aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/NatInt/NZTimesOrder.v
blob: 4b4516069e39b3a613976fbf2ecb80e5a9487ca2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i i*)

Require Import NZAxioms.
Require Import NZOrder.

Module NZTimesOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
Module Export NZOrderPropMod := NZOrderPropFunct NZOrdAxiomsMod.
Open Local Scope NatIntScope.

(** Addition and order *)

Theorem NZplus_lt_mono_l : forall n m p : NZ, n < m <-> p + n < p + m.
Proof.
intros n m p; NZinduct p.
now do 2 rewrite NZplus_0_l.
intro p. do 2 rewrite NZplus_succ_l. now rewrite <- NZsucc_lt_mono.
Qed.

Theorem NZplus_lt_mono_r : forall n m p : NZ, n < m <-> n + p < m + p.
Proof.
intros n m p.
rewrite (NZplus_comm n p); rewrite (NZplus_comm m p); apply NZplus_lt_mono_l.
Qed.

Theorem NZplus_lt_mono : forall n m p q : NZ, n < m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply NZlt_trans with (m + p);
[now apply -> NZplus_lt_mono_r | now apply -> NZplus_lt_mono_l].
Qed.

Theorem NZplus_le_mono_l : forall n m p : NZ, n <= m <-> p + n <= p + m.
Proof.
intros n m p; NZinduct p.
now do 2 rewrite NZplus_0_l.
intro p. do 2 rewrite NZplus_succ_l. now rewrite <- NZsucc_le_mono.
Qed.

Theorem NZplus_le_mono_r : forall n m p : NZ, n <= m <-> n + p <= m + p.
Proof.
intros n m p.
rewrite (NZplus_comm n p); rewrite (NZplus_comm m p); apply NZplus_le_mono_l.
Qed.

Theorem NZplus_le_mono : forall n m p q : NZ, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q H1 H2.
apply NZle_trans with (m + p);
[now apply -> NZplus_le_mono_r | now apply -> NZplus_le_mono_l].
Qed.

Theorem NZplus_lt_le_mono : forall n m p q : NZ, n < m -> p <= q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply NZlt_le_trans with (m + p);
[now apply -> NZplus_lt_mono_r | now apply -> NZplus_le_mono_l].
Qed.

Theorem NZplus_le_lt_mono : forall n m p q : NZ, n <= m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply NZle_lt_trans with (m + p);
[now apply -> NZplus_le_mono_r | now apply -> NZplus_lt_mono_l].
Qed.

Theorem NZplus_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (NZplus_0_l 0). now apply NZplus_lt_mono.
Qed.

Theorem NZplus_pos_nonneg : forall n m : NZ, 0 < n -> 0 <= m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (NZplus_0_l 0). now apply NZplus_lt_le_mono.
Qed.

Theorem NZplus_nonneg_pos : forall n m : NZ, 0 <= n -> 0 < m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (NZplus_0_l 0). now apply NZplus_le_lt_mono.
Qed.

Theorem NZplus_nonneg_nonneg : forall n m : NZ, 0 <= n -> 0 <= m -> 0 <= n + m.
Proof.
intros n m H1 H2. rewrite <- (NZplus_0_l 0). now apply NZplus_le_mono.
Qed.

Theorem NZlt_plus_pos_l : forall n m : NZ, 0 < n -> m < n + m.
Proof.
intros n m H. apply -> (NZplus_lt_mono_r 0 n m) in H.
now rewrite NZplus_0_l in H.
Qed.

Theorem NZlt_plus_pos_r : forall n m : NZ, 0 < n -> m < m + n.
Proof.
intros; rewrite NZplus_comm; now apply NZlt_plus_pos_l.
Qed.

Theorem NZle_lt_plus_lt : forall n m p q : NZ, n <= m -> p + m < q + n -> p < q.
Proof.
intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
pose proof (NZplus_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H2.
false_hyp H3 H2.
Qed.

Theorem NZlt_le_plus_lt : forall n m p q : NZ, n < m -> p + m <= q + n -> p < q.
Proof.
intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
pose proof (NZplus_le_lt_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
false_hyp H2 H3.
Qed.

Theorem NZle_le_plus_le : forall n m p q : NZ, n <= m -> p + m <= q + n -> p <= q.
Proof.
intros n m p q H1 H2. destruct (NZle_gt_cases p q); [assumption |].
pose proof (NZplus_lt_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
false_hyp H2 H3.
Qed.

Theorem NZplus_lt_cases : forall n m p q : NZ, n + m < p + q -> n < p \/ m < q.
Proof.
intros n m p q H;
destruct (NZle_gt_cases p n) as [H1 | H1].
destruct (NZle_gt_cases q m) as [H2 | H2].
pose proof (NZplus_le_mono p n q m H1 H2) as H3. apply -> NZle_ngt in H3.
false_hyp H H3.
now right. now left.
Qed.

Theorem NZplus_le_cases : forall n m p q : NZ, n + m <= p + q -> n <= p \/ m <= q.
Proof.
intros n m p q H.
destruct (NZle_gt_cases n p) as [H1 | H1]. now left.
destruct (NZle_gt_cases m q) as [H2 | H2]. now right.
assert (H3 : p + q < n + m) by now apply NZplus_lt_mono.
apply -> NZle_ngt in H. false_hyp H3 H.
Qed.

Theorem NZplus_neg_cases : forall n m : NZ, n + m < 0 -> n < 0 \/ m < 0.
Proof.
intros n m H; apply NZplus_lt_cases; now rewrite NZplus_0_l.
Qed.

Theorem NZplus_pos_cases : forall n m : NZ, 0 < n + m -> 0 < n \/ 0 < m.
Proof.
intros n m H; apply NZplus_lt_cases; now rewrite NZplus_0_l.
Qed.

Theorem NZplus_nonpos_cases : forall n m : NZ, n + m <= 0 -> n <= 0 \/ m <= 0.
Proof.
intros n m H; apply NZplus_le_cases; now rewrite NZplus_0_l.
Qed.

Theorem NZplus_nonneg_cases : forall n m : NZ, 0 <= n + m -> 0 <= n \/ 0 <= m.
Proof.
intros n m H; apply NZplus_le_cases; now rewrite NZplus_0_l.
Qed.

(** Multiplication and order *)

Theorem NZtimes_lt_pred :
  forall p q n m : NZ, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
Proof.
intros p q n m H. rewrite <- H. do 2 rewrite NZtimes_succ_l.
rewrite <- (NZplus_assoc (p * n) n m).
rewrite <- (NZplus_assoc (p * m) m n).
rewrite (NZplus_comm n m). now rewrite <- NZplus_lt_mono_r.
Qed.

Theorem NZtimes_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).
Proof.
NZord_induct p.
intros n m H; false_hyp H NZlt_irrefl.
intros p H IH n m H1. do 2 rewrite NZtimes_succ_l.
le_elim H. assert (LR : forall n m : NZ, n < m -> p * n + n < p * m + m).
intros n1 m1 H2. apply NZplus_lt_mono; [now apply -> IH | assumption].
split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
apply <- NZle_ngt in H3. le_elim H3.
apply NZlt_asymm in H2. apply H2. now apply LR.
rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
rewrite <- H; do 2 rewrite NZtimes_0_l; now do 2 rewrite NZplus_0_l.
intros p H1 _ n m H2. apply NZlt_asymm in H1. false_hyp H2 H1.
Qed.

Theorem NZtimes_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).
Proof.
intros p n m.
rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p). now apply NZtimes_lt_mono_pos_l.
Qed.

Theorem NZtimes_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).
Proof.
NZord_induct p.
intros n m H; false_hyp H NZlt_irrefl.
intros p H1 _ n m H2. apply NZlt_succ_l in H2. apply <- NZnle_gt in H2. false_hyp H1 H2.
intros p H IH n m H1. apply <- NZle_succ_l in H.
le_elim H. assert (LR : forall n m : NZ, n < m -> p * m < p * n).
intros n1 m1 H2. apply (NZle_lt_plus_lt n1 m1).
now apply NZlt_le_incl. do 2 rewrite <- NZtimes_succ_l. now apply -> IH.
split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
apply <- NZle_ngt in H3. le_elim H3.
apply NZlt_asymm in H2. apply H2. now apply LR.
rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
rewrite (NZtimes_lt_pred p (S p)); [reflexivity |].
rewrite H; do 2 rewrite NZtimes_0_l; now do 2 rewrite NZplus_0_l.
Qed.

Theorem NZtimes_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).
Proof.
intros p n m.
rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p). now apply NZtimes_lt_mono_neg_l.
Qed.

Theorem NZtimes_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.
Proof.
intros n m p H1 H2. le_elim H1.
le_elim H2. apply NZlt_le_incl. now apply -> NZtimes_lt_mono_pos_l.
apply NZeq_le_incl; now rewrite H2.
apply NZeq_le_incl; rewrite <- H1; now do 2 rewrite NZtimes_0_l.
Qed.

Theorem NZtimes_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.
Proof.
intros n m p H1 H2. le_elim H1.
le_elim H2. apply NZlt_le_incl. now apply -> NZtimes_lt_mono_neg_l.
apply NZeq_le_incl; now rewrite H2.
apply NZeq_le_incl; rewrite H1; now do 2 rewrite NZtimes_0_l.
Qed.

Theorem NZtimes_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.
Proof.
intros n m p H1 H2; rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
now apply NZtimes_le_mono_nonneg_l.
Qed.

Theorem NZtimes_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.
Proof.
intros n m p H1 H2; rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
now apply NZtimes_le_mono_nonpos_l.
Qed.

Theorem NZtimes_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).
Proof.
intros n m p H; split; intro H1.
destruct (NZlt_trichotomy p 0) as [H2 | [H2 | H2]].
apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
assert (H4 : p * m < p * n); [now apply -> NZtimes_lt_mono_neg_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
assert (H4 : p * n < p * m); [now apply -> NZtimes_lt_mono_neg_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
false_hyp H2 H.
apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
assert (H4 : p * n < p * m); [now apply -> NZtimes_lt_mono_pos_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
assert (H4 : p * m < p * n); [now apply -> NZtimes_lt_mono_pos_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
now rewrite H1.
Qed.

Theorem NZtimes_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).
Proof.
intros n m p. rewrite (NZtimes_comm n p), (NZtimes_comm m p); apply NZtimes_cancel_l.
Qed.

Theorem NZtimes_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).
Proof.
intros n m p H; do 2 rewrite NZlt_eq_cases.
rewrite (NZtimes_lt_mono_pos_l p n m); [assumption |].
now rewrite -> (NZtimes_cancel_l n m p);
[intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl |].
Qed.

Theorem NZtimes_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).
Proof.
intros n m p. rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
apply NZtimes_le_mono_pos_l.
Qed.

Theorem NZtimes_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).
Proof.
intros n m p H; do 2 rewrite NZlt_eq_cases.
rewrite (NZtimes_lt_mono_neg_l p n m); [assumption |].
rewrite -> (NZtimes_cancel_l m n p);
[intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl |].
now setoid_replace (n == m) with (m == n) using relation iff by (split; now intro).
Qed.

Theorem NZtimes_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).
Proof.
intros n m p. rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
apply NZtimes_le_mono_neg_l.
Qed.

Theorem NZtimes_lt_mono :
  forall n m p q : NZ, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
Proof.
intros n m p q H1 H2 H3 H4.
apply NZle_lt_trans with (m * p).
apply NZtimes_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
apply -> NZtimes_lt_mono_pos_l; [assumption | now apply NZle_lt_trans with n].
Qed.

(* There are still many variants of the theorem above. One can assume 0 < n
or 0 < p or n <= m or p <= q. *)

Theorem NZtimes_le_mono :
  forall n m p q : NZ, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
Proof.
intros n m p q H1 H2 H3 H4.
le_elim H2; le_elim H4.
apply NZlt_le_incl; now apply NZtimes_lt_mono.
rewrite <- H4; apply NZtimes_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
rewrite <- H2; apply NZtimes_le_mono_nonneg_l; [assumption | now apply NZlt_le_incl].
rewrite H2; rewrite H4; now apply NZeq_le_incl.
Qed.

Theorem NZtimes_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.
Proof.
intros n m H1 H2.
rewrite <- (NZtimes_0_l m). now apply -> NZtimes_lt_mono_pos_r.
Qed.

Theorem NZtimes_nonneg_nonneg : forall n m : NZ, 0 <= n -> 0 <= m -> 0 <= n * m.
Proof.
intros n m H1 H2.
rewrite <- (NZtimes_0_l m). now apply NZtimes_le_mono_nonneg_r.
Qed.

Theorem NZtimes_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.
Proof.
intros n m H1 H2.
rewrite <- (NZtimes_0_l m). now apply -> NZtimes_lt_mono_neg_r.
Qed.

Theorem NZtimes_nonpos_nonpos : forall n m : NZ, n <= 0 -> m <= 0 -> 0 <= n * m.
Proof.
intros n m H1 H2.
rewrite <- (NZtimes_0_l m). now apply NZtimes_le_mono_nonpos_r.
Qed.

Theorem NZtimes_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.
Proof.
intros n m H1 H2.
rewrite <- (NZtimes_0_l m). now apply -> NZtimes_lt_mono_neg_r.
Qed.

Theorem NZtimes_nonneg_nonpos : forall n m : NZ, 0 <= n -> m <= 0 -> n * m <= 0.
Proof.
intros n m H1 H2.
rewrite <- (NZtimes_0_l m). now apply NZtimes_le_mono_nonpos_r.
Qed.

Theorem NZtimes_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.
Proof.
intros; rewrite NZtimes_comm; now apply NZtimes_pos_neg.
Qed.

Theorem NZtimes_nonpos_nonneg : forall n m : NZ, n <= 0 -> 0 <= m -> n * m <= 0.
Proof.
intros; rewrite NZtimes_comm; now apply NZtimes_nonneg_nonpos.
Qed.

Theorem NZlt_1_times_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.
Proof.
intros n m H1 H2. apply -> (NZtimes_lt_mono_pos_r m) in H1.
rewrite NZtimes_1_l in H1. now apply NZlt_1_l with m.
assumption.
Qed.

Theorem NZeq_times_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.
Proof.
intros n m; split.
intro H; destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
try (now right); try (now left).
elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZtimes_neg_neg |].
elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZtimes_neg_pos |].
elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZtimes_pos_neg |].
elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZtimes_pos_pos |].
intros [H | H]. now rewrite H, NZtimes_0_l. now rewrite H, NZtimes_0_r.
Qed.

Theorem NZneq_times_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
Proof.
intros n m; split; intro H.
intro H1; apply -> NZeq_times_0 in H1. tauto.
split; intro H1; rewrite H1 in H;
(rewrite NZtimes_0_l in H || rewrite NZtimes_0_r in H); now apply H.
Qed.

Theorem NZeq_times_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.
Proof.
intros n m H1 H2. apply -> NZeq_times_0 in H1. destruct H1 as [H1 | H1].
assumption. false_hyp H1 H2.
Qed.

Theorem NZeq_times_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.
Proof.
intros n m H1 H2; apply -> NZeq_times_0 in H1. destruct H1 as [H1 | H1].
false_hyp H1 H2. assumption.
Qed.

Theorem NZtimes_pos : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
[| rewrite H1 in H; rewrite NZtimes_0_l in H; false_hyp H NZlt_irrefl |];
(destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
[| rewrite H2 in H; rewrite NZtimes_0_r in H; false_hyp H NZlt_irrefl |]);
try (left; now split); try (right; now split).
assert (H3 : n * m < 0) by now apply NZtimes_neg_pos.
elimtype False; now apply (NZlt_asymm (n * m) 0).
assert (H3 : n * m < 0) by now apply NZtimes_pos_neg.
elimtype False; now apply (NZlt_asymm (n * m) 0).
now apply NZtimes_pos_pos. now apply NZtimes_neg_neg.
Qed.

Theorem NZtimes_neg :
  forall n m : NZ, n * m < 0 <-> (n < 0 /\ m > 0) \/ (n > 0 /\ m < 0).
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
[| rewrite H1 in H; rewrite NZtimes_0_l in H; false_hyp H NZlt_irrefl |];
(destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
[| rewrite H2 in H; rewrite NZtimes_0_r in H; false_hyp H NZlt_irrefl |]);
try (left; now split); try (right; now split).
assert (H3 : n * m > 0) by now apply NZtimes_neg_neg.
elimtype False; now apply (NZlt_asymm (n * m) 0).
assert (H3 : n * m > 0) by now apply NZtimes_pos_pos.
elimtype False; now apply (NZlt_asymm (n * m) 0).
now apply NZtimes_neg_pos. now apply NZtimes_pos_neg.
Qed.

Theorem NZtimes_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
Proof.
intros n m H. apply <- NZle_succ_l in H.
apply -> (NZtimes_le_mono_pos_l (S n) m (1 + 1)) in H.
repeat rewrite NZtimes_plus_distr_r in *; repeat rewrite NZtimes_1_l in *.
repeat rewrite NZplus_succ_r in *. repeat rewrite NZplus_succ_l in *. rewrite NZplus_0_l.
now apply -> NZle_succ_l.
apply NZplus_pos_pos; now apply NZlt_succ_diag_r.
Qed.

End NZTimesOrderPropFunct.