1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
Require Import ZAxioms ZProperties BinInt Zcompare Zorder ZArith_dec
Zbool Zeven Zsqrt_def Zpow_def Zlog_def Zgcd_def Zdiv_def Zdigits_def.
Local Open Scope Z_scope.
(** Bi-directional induction for Z. *)
Theorem Z_bi_induction :
forall A : Z -> Prop, Proper (eq ==> iff) A ->
A 0 -> (forall n : Z, A n <-> A (Zsucc n)) -> forall n : Z, A n.
Proof.
intros A A_wd A0 AS n; apply Zind; clear n.
assumption.
intros; rewrite <- Zsucc_succ'. now apply -> AS.
intros n H. rewrite <- Zpred_pred'. rewrite Zsucc_pred in H. now apply <- AS.
Qed.
(** * Implementation of [ZAxiomsMiniSig] by [BinInt.Z] *)
Module Z
<: ZAxiomsSig <: UsualOrderedTypeFull <: TotalOrder
<: UsualDecidableTypeFull.
Definition t := Z.
Definition eqb := Zeq_bool.
Definition zero := 0.
Definition one := 1.
Definition two := 2.
Definition succ := Zsucc.
Definition pred := Zpred.
Definition add := Zplus.
Definition sub := Zminus.
Definition mul := Zmult.
Definition lt := Zlt.
Definition le := Zle.
Definition compare := Zcompare.
Definition min := Zmin.
Definition max := Zmax.
Definition opp := Zopp.
Definition abs := Zabs.
Definition sgn := Zsgn.
Definition eq_dec := Z_eq_dec.
Definition bi_induction := Z_bi_induction.
(** Basic operations. *)
Definition eq_equiv : Equivalence (@eq Z) := eq_equivalence.
Local Obligation Tactic := simpl_relation.
Program Instance succ_wd : Proper (eq==>eq) Zsucc.
Program Instance pred_wd : Proper (eq==>eq) Zpred.
Program Instance add_wd : Proper (eq==>eq==>eq) Zplus.
Program Instance sub_wd : Proper (eq==>eq==>eq) Zminus.
Program Instance mul_wd : Proper (eq==>eq==>eq) Zmult.
Definition pred_succ n := eq_sym (Zpred_succ n).
Definition add_0_l := Zplus_0_l.
Definition add_succ_l := Zplus_succ_l.
Definition sub_0_r := Zminus_0_r.
Definition sub_succ_r := Zminus_succ_r.
Definition mul_0_l := Zmult_0_l.
Definition mul_succ_l := Zmult_succ_l.
Lemma one_succ : 1 = Zsucc 0.
Proof.
reflexivity.
Qed.
Lemma two_succ : 2 = Zsucc 1.
Proof.
reflexivity.
Qed.
(** Boolean Equality *)
Definition eqb_eq x y := iff_sym (Zeq_is_eq_bool x y).
(** Order *)
Program Instance lt_wd : Proper (eq==>eq==>iff) Zlt.
Definition lt_eq_cases := Zle_lt_or_eq_iff.
Definition lt_irrefl := Zlt_irrefl.
Definition lt_succ_r := Zlt_succ_r.
(** Comparison *)
Definition compare_spec := Zcompare_spec.
(** Minimum and maximum *)
Definition min_l := Zmin_l.
Definition min_r := Zmin_r.
Definition max_l := Zmax_l.
Definition max_r := Zmax_r.
(** Properties specific to integers, not natural numbers. *)
Program Instance opp_wd : Proper (eq==>eq) Zopp.
Definition succ_pred n := eq_sym (Zsucc_pred n).
Definition opp_0 := Zopp_0.
Definition opp_succ := Zopp_succ.
(** Absolute value and sign *)
Definition abs_eq := Zabs_eq.
Definition abs_neq := Zabs_non_eq.
Definition sgn_null := Zsgn_0.
Definition sgn_pos := Zsgn_1.
Definition sgn_neg := Zsgn_m1.
(** Even and Odd *)
Definition Even n := exists m, n=2*m.
Definition Odd n := exists m, n=2*m+1.
Lemma even_spec n : Zeven_bool n = true <-> Even n.
Proof. rewrite Zeven_bool_iff. exact (Zeven_ex_iff n). Qed.
Lemma odd_spec n : Zodd_bool n = true <-> Odd n.
Proof. rewrite Zodd_bool_iff. exact (Zodd_ex_iff n). Qed.
Definition even := Zeven_bool.
Definition odd := Zodd_bool.
(** Power *)
Program Instance pow_wd : Proper (eq==>eq==>eq) Zpower.
Definition pow_0_r := Zpower_0_r.
Definition pow_succ_r := Zpower_succ_r.
Definition pow_neg_r := Zpower_neg_r.
Definition pow := Zpower.
(** Sqrt *)
(** NB : we use a new Zsqrt defined in Zsqrt_def, the previous
module Zsqrt.v is now Zsqrt_compat.v *)
Definition sqrt_spec := Zsqrt_spec.
Definition sqrt_neg := Zsqrt_neg.
Definition sqrt := Zsqrt.
(** Log2 *)
Definition log2_spec := Zlog2_spec.
Definition log2_nonpos := Zlog2_nonpos.
Definition log2 := Zlog2.
(** Gcd *)
Definition gcd_divide_l := Zgcd_divide_l.
Definition gcd_divide_r := Zgcd_divide_r.
Definition gcd_greatest := Zgcd_greatest.
Definition gcd_nonneg := Zgcd_nonneg.
Definition divide := Zdivide'.
Definition gcd := Zgcd.
(** Div / Mod / Quot / Rem *)
Program Instance div_wd : Proper (eq==>eq==>eq) Zdiv.
Program Instance mod_wd : Proper (eq==>eq==>eq) Zmod.
Program Instance quot_wd : Proper (eq==>eq==>eq) Zquot.
Program Instance rem_wd : Proper (eq==>eq==>eq) Zrem.
Definition div_mod := Z_div_mod_eq_full.
Definition mod_pos_bound := Zmod_pos_bound.
Definition mod_neg_bound := Zmod_neg_bound.
Definition mod_bound_pos := fun a b (_:0<=a) => Zmod_pos_bound a b.
Definition div := Zdiv.
Definition modulo := Zmod.
Definition quot_rem := fun a b (_:b<>0) => Z_quot_rem_eq a b.
Definition rem_bound_pos := Zrem_bound.
Definition rem_opp_l := fun a b (_:b<>0) => Zrem_opp_l a b.
Definition rem_opp_r := fun a b (_:b<>0) => Zrem_opp_r a b.
Definition quot := Zquot.
Definition rem := Zrem.
(** Bitwise operations *)
Definition testbit_spec := Ztestbit_spec.
Definition testbit_neg_r := Ztestbit_neg_r.
Definition shiftr_spec := Zshiftr_spec.
Definition shiftl_spec_low := Zshiftl_spec_low.
Definition shiftl_spec_high := Zshiftl_spec_high.
Definition land_spec := Zand_spec.
Definition lor_spec := Zor_spec.
Definition ldiff_spec := Zdiff_spec.
Definition lxor_spec := Zxor_spec.
Definition div2_spec := Zdiv2'_spec.
Definition testbit := Ztestbit.
Definition shiftl := Zshiftl.
Definition shiftr := Zshiftr.
Definition land := Zand.
Definition lor := Zor.
Definition ldiff := Zdiff.
Definition lxor := Zxor.
Definition div2 := Zdiv2'.
(** We define [eq] only here to avoid refering to this [eq] above. *)
Definition eq := (@eq Z).
(** Now the generic properties. *)
Include ZProp
<+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
End Z.
(** * An [order] tactic for integers *)
Ltac z_order := Z.order.
(** Note that [z_order] is domain-agnostic: it will not prove
[1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)
Section TestOrder.
Let test : forall x y, x<=y -> y<=x -> x=y.
Proof.
z_order.
Qed.
End TestOrder.
(** Z forms a ring *)
(*Lemma Zring : ring_theory 0 1 NZadd NZmul NZsub Zopp NZeq.
Proof.
constructor.
exact Zadd_0_l.
exact Zadd_comm.
exact Zadd_assoc.
exact Zmul_1_l.
exact Zmul_comm.
exact Zmul_assoc.
exact Zmul_add_distr_r.
intros; now rewrite Zadd_opp_minus.
exact Zadd_opp_r.
Qed.
Add Ring ZR : Zring.*)
|