aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Abstract/NBase.v
blob: 9705d05bab2dbf784cb39940b9a9003716d3a4e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
Require Export NAxioms.
Require Import NZTimesOrder. (* The last property functor on NZ, which subsumes all others *)

Module NBasePropFunct (Import NAxiomsMod : NAxiomsSig).
Open Local Scope NatIntScope.

(* We call the last property functor on NZ, which includes all the previous
ones, to get all properties of NZ at once. This way we will include them
only one time. *)

Module Export NZTimesOrderMod := NZTimesOrderPropFunct NZOrdAxiomsMod.

(* Here we probably need to re-prove all axioms declared in NAxioms.v to
make sure that the definitions like N, S and plus are unfolded in them,
since unfolding is done only inside a functor. In fact, we'll do it in the
files that prove the corresponding properties. In those files, we will also
rename properties proved in NZ files by removing NZ from their names. In
this way, one only has to consult, for example, NPlus.v to see all
available properties for plus (i.e., one does not have to go to NAxioms.v
and NZPlus.v). *)

Theorem pred_succ : forall n : N, P (S n) == n.
Proof NZpred_succ.

Theorem pred_0 : P 0 == 0.
Proof pred_0.

Theorem neq_symm : forall n m : N, n ~= m -> m ~= n.
Proof NZneq_symm.

Theorem succ_inj : forall n1 n2 : N, S n1 == S n2 -> n1 == n2.
Proof NZsucc_inj.

Theorem succ_inj_wd : forall n1 n2 : N, S n1 == S n2 <-> n1 == n2.
Proof NZsucc_inj_wd.

Theorem succ_inj_wd_neg : forall n m : N, S n ~= S m <-> n ~= m.
Proof NZsucc_inj_wd_neg.

(* Decidability of equality was proved only in NZOrder, but since it
does not mention order, we'll put it here *)

Theorem eq_em : forall n m : N, n == m \/ n ~= m.
Proof NZeq_em.

(* Now we prove that the successor of a number is not zero by defining a
function (by recursion) that maps 0 to false and the successor to true *)

Definition if_zero (A : Set) (a b : A) (n : N) : A :=
  recursion a (fun _ _ => b) n.

Add Morphism if_zero with signature @eq ==> @eq ==> E ==> @eq as if_zero_wd.
Proof.
intros; unfold if_zero. apply recursion_wd with (EA := (@eq A)).
reflexivity. unfold eq_fun2; now intros. assumption.
Qed.

Theorem if_zero_0 : forall (A : Set) (a b : A), if_zero A a b 0 = a.
Proof.
unfold if_zero; intros; now rewrite recursion_0.
Qed.

Theorem if_zero_succ : forall (A : Set) (a b : A) (n : N), if_zero A a b (S n) = b.
Proof.
intros; unfold if_zero.
now rewrite (@recursion_succ A (@eq A)); [| | unfold fun2_wd; now intros].
Qed.

Implicit Arguments if_zero [A].

Theorem neq_succ_0 : forall n : N, ~ S n == 0.
Proof.
intros n H.
assert (true = false); [| discriminate].
replace true with (if_zero false true (S n)) by apply if_zero_succ.
pattern false at 2; replace false with (if_zero false true 0) by apply if_zero_0.
now rewrite H.
Qed.

(* Next, we show that all numbers are nonnegative and recover regular induction
from the bidirectional induction on NZ *)

Theorem le_0_l : forall n : N, 0 <= n.
Proof.
NZinduct n.
le_equal.
intro n; split.
apply NZle_le_succ.
intro H; apply -> NZle_succ_le_or_eq_succ in H; destruct H as [H | H].
assumption.
symmetry in H; false_hyp H neq_succ_0.
Qed.

Theorem induction :
  forall A : N -> Prop, predicate_wd E A ->
    A 0 -> (forall n : N, A n -> A (S n)) -> forall n : N, A n.
Proof.
intros A A_wd A0 AS n; apply NZright_induction with 0; try assumption.
intros; auto; apply le_0_l. apply le_0_l.
Qed.

(* The theorems NZinduction, NZcentral_induction and the tactic NZinduct
refer to bidirectional induction, which is not useful on natural
numbers. Therefore, we define a new induction tactic for natural numbers.
We do not have to call "Declare Left Step" and "Declare Right Step"
commands again, since the data for stepl and stepr tactics is inherited
from N. *)

Ltac induct n := induction_maker n ltac:(apply induction).

Theorem case_analysis :
  forall A : N -> Prop, predicate_wd E A ->
    A 0 -> (forall n : N, A (S n)) -> forall n : N, A n.
Proof.
intros; apply induction; auto.
Qed.

Ltac cases n := induction_maker n ltac:(apply case_analysis).

Theorem neq_0 : ~ forall n, n == 0.
Proof.
intro H; apply (neq_succ_0 0). apply H.
Qed.

Theorem neq_0_succ : forall n, n ~= 0 <-> exists m, n == S m.
Proof.
cases n. split; intro H;
[now elim H | destruct H as [m H]; symmetry in H; false_hyp H neq_succ_0].
intro n; split; intro H; [now exists n | apply neq_succ_0].
Qed.

Theorem zero_or_succ : forall n, n == 0 \/ exists m, n == S m.
Proof.
cases n.
now left.
intro n; right; now exists n.
Qed.

Theorem eq_pred_0 : forall n : N, P n == 0 <-> n == 0 \/ n == 1.
Proof.
cases n.
rewrite pred_0. setoid_replace (0 == 1) with False using relation iff. tauto.
split; intro H; [symmetry in H; false_hyp H neq_succ_0 | elim H].
intro n. rewrite pred_succ. rewrite_false (S n == 0) neq_succ_0.
rewrite succ_inj_wd. tauto.
Qed.

Theorem succ_pred : forall n : N, n ~= 0 -> S (P n) == n.
Proof.
cases n.
intro H; elimtype False; now apply H.
intros; now rewrite pred_succ.
Qed.

Theorem pred_inj : forall n m : N, n ~= 0 -> m ~= 0 -> P n == P m -> n == m.
Proof.
intros n m; cases n.
intros H; elimtype False; now apply H.
intros n _; cases m.
intros H; elimtype False; now apply H.
intros m H2 H3. do 2 rewrite pred_succ in H3. now rewrite H3.
Qed.

(* The following induction principle is useful for reasoning about, e.g.,
Fibonacci numbers *)

Section PairInduction.

Variable A : N -> Prop.
Hypothesis A_wd : predicate_wd E A.

Add Morphism A with signature E ==> iff as A_morph.
Proof.
exact A_wd.
Qed.

Theorem pair_induction :
  A 0 -> A 1 ->
    (forall n, A n -> A (S n) -> A (S (S n))) -> forall n, A n.
Proof.
intros until 3.
assert (D : forall n, A n /\ A (S n)); [ |intro n; exact (proj1 (D n))].
induct n; [ | intros n [IH1 IH2]]; auto.
Qed.

End PairInduction.

(*Ltac pair_induct n := induction_maker n ltac:(apply pair_induction).*)

(* The following is useful for reasoning about, e.g., Ackermann function *)
Section TwoDimensionalInduction.

Variable R : N -> N -> Prop.
Hypothesis R_wd : rel_wd E E R.

Add Morphism R with signature E ==> E ==> iff as R_morph.
Proof.
exact R_wd.
Qed.

Theorem two_dim_induction :
   R 0 0 ->
   (forall n m, R n m -> R n (S m)) ->
   (forall n, (forall m, R n m) -> R (S n) 0) -> forall n m, R n m.
Proof.
intros H1 H2 H3. induct n.
induct m.
exact H1. exact (H2 0).
intros n IH. induct m.
now apply H3. exact (H2 (S n)).
Qed.

End TwoDimensionalInduction.

(*Ltac two_dim_induct n m :=
  try intros until n;
  try intros until m;
  pattern n, m; apply two_dim_induction; clear n m;
  [solve_rel_wd | | | ].*)

Section DoubleInduction.

Variable R : N -> N -> Prop.
Hypothesis R_wd : rel_wd E E R.

Add Morphism R with signature E ==> E ==> iff as R_morph1.
Proof.
exact R_wd.
Qed.

Theorem double_induction :
   (forall m : N, R 0 m) ->
   (forall n : N, R (S n) 0) ->
   (forall n m : N, R n m -> R (S n) (S m)) -> forall n m : N, R n m.
Proof.
intros H1 H2 H3; induct n; auto.
intros n H; cases m; auto.
Qed.

End DoubleInduction.

Ltac double_induct n m :=
  try intros until n;
  try intros until m;
  pattern n, m; apply double_induction; clear n m;
  [solve_rel_wd | | | ].

End NBasePropFunct.