now rewrite <- H.
Qed.

End Induction1.

Section Induction2.

(* Variable Q : relation N. -- does not work !!! *)
Variable Q : N -> N -> Prop.
Hypothesis Q_wd : rel_wd E Q.

Add Morphism Q with signature E ==> E ==> iff as Q_morph2.
Proof Q_wd.

Theorem le_ind_rel :
   (forall m, Q 0 m) ->
   (forall n m, n <= m -> Q n m -> Q (S n) (S m)) ->
   forall n m, n <= m -> Q n m.
Proof.
intros Base Step; induct n.
intros; apply Base.
intros n IH m; nondep_induct m.
intro H; false_hyp H le_S_0.
intros m H. apply -> le_resp_S in H. now apply Step; [| apply IH].
Qed.

Theorem lt_ind_rel :
   (forall m, Q 0 (S m)) ->
   (forall n m, n < m -> Q n m -> Q (S n) (S m)) ->
   forall n m, n < m -> Q n m.
Proof.
intros Base Step; induct n.
intros m H. apply lt_exists_pred in H; destruct H as [m' H].
rewrite H; apply Base.
intros n IH m; nondep_induct m.
intro H; false_hyp H lt_0.
intros m H. apply -> lt_resp_S in H. now apply Step; [| apply IH].
Qed.

End Induction2.

End NOrderProperties.