1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
Require Import ZArith Zquot.
Require Import BigNumPrelude.
Require Import NSig.
Require Import ZSig.
Open Scope Z_scope.
(** * ZMake
A generic transformation from a structure of natural numbers
[NSig.NType] to a structure of integers [ZSig.ZType].
*)
Module Make (N:NType) <: ZType.
Inductive t_ :=
| Pos : N.t -> t_
| Neg : N.t -> t_.
Definition t := t_.
Definition zero := Pos N.zero.
Definition one := Pos N.one.
Definition two := Pos N.two.
Definition minus_one := Neg N.one.
Definition of_Z x :=
match x with
| Zpos x => Pos (N.of_N (Npos x))
| Z0 => zero
| Zneg x => Neg (N.of_N (Npos x))
end.
Definition to_Z x :=
match x with
| Pos nx => N.to_Z nx
| Neg nx => Zopp (N.to_Z nx)
end.
Theorem spec_of_Z: forall x, to_Z (of_Z x) = x.
Proof.
intros x; case x; unfold to_Z, of_Z, zero.
exact N.spec_0.
intros; rewrite N.spec_of_N; auto.
intros; rewrite N.spec_of_N; auto.
Qed.
Definition eq x y := (to_Z x = to_Z y).
Theorem spec_0: to_Z zero = 0.
exact N.spec_0.
Qed.
Theorem spec_1: to_Z one = 1.
exact N.spec_1.
Qed.
Theorem spec_2: to_Z two = 2.
exact N.spec_2.
Qed.
Theorem spec_m1: to_Z minus_one = -1.
simpl; rewrite N.spec_1; auto.
Qed.
Definition compare x y :=
match x, y with
| Pos nx, Pos ny => N.compare nx ny
| Pos nx, Neg ny =>
match N.compare nx N.zero with
| Gt => Gt
| _ => N.compare ny N.zero
end
| Neg nx, Pos ny =>
match N.compare N.zero nx with
| Lt => Lt
| _ => N.compare N.zero ny
end
| Neg nx, Neg ny => N.compare ny nx
end.
Theorem spec_compare :
forall x y, compare x y = Zcompare (to_Z x) (to_Z y).
Proof.
unfold compare, to_Z.
destruct x as [x|x], y as [y|y];
rewrite ?N.spec_compare, ?N.spec_0, <-?Zcompare_opp; auto;
assert (Hx:=N.spec_pos x); assert (Hy:=N.spec_pos y);
set (X:=N.to_Z x) in *; set (Y:=N.to_Z y) in *; clearbody X Y.
destruct (Zcompare_spec X 0) as [EQ|LT|GT].
rewrite EQ. rewrite <- Zopp_0 at 2. apply Zcompare_opp.
exfalso. omega.
symmetry. change (X > -Y). omega.
destruct (Zcompare_spec 0 X) as [EQ|LT|GT].
rewrite <- EQ. rewrite Zopp_0; auto.
symmetry. change (-X < Y). omega.
exfalso. omega.
Qed.
Definition eq_bool x y :=
match compare x y with
| Eq => true
| _ => false
end.
Theorem spec_eq_bool:
forall x y, eq_bool x y = Zeq_bool (to_Z x) (to_Z y).
Proof.
unfold eq_bool, Zeq_bool; intros; rewrite spec_compare; reflexivity.
Qed.
Definition lt n m := to_Z n < to_Z m.
Definition le n m := to_Z n <= to_Z m.
Definition min n m := match compare n m with Gt => m | _ => n end.
Definition max n m := match compare n m with Lt => m | _ => n end.
Theorem spec_min : forall n m, to_Z (min n m) = Zmin (to_Z n) (to_Z m).
Proof.
unfold min, Zmin. intros. rewrite spec_compare. destruct Zcompare; auto.
Qed.
Theorem spec_max : forall n m, to_Z (max n m) = Zmax (to_Z n) (to_Z m).
Proof.
unfold max, Zmax. intros. rewrite spec_compare. destruct Zcompare; auto.
Qed.
Definition to_N x :=
match x with
| Pos nx => nx
| Neg nx => nx
end.
Definition abs x := Pos (to_N x).
Theorem spec_abs: forall x, to_Z (abs x) = Zabs (to_Z x).
Proof.
intros x; case x; clear x; intros x; assert (F:=N.spec_pos x).
simpl; rewrite Zabs_eq; auto.
simpl; rewrite Zabs_non_eq; simpl; auto with zarith.
Qed.
Definition opp x :=
match x with
| Pos nx => Neg nx
| Neg nx => Pos nx
end.
Theorem spec_opp: forall x, to_Z (opp x) = - to_Z x.
Proof.
intros x; case x; simpl; auto with zarith.
Qed.
Definition succ x :=
match x with
| Pos n => Pos (N.succ n)
| Neg n =>
match N.compare N.zero n with
| Lt => Neg (N.pred n)
| _ => one
end
end.
Theorem spec_succ: forall n, to_Z (succ n) = to_Z n + 1.
Proof.
intros x; case x; clear x; intros x.
exact (N.spec_succ x).
simpl. rewrite N.spec_compare. case Zcompare_spec; rewrite ?N.spec_0; simpl.
intros HH; rewrite <- HH; rewrite N.spec_1; ring.
intros HH; rewrite N.spec_pred, Zmax_r; auto with zarith.
generalize (N.spec_pos x); auto with zarith.
Qed.
Definition add x y :=
match x, y with
| Pos nx, Pos ny => Pos (N.add nx ny)
| Pos nx, Neg ny =>
match N.compare nx ny with
| Gt => Pos (N.sub nx ny)
| Eq => zero
| Lt => Neg (N.sub ny nx)
end
| Neg nx, Pos ny =>
match N.compare nx ny with
| Gt => Neg (N.sub nx ny)
| Eq => zero
| Lt => Pos (N.sub ny nx)
end
| Neg nx, Neg ny => Neg (N.add nx ny)
end.
Theorem spec_add: forall x y, to_Z (add x y) = to_Z x + to_Z y.
Proof.
unfold add, to_Z; intros [x | x] [y | y];
try (rewrite N.spec_add; auto with zarith);
rewrite N.spec_compare; case Zcompare_spec;
unfold zero; rewrite ?N.spec_0, ?N.spec_sub; omega with *.
Qed.
Definition pred x :=
match x with
| Pos nx =>
match N.compare N.zero nx with
| Lt => Pos (N.pred nx)
| _ => minus_one
end
| Neg nx => Neg (N.succ nx)
end.
Theorem spec_pred: forall x, to_Z (pred x) = to_Z x - 1.
Proof.
unfold pred, to_Z, minus_one; intros [x | x];
try (rewrite N.spec_succ; ring).
rewrite N.spec_compare; case Zcompare_spec;
rewrite ?N.spec_0, ?N.spec_1, ?N.spec_pred;
generalize (N.spec_pos x); omega with *.
Qed.
Definition sub x y :=
match x, y with
| Pos nx, Pos ny =>
match N.compare nx ny with
| Gt => Pos (N.sub nx ny)
| Eq => zero
| Lt => Neg (N.sub ny nx)
end
| Pos nx, Neg ny => Pos (N.add nx ny)
| Neg nx, Pos ny => Neg (N.add nx ny)
| Neg nx, Neg ny =>
match N.compare nx ny with
| Gt => Neg (N.sub nx ny)
| Eq => zero
| Lt => Pos (N.sub ny nx)
end
end.
Theorem spec_sub: forall x y, to_Z (sub x y) = to_Z x - to_Z y.
Proof.
unfold sub, to_Z; intros [x | x] [y | y];
try (rewrite N.spec_add; auto with zarith);
rewrite N.spec_compare; case Zcompare_spec;
unfold zero; rewrite ?N.spec_0, ?N.spec_sub; omega with *.
Qed.
Definition mul x y :=
match x, y with
| Pos nx, Pos ny => Pos (N.mul nx ny)
| Pos nx, Neg ny => Neg (N.mul nx ny)
| Neg nx, Pos ny => Neg (N.mul nx ny)
| Neg nx, Neg ny => Pos (N.mul nx ny)
end.
Theorem spec_mul: forall x y, to_Z (mul x y) = to_Z x * to_Z y.
Proof.
unfold mul, to_Z; intros [x | x] [y | y]; rewrite N.spec_mul; ring.
Qed.
Definition square x :=
match x with
| Pos nx => Pos (N.square nx)
| Neg nx => Pos (N.square nx)
end.
Theorem spec_square: forall x, to_Z (square x) = to_Z x * to_Z x.
Proof.
unfold square, to_Z; intros [x | x]; rewrite N.spec_square; ring.
Qed.
Definition pow_pos x p :=
match x with
| Pos nx => Pos (N.pow_pos nx p)
| Neg nx =>
match p with
| xH => x
| xO _ => Pos (N.pow_pos nx p)
| xI _ => Neg (N.pow_pos nx p)
end
end.
Theorem spec_pow_pos: forall x n, to_Z (pow_pos x n) = to_Z x ^ Zpos n.
Proof.
assert (F0: forall x, (-x)^2 = x^2).
intros x; rewrite Zpower_2; ring.
unfold pow_pos, to_Z; intros [x | x] [p | p |];
try rewrite N.spec_pow_pos; try ring.
assert (F: 0 <= 2 * Zpos p).
assert (0 <= Zpos p); auto with zarith.
rewrite Zpos_xI; repeat rewrite Zpower_exp; auto with zarith.
repeat rewrite Zpower_mult; auto with zarith.
rewrite F0; ring.
assert (F: 0 <= 2 * Zpos p).
assert (0 <= Zpos p); auto with zarith.
rewrite Zpos_xO; repeat rewrite Zpower_exp; auto with zarith.
repeat rewrite Zpower_mult; auto with zarith.
rewrite F0; ring.
Qed.
Definition pow_N x n :=
match n with
| N0 => one
| Npos p => pow_pos x p
end.
Theorem spec_pow_N: forall x n, to_Z (pow_N x n) = to_Z x ^ Z_of_N n.
Proof.
destruct n; simpl. apply N.spec_1.
apply spec_pow_pos.
Qed.
Definition pow x y :=
match to_Z y with
| Z0 => one
| Zpos p => pow_pos x p
| Zneg p => zero
end.
Theorem spec_pow: forall x y, to_Z (pow x y) = to_Z x ^ to_Z y.
Proof.
intros. unfold pow. destruct (to_Z y); simpl.
apply N.spec_1.
apply spec_pow_pos.
apply N.spec_0.
Qed.
Definition log2 x :=
match x with
| Pos nx => Pos (N.log2 nx)
| Neg nx => zero
end.
Theorem spec_log2: forall x, to_Z (log2 x) = Zlog2 (to_Z x).
Proof.
intros. destruct x as [p|p]; simpl. apply N.spec_log2.
rewrite N.spec_0.
destruct (Z_le_lt_eq_dec _ _ (N.spec_pos p)) as [LT|EQ].
rewrite Zlog2_nonpos; auto with zarith.
now rewrite <- EQ.
Qed.
Definition sqrt x :=
match x with
| Pos nx => Pos (N.sqrt nx)
| Neg nx => Neg N.zero
end.
Theorem spec_sqrt: forall x, to_Z (sqrt x) = Zsqrt (to_Z x).
Proof.
destruct x as [p|p]; simpl.
apply N.spec_sqrt.
rewrite N.spec_0.
destruct (Z_le_lt_eq_dec _ _ (N.spec_pos p)) as [LT|EQ].
rewrite Zsqrt_neg; auto with zarith.
now rewrite <- EQ.
Qed.
Definition div_eucl x y :=
match x, y with
| Pos nx, Pos ny =>
let (q, r) := N.div_eucl nx ny in
(Pos q, Pos r)
| Pos nx, Neg ny =>
let (q, r) := N.div_eucl nx ny in
if N.eq_bool N.zero r
then (Neg q, zero)
else (Neg (N.succ q), Neg (N.sub ny r))
| Neg nx, Pos ny =>
let (q, r) := N.div_eucl nx ny in
if N.eq_bool N.zero r
then (Neg q, zero)
else (Neg (N.succ q), Pos (N.sub ny r))
| Neg nx, Neg ny =>
let (q, r) := N.div_eucl nx ny in
(Pos q, Neg r)
end.
Ltac break_nonneg x px EQx :=
let H := fresh "H" in
assert (H:=N.spec_pos x);
destruct (N.to_Z x) as [|px|px]_eqn:EQx;
[clear H|clear H|elim H; reflexivity].
Theorem spec_div_eucl: forall x y,
let (q,r) := div_eucl x y in
(to_Z q, to_Z r) = Zdiv_eucl (to_Z x) (to_Z y).
Proof.
unfold div_eucl, to_Z. intros [x | x] [y | y].
(* Pos Pos *)
generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y); auto.
(* Pos Neg *)
generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y) as (q,r).
break_nonneg x px EQx; break_nonneg y py EQy;
try (injection 1; intros Hr Hq; rewrite N.spec_eq_bool, N.spec_0, Hr;
simpl; rewrite Hq, N.spec_0; auto).
change (- Zpos py) with (Zneg py).
assert (GT : Zpos py > 0) by (compute; auto).
generalize (Z_div_mod (Zpos px) (Zpos py) GT).
unfold Zdiv_eucl. destruct (Zdiv_eucl_POS px (Zpos py)) as (q',r').
intros (EQ,MOD). injection 1. intros Hr' Hq'.
rewrite N.spec_eq_bool, N.spec_0, Hr'.
break_nonneg r pr EQr.
subst; simpl. rewrite N.spec_0; auto.
subst. lazy iota beta delta [Zeq_bool Zcompare].
rewrite N.spec_sub, N.spec_succ, EQy, EQr. f_equal. omega with *.
(* Neg Pos *)
generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y) as (q,r).
break_nonneg x px EQx; break_nonneg y py EQy;
try (injection 1; intros Hr Hq; rewrite N.spec_eq_bool, N.spec_0, Hr;
simpl; rewrite Hq, N.spec_0; auto).
change (- Zpos px) with (Zneg px).
assert (GT : Zpos py > 0) by (compute; auto).
generalize (Z_div_mod (Zpos px) (Zpos py) GT).
unfold Zdiv_eucl. destruct (Zdiv_eucl_POS px (Zpos py)) as (q',r').
intros (EQ,MOD). injection 1. intros Hr' Hq'.
rewrite N.spec_eq_bool, N.spec_0, Hr'.
break_nonneg r pr EQr.
subst; simpl. rewrite N.spec_0; auto.
subst. lazy iota beta delta [Zeq_bool Zcompare].
rewrite N.spec_sub, N.spec_succ, EQy, EQr. f_equal. omega with *.
(* Neg Neg *)
generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y) as (q,r).
break_nonneg x px EQx; break_nonneg y py EQy;
try (injection 1; intros Hr Hq; rewrite Hr, Hq; auto).
simpl. intros <-; auto.
Qed.
Definition div x y := fst (div_eucl x y).
Definition spec_div: forall x y,
to_Z (div x y) = to_Z x / to_Z y.
Proof.
intros x y; generalize (spec_div_eucl x y); unfold div, Zdiv.
case div_eucl; case Zdiv_eucl; simpl; auto.
intros q r q11 r1 H; injection H; auto.
Qed.
Definition modulo x y := snd (div_eucl x y).
Theorem spec_modulo:
forall x y, to_Z (modulo x y) = to_Z x mod to_Z y.
Proof.
intros x y; generalize (spec_div_eucl x y); unfold modulo, Zmod.
case div_eucl; case Zdiv_eucl; simpl; auto.
intros q r q11 r1 H; injection H; auto.
Qed.
Definition quot x y :=
match x, y with
| Pos nx, Pos ny => Pos (N.div nx ny)
| Pos nx, Neg ny => Neg (N.div nx ny)
| Neg nx, Pos ny => Neg (N.div nx ny)
| Neg nx, Neg ny => Pos (N.div nx ny)
end.
Definition rem x y :=
if eq_bool y zero then x
else
match x, y with
| Pos nx, Pos ny => Pos (N.modulo nx ny)
| Pos nx, Neg ny => Pos (N.modulo nx ny)
| Neg nx, Pos ny => Neg (N.modulo nx ny)
| Neg nx, Neg ny => Neg (N.modulo nx ny)
end.
Lemma spec_quot : forall x y, to_Z (quot x y) = (to_Z x) ÷ (to_Z y).
Proof.
intros [x|x] [y|y]; simpl; symmetry;
rewrite N.spec_div, ?Zquot_opp_r, ?Zquot_opp_l, ?Zopp_involutive;
rewrite Zquot_Zdiv_pos; trivial using N.spec_pos.
Qed.
Lemma spec_rem : forall x y,
to_Z (rem x y) = Zrem (to_Z x) (to_Z y).
Proof.
intros x y. unfold rem. rewrite spec_eq_bool, spec_0.
assert (Hy := Zeq_bool_if (to_Z y) 0). destruct Zeq_bool.
now rewrite Hy, Zrem_0_r.
destruct x as [x|x], y as [y|y]; simpl in *; symmetry;
rewrite N.spec_modulo, ?Zrem_opp_r, ?Zrem_opp_l, ?Zopp_involutive;
try rewrite Z.eq_opp_l, Z.opp_0 in Hy;
rewrite Zrem_Zmod_pos; generalize (N.spec_pos x) (N.spec_pos y);
z_order.
Qed.
Definition gcd x y :=
match x, y with
| Pos nx, Pos ny => Pos (N.gcd nx ny)
| Pos nx, Neg ny => Pos (N.gcd nx ny)
| Neg nx, Pos ny => Pos (N.gcd nx ny)
| Neg nx, Neg ny => Pos (N.gcd nx ny)
end.
Theorem spec_gcd: forall a b, to_Z (gcd a b) = Zgcd (to_Z a) (to_Z b).
Proof.
unfold gcd, Zgcd, to_Z; intros [x | x] [y | y]; rewrite N.spec_gcd; unfold Zgcd;
auto; case N.to_Z; simpl; auto with zarith;
try rewrite Zabs_Zopp; auto;
case N.to_Z; simpl; auto with zarith.
Qed.
Definition sgn x :=
match compare zero x with
| Lt => one
| Eq => zero
| Gt => minus_one
end.
Lemma spec_sgn : forall x, to_Z (sgn x) = Zsgn (to_Z x).
Proof.
intros. unfold sgn. rewrite spec_compare. case Zcompare_spec.
rewrite spec_0. intros <-; auto.
rewrite spec_0, spec_1. symmetry. rewrite Zsgn_pos; auto.
rewrite spec_0, spec_m1. symmetry. rewrite Zsgn_neg; auto with zarith.
Qed.
Definition even z :=
match z with
| Pos n => N.even n
| Neg n => N.even n
end.
Definition odd z :=
match z with
| Pos n => N.odd n
| Neg n => N.odd n
end.
Lemma spec_even : forall z, even z = Zeven_bool (to_Z z).
Proof.
intros [n|n]; simpl; rewrite N.spec_even; trivial.
destruct (N.to_Z n) as [|p|p]; now try destruct p.
Qed.
Lemma spec_odd : forall z, odd z = Zodd_bool (to_Z z).
Proof.
intros [n|n]; simpl; rewrite N.spec_odd; trivial.
destruct (N.to_Z n) as [|p|p]; now try destruct p.
Qed.
Definition norm_pos z :=
match z with
| Pos _ => z
| Neg n => if N.eq_bool n N.zero then Pos n else z
end.
Definition testbit a n :=
match norm_pos n, norm_pos a with
| Pos p, Pos a => N.testbit a p
| Pos p, Neg a => negb (N.testbit (N.pred a) p)
| Neg p, _ => false
end.
Definition shiftl a n :=
match norm_pos a, n with
| Pos a, Pos n => Pos (N.shiftl a n)
| Pos a, Neg n => Pos (N.shiftr a n)
| Neg a, Pos n => Neg (N.shiftl a n)
| Neg a, Neg n => Neg (N.succ (N.shiftr (N.pred a) n))
end.
Definition shiftr a n := shiftl a (opp n).
Definition lor a b :=
match norm_pos a, norm_pos b with
| Pos a, Pos b => Pos (N.lor a b)
| Neg a, Pos b => Neg (N.succ (N.ldiff (N.pred a) b))
| Pos a, Neg b => Neg (N.succ (N.ldiff (N.pred b) a))
| Neg a, Neg b => Neg (N.succ (N.land (N.pred a) (N.pred b)))
end.
Definition land a b :=
match norm_pos a, norm_pos b with
| Pos a, Pos b => Pos (N.land a b)
| Neg a, Pos b => Pos (N.ldiff b (N.pred a))
| Pos a, Neg b => Pos (N.ldiff a (N.pred b))
| Neg a, Neg b => Neg (N.succ (N.lor (N.pred a) (N.pred b)))
end.
Definition ldiff a b :=
match norm_pos a, norm_pos b with
| Pos a, Pos b => Pos (N.ldiff a b)
| Neg a, Pos b => Neg (N.succ (N.lor (N.pred a) b))
| Pos a, Neg b => Pos (N.land a (N.pred b))
| Neg a, Neg b => Pos (N.ldiff (N.pred b) (N.pred a))
end.
Definition lxor a b :=
match norm_pos a, norm_pos b with
| Pos a, Pos b => Pos (N.lxor a b)
| Neg a, Pos b => Neg (N.succ (N.lxor (N.pred a) b))
| Pos a, Neg b => Neg (N.succ (N.lxor a (N.pred b)))
| Neg a, Neg b => Pos (N.lxor (N.pred a) (N.pred b))
end.
Definition div2 x := shiftr x one.
Lemma Zlnot_alt1 : forall x, -(x+1) = Z.lnot x.
Proof.
unfold Z.lnot, Zpred; auto with zarith.
Qed.
Lemma Zlnot_alt2 : forall x, Z.lnot (x-1) = -x.
Proof.
unfold Z.lnot, Zpred; auto with zarith.
Qed.
Lemma Zlnot_alt3 : forall x, Z.lnot (-x) = x-1.
Proof.
unfold Z.lnot, Zpred; auto with zarith.
Qed.
Lemma spec_norm_pos : forall x, to_Z (norm_pos x) = to_Z x.
Proof.
intros [x|x]; simpl; trivial.
rewrite N.spec_eq_bool, N.spec_0.
assert (H := Zeq_bool_if (N.to_Z x) 0).
destruct Zeq_bool; simpl; auto with zarith.
Qed.
Lemma spec_norm_pos_pos : forall x y, norm_pos x = Neg y ->
0 < N.to_Z y.
Proof.
intros [x|x] y; simpl; try easy.
rewrite N.spec_eq_bool, N.spec_0.
assert (H := Zeq_bool_if (N.to_Z x) 0).
destruct Zeq_bool; simpl; try easy.
inversion 1; subst. generalize (N.spec_pos y); auto with zarith.
Qed.
Ltac destr_norm_pos x :=
rewrite <- (spec_norm_pos x);
let H := fresh in
let x' := fresh x in
assert (H := spec_norm_pos_pos x);
destruct (norm_pos x) as [x'|x'];
specialize (H x' (eq_refl _)) || clear H.
Lemma spec_testbit: forall x p, testbit x p = Ztestbit (to_Z x) (to_Z p).
Proof.
intros x p. unfold testbit.
destr_norm_pos p; simpl. destr_norm_pos x; simpl.
apply N.spec_testbit.
rewrite N.spec_testbit, N.spec_pred, Zmax_r by auto with zarith.
symmetry. apply Z.bits_opp. apply N.spec_pos.
symmetry. apply Ztestbit_neg_r; auto with zarith.
Qed.
Lemma spec_shiftl: forall x p, to_Z (shiftl x p) = Zshiftl (to_Z x) (to_Z p).
Proof.
intros x p. unfold shiftl.
destr_norm_pos x; destruct p as [p|p]; simpl;
assert (Hp := N.spec_pos p).
apply N.spec_shiftl.
rewrite Z.shiftl_opp_r. apply N.spec_shiftr.
rewrite !N.spec_shiftl.
rewrite !Z.shiftl_mul_pow2 by apply N.spec_pos.
apply Zopp_mult_distr_l.
rewrite Z.shiftl_opp_r, N.spec_succ, N.spec_shiftr, N.spec_pred, Zmax_r
by auto with zarith.
now rewrite Zlnot_alt1, Z.lnot_shiftr, Zlnot_alt2.
Qed.
Lemma spec_shiftr: forall x p, to_Z (shiftr x p) = Zshiftr (to_Z x) (to_Z p).
Proof.
intros. unfold shiftr. rewrite spec_shiftl, spec_opp.
apply Z.shiftl_opp_r.
Qed.
Lemma spec_land: forall x y, to_Z (land x y) = Zand (to_Z x) (to_Z y).
Proof.
intros x y. unfold land.
destr_norm_pos x; destr_norm_pos y; simpl;
rewrite ?N.spec_succ, ?N.spec_land, ?N.spec_ldiff, ?N.spec_lor,
?N.spec_pred, ?Zmax_r, ?Zlnot_alt1; auto with zarith.
now rewrite Z.ldiff_land, Zlnot_alt2.
now rewrite Z.ldiff_land, Z.land_comm, Zlnot_alt2.
now rewrite Z.lnot_lor, !Zlnot_alt2.
Qed.
Lemma spec_lor: forall x y, to_Z (lor x y) = Zor (to_Z x) (to_Z y).
Proof.
intros x y. unfold lor.
destr_norm_pos x; destr_norm_pos y; simpl;
rewrite ?N.spec_succ, ?N.spec_land, ?N.spec_ldiff, ?N.spec_lor,
?N.spec_pred, ?Zmax_r, ?Zlnot_alt1; auto with zarith.
now rewrite Z.lnot_ldiff, Z.lor_comm, Zlnot_alt2.
now rewrite Z.lnot_ldiff, Zlnot_alt2.
now rewrite Z.lnot_land, !Zlnot_alt2.
Qed.
Lemma spec_ldiff: forall x y, to_Z (ldiff x y) = Zdiff (to_Z x) (to_Z y).
Proof.
intros x y. unfold ldiff.
destr_norm_pos x; destr_norm_pos y; simpl;
rewrite ?N.spec_succ, ?N.spec_land, ?N.spec_ldiff, ?N.spec_lor,
?N.spec_pred, ?Zmax_r, ?Zlnot_alt1; auto with zarith.
now rewrite Z.ldiff_land, Zlnot_alt3.
now rewrite Z.lnot_lor, Z.ldiff_land, <- Zlnot_alt2.
now rewrite 2 Z.ldiff_land, Zlnot_alt2, Z.land_comm, Zlnot_alt3.
Qed.
Lemma spec_lxor: forall x y, to_Z (lxor x y) = Zxor (to_Z x) (to_Z y).
Proof.
intros x y. unfold lxor.
destr_norm_pos x; destr_norm_pos y; simpl;
rewrite ?N.spec_succ, ?N.spec_lxor, ?N.spec_pred, ?Zmax_r, ?Zlnot_alt1;
auto with zarith.
now rewrite !Z.lnot_lxor_r, Zlnot_alt2.
now rewrite !Z.lnot_lxor_l, Zlnot_alt2.
now rewrite <- Z.lxor_lnot_lnot, !Zlnot_alt2.
Qed.
Lemma spec_div2: forall x, to_Z (div2 x) = Zdiv2' (to_Z x).
Proof.
intros x. unfold div2. now rewrite spec_shiftr, Zdiv2'_spec, spec_1.
Qed.
End Make.
|