aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Binary/ZBinary.v
blob: 85596562e3f8548a4c5cfaaa48f52a9d95938d79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Require Import ZTimesOrder.
Require Import ZArith.

Open Local Scope Z_scope.

Module ZBinAxiomsMod <: ZAxiomsSig.
Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
Module Export NZAxiomsMod <: NZAxiomsSig.

Definition NZ := Z.
Definition NZeq := (@eq Z).
Definition NZ0 := 0.
Definition NZsucc := Zsucc'.
Definition NZpred := Zpred'.
Definition NZplus := Zplus.
Definition NZminus := Zminus.
Definition NZtimes := Zmult.

Theorem NZE_equiv : equiv Z NZeq.
Proof.
exact (@eq_equiv Z).
Qed.

Add Relation Z NZeq
 reflexivity proved by (proj1 NZE_equiv)
 symmetry proved by (proj2 (proj2 NZE_equiv))
 transitivity proved by (proj1 (proj2 NZE_equiv))
as NZE_rel.

Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Proof.
congruence.
Qed.

Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
Proof.
congruence.
Qed.

Add Morphism NZplus with signature NZeq ==> NZeq ==> NZeq as NZplus_wd.
Proof.
congruence.
Qed.

Add Morphism NZminus with signature NZeq ==> NZeq ==> NZeq as NZminus_wd.
Proof.
congruence.
Qed.

Add Morphism NZtimes with signature NZeq ==> NZeq ==> NZeq as NZtimes_wd.
Proof.
congruence.
Qed.

Theorem NZpred_succ : forall n : Z, NZpred (NZsucc n) = n.
Proof.
exact Zpred'_succ'.
Qed.

Theorem NZinduction :
  forall A : Z -> Prop, predicate_wd NZeq A ->
    A 0 -> (forall n : Z, A n <-> A (NZsucc n)) -> forall n : Z, A n.
Proof.
intros A A_wd A0 AS n; apply Zind; clear n.
assumption.
intros; now apply -> AS.
intros n H. rewrite <- (Zsucc'_pred' n) in H. now apply <- AS.
Qed.

Theorem NZplus_0_l : forall n : Z, 0 + n = n.
Proof.
exact Zplus_0_l.
Qed.

Theorem NZplus_succ_l : forall n m : Z, (NZsucc n) + m = NZsucc (n + m).
Proof.
intros; do 2 rewrite <- Zsucc_succ'; apply Zplus_succ_l.
Qed.

Theorem NZminus_0_r : forall n : Z, n - 0 = n.
Proof.
exact Zminus_0_r.
Qed.

Theorem NZminus_succ_r : forall n m : Z, n - (NZsucc m) = NZpred (n - m).
Proof.
intros; rewrite <- Zsucc_succ'; rewrite <- Zpred_pred';
apply Zminus_succ_r.
Qed.

Theorem NZtimes_0_r : forall n : Z, n * 0 = 0.
Proof.
exact Zmult_0_r.
Qed.

Theorem NZtimes_succ_r : forall n m : Z, n * (NZsucc m) = n * m + n.
Proof.
intros; rewrite <- Zsucc_succ'; apply Zmult_succ_r.
Qed.

End NZAxiomsMod.

Definition NZlt := Zlt.
Definition NZle := Zle.

Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
Proof.
unfold NZeq. intros n1 n2 H1 m1 m2 H2; rewrite H1; now rewrite H2.
Qed.

Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
Proof.
unfold NZeq. intros n1 n2 H1 m1 m2 H2; rewrite H1; now rewrite H2.
Qed.

Theorem NZle_lt_or_eq : forall n m : Z, n <= m <-> n < m \/ n = m.
Proof.
intros n m; split. apply Zle_lt_or_eq.
intro H; destruct H as [H | H]. now apply Zlt_le_weak. rewrite H; apply Zle_refl.
Qed.

Theorem NZlt_irrefl : forall n : Z, ~ n < n.
Proof.
exact Zlt_irrefl.
Qed.

Theorem NZlt_succ_le : forall n m : Z, n < (NZsucc m) <-> n <= m.
Proof.
intros; unfold NZsucc; rewrite <- Zsucc_succ'; split;
[apply Zlt_succ_le | apply Zle_lt_succ].
Qed.

End NZOrdAxiomsMod.

Definition Zopp (x : Z) :=
match x with
| Z0 => Z0
| Zpos x => Zneg x
| Zneg x => Zpos x
end.

Add Morphism Zopp with signature NZeq ==> NZeq as Zopp_wd.
Proof.
congruence.
Qed.

Theorem Zsucc_pred : forall n : Z, NZsucc (NZpred n) = n.
Proof.
exact Zsucc'_pred'.
Qed.

Theorem Zopp_0 : - 0 = 0.
Proof.
reflexivity.
Qed.

Theorem Zopp_succ : forall n : Z, - (NZsucc n) = NZpred (- n).
Proof.
intro; rewrite <- Zsucc_succ'; rewrite <- Zpred_pred'. apply Zopp_succ.
Qed.

End ZBinAxiomsMod.

Module Export ZBinTimesOrderPropMod := ZTimesOrderPropFunct ZBinAxiomsMod.




(*
Theorem E_equiv_e : forall x y : Z, E x y <-> e x y.
Proof.
intros x y; unfold E, e, Zeq_bool; split; intro H.
rewrite H; now rewrite Zcompare_refl.
rewrite eq_true_unfold_pos in H.
assert (H1 : (x ?= y) = Eq).
case_eq (x ?= y); intro H1; rewrite H1 in H; simpl in H;
[reflexivity | discriminate H | discriminate H].
now apply Zcompare_Eq_eq.
Qed.
*)