aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/SpecViaZ/ZSig.v
blob: 4e4593983153df8d8715164b03c1e3cc68894008 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

(*i $Id$ i*)

Require Import ZArith Znumtheory.

Open Scope Z_scope.

(** * ZSig *)

(** Interface of a rich structure about integers.
    Specifications are written via translation to Z.
*)

Module Type ZType.

 Parameter t : Type.

 Parameter to_Z : t -> Z.
 Notation "[ x ]" := (to_Z x).

 Definition eq x y := ([x] = [y]).

 Parameter of_Z : Z -> t.
 Parameter spec_of_Z: forall x, to_Z (of_Z x) = x.

 Parameter zero : t.
 Parameter one : t.
 Parameter minus_one : t.

 Parameter spec_0: [zero] = 0.
 Parameter spec_1: [one] = 1.
 Parameter spec_m1: [minus_one] = -1.

 Parameter compare : t -> t -> comparison.

 Parameter spec_compare: forall x y,
   match compare x y with
     | Eq => [x] = [y]
     | Lt => [x] < [y]
     | Gt => [x] > [y]
   end.

 Definition lt n m := compare n m = Lt.
 Definition le n m := compare n m <> Gt.
 Definition min n m := match compare n m with Gt => m | _ => n end.
 Definition max n m := match compare n m with Lt => m | _ => n end.

 Parameter eq_bool : t -> t -> bool.

 Parameter spec_eq_bool: forall x y,
    if eq_bool x y then [x] = [y] else [x] <> [y].
 
 Parameter succ : t -> t.

 Parameter spec_succ: forall n, [succ n] = [n] + 1.

 Parameter add  : t -> t -> t.

 Parameter spec_add: forall x y, [add x y] = [x] + [y].

 Parameter pred : t -> t.

 Parameter spec_pred: forall x, [pred x] = [x] - 1.

 Parameter sub : t -> t -> t.

 Parameter spec_sub: forall x y, [sub x y] = [x] - [y].

 Parameter opp : t -> t.

 Parameter spec_opp: forall x, [opp x] = - [x].

 Parameter mul : t -> t -> t.

 Parameter spec_mul: forall x y, [mul x y] = [x] * [y].

 Parameter square : t -> t.

 Parameter spec_square: forall x, [square x] = [x] *  [x].

 Parameter power_pos : t -> positive -> t.

 Parameter spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.

 Parameter sqrt : t -> t.

 Parameter spec_sqrt: forall x, 0 <= [x] -> 
   [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.

 Parameter div_eucl : t -> t -> t * t.

 Parameter spec_div_eucl: forall x y, [y] <> 0 ->
   let (q,r) := div_eucl x y in ([q], [r]) = Zdiv_eucl [x] [y].
 
 Parameter div : t -> t -> t.

 Parameter spec_div: forall x y, [y] <> 0 -> [div x y] = [x] / [y].

 Parameter modulo : t -> t -> t.

 Parameter spec_modulo: forall x y, [y] <> 0 -> 
   [modulo x y] = [x] mod [y].

 Parameter gcd : t -> t -> t.

 Parameter spec_gcd: forall a b, [gcd a b] = Zgcd (to_Z a) (to_Z b).

End ZType.