aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZPlusOrder.v
blob: bab1bb4a085defcbb04a1fb1cd68b0e838f1c623 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
Require Export ZOrder.

Module ZPlusOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
Module Export ZOrderPropMod := ZOrderPropFunct ZAxiomsMod.
Open Local Scope NatIntScope.

(** Theorems that are true on both natural numbers and integers *)

Theorem Zplus_lt_mono_l : forall n m p : Z, n < m <-> p + n < p + m.
Proof NZplus_lt_mono_l.

Theorem Zplus_lt_mono_r : forall n m p : Z, n < m <-> n + p < m + p.
Proof NZplus_lt_mono_r.

Theorem Zplus_lt_mono : forall n m p q : Z, n < m -> p < q -> n + p < m + q.
Proof NZplus_lt_mono.

Theorem Zplus_le_mono_l : forall n m p : Z, n <= m <-> p + n <= p + m.
Proof NZplus_le_mono_l.

Theorem Zplus_le_mono_r : forall n m p : Z, n <= m <-> n + p <= m + p.
Proof NZplus_le_mono_r.

Theorem Zplus_le_mono : forall n m p q : Z, n <= m -> p <= q -> n + p <= m + q.
Proof NZplus_le_mono.

Theorem Zplus_lt_le_mono : forall n m p q : Z, n < m -> p <= q -> n + p < m + q.
Proof NZplus_lt_le_mono.

Theorem Zplus_le_lt_mono : forall n m p q : Z, n <= m -> p < q -> n + p < m + q.
Proof NZplus_le_lt_mono.

Theorem Zle_lt_plus_lt : forall n m p q : Z, n <= m -> p + m < q + n -> p < q.
Proof NZle_lt_plus_lt.

Theorem Zlt_le_plus_lt : forall n m p q : Z, n < m -> p + m <= q + n -> p < q.
Proof NZlt_le_plus_lt.

Theorem Zle_le_plus_lt : forall n m p q : Z, n <= m -> p + m <= q + n -> p <= q.
Proof NZle_le_plus_lt.

Theorem Zplus_lt_cases : forall n m p q : Z, n + m < p + q -> n < p \/ m < q.
Proof NZplus_lt_cases.

Theorem Zplus_le_cases : forall n m p q : Z, n + m <= p + q -> n <= p \/ m <= q.
Proof NZplus_le_cases.

Theorem Zplus_neg_cases : forall n m : Z, n + m < 0 -> n < 0 \/ m < 0.
Proof NZplus_neg_cases.

Theorem Zplus_pos_cases : forall n m : Z, 0 < n + m -> 0 < n \/ 0 < m.
Proof NZplus_pos_cases.

Theorem Zplus_nonpos_cases : forall n m : Z, n + m <= 0 -> n <= 0 \/ m <= 0.
Proof NZplus_nonpos_cases.

Theorem Zplus_nonneg_cases : forall n m : Z, 0 <= n + m -> 0 <= n \/ 0 <= m.
Proof NZplus_nonneg_cases.

(** Multiplication and order *)

Theorem Ztimes_lt_pred :
  forall p q n m : Z, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
Proof NZtimes_lt_pred.

Theorem Ztimes_lt_mono_pos_l : forall p n m : Z, 0 < p -> (n < m <-> p * n < p * m).
Proof NZtimes_lt_mono_pos_l.

Theorem Ztimes_lt_mono_pos_r : forall p n m : Z, 0 < p -> (n < m <-> n * p < m * p).
Proof NZtimes_lt_mono_pos_r.

Theorem Ztimes_lt_mono_neg_l : forall p n m : Z, p < 0 -> (n < m <-> p * m < p * n).
Proof NZtimes_lt_mono_neg_l.

Theorem Ztimes_lt_mono_neg_r : forall p n m : Z, p < 0 -> (n < m <-> m * p < n * p).
Proof NZtimes_lt_mono_neg_r.

Theorem Ztimes_le_mono_nonneg_l : forall n m p : Z, 0 <= p -> n <= m -> p * n <= p * m.
Proof NZtimes_le_mono_nonneg_l.

Theorem Ztimes_le_mono_nonpos_l : forall n m p : Z, p <= 0 -> n <= m -> p * m <= p * n.
Proof NZtimes_le_mono_nonpos_l.

Theorem Ztimes_le_mono_nonneg_r : forall n m p : Z, 0 <= p -> n <= m -> n * p <= m * p.
Proof NZtimes_le_mono_nonneg_r.

Theorem Ztimes_le_mono_nonpos_r : forall n m p : Z, p <= 0 -> n <= m -> m * p <= n * p.
Proof NZtimes_le_mono_nonpos_r.

Theorem Ztimes_cancel_l : forall n m p : Z, p ~= 0 -> (p * n == p * m <-> n == m).
Proof NZtimes_cancel_l.

Theorem Ztimes_le_mono_pos_l : forall n m p : Z, 0 < p -> (n <= m <-> p * n <= p * m).
Proof NZtimes_le_mono_pos_l.

Theorem Ztimes_le_mono_pos_r : forall n m p : Z, 0 < p -> (n <= m <-> n * p <= m * p).
Proof NZtimes_le_mono_pos_r.

Theorem Ztimes_le_mono_neg_l : forall n m p : Z, p < 0 -> (n <= m <-> p * m <= p * n).
Proof NZtimes_le_mono_neg_l.

Theorem Ztimes_le_mono_neg_r : forall n m p : Z, p < 0 -> (n <= m <-> m * p <= n * p).
Proof NZtimes_le_mono_neg_r.

Theorem Ztimes_lt_mono :
  forall n m p q : Z, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
Proof NZtimes_lt_mono.

Theorem Ztimes_le_mono :
  forall n m p q : Z, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
Proof NZtimes_le_mono.

Theorem Ztimes_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n * m.
Proof NZtimes_pos_pos.

Theorem Ztimes_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n * m.
Proof NZtimes_nonneg_nonneg.

Theorem Ztimes_neg_neg : forall n m : Z, n < 0 -> m < 0 -> 0 < n * m.
Proof NZtimes_neg_neg.

Theorem Ztimes_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> 0 <= n * m.
Proof NZtimes_nonpos_nonpos.

Theorem Ztimes_pos_neg : forall n m : Z, 0 < n -> m < 0 -> n * m < 0.
Proof NZtimes_pos_neg.

Theorem Ztimes_nonneg_nonpos : forall n m : Z, 0 <= n -> m <= 0 -> n * m <= 0.
Proof NZtimes_nonneg_nonpos.

Theorem Ztimes_neg_pos : forall n m : Z, n < 0 -> 0 < m -> n * m < 0.
Proof NZtimes_neg_pos.

Theorem Ztimes_nonpos_nonneg : forall n m : Z, n <= 0 -> 0 <= m -> n * m <= 0.
Proof NZtimes_nonpos_nonneg.

Theorem Ztimes_eq_0 : forall n m : Z, n * m == 0 -> n == 0 \/ m == 0.
Proof NZtimes_eq_0.

Theorem Ztimes_neq_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
Proof NZtimes_neq_0.

(** Theorems that are either not valid on N or have different proofs on N and Z *)

(** Minus and order *)

Theorem Zlt_lt_minus : forall n m : Z, n < m <-> 0 < m - n.
Proof.
intros n m. stepr (0 + n < m - n + n) by symmetry; apply Zplus_lt_mono_r.
rewrite Zplus_0_l; now rewrite Zminus_plus_diag.
Qed.

Theorem Zle_le_minus : forall n m : Z, n <= m <-> 0 <= m - n.
Proof.
intros n m; stepr (0 + n <= m - n + n) by symmetry; apply Zplus_le_mono_r.
rewrite Zplus_0_l; now rewrite Zminus_plus_diag.
Qed.

Theorem Zopp_lt_mono : forall n m : Z, n < m <-> - m < - n.
Proof.
intros n m. stepr (m + - m < m + - n) by symmetry; apply Zplus_lt_mono_l.
do 2 rewrite Zplus_opp_minus. rewrite Zminus_diag. apply Zlt_lt_minus.
Qed.

Theorem Zopp_le_mono : forall n m : Z, n <= m <-> - m <= - n.
Proof.
intros n m. stepr (m + - m <= m + - n) by symmetry; apply Zplus_le_mono_l.
do 2 rewrite Zplus_opp_minus. rewrite Zminus_diag. apply Zle_le_minus.
Qed.

Theorem Zopp_pos_neg : forall n : Z, 0 < - n <-> n < 0.
Proof.
intro n; rewrite (Zopp_lt_mono n 0); now rewrite Zopp_0.
Qed.

Theorem Zopp_neg_pos : forall n : Z, - n < 0 <-> 0 < n.
Proof.
intro n. rewrite (Zopp_lt_mono 0 n). now rewrite Zopp_0.
Qed.

Theorem Zopp_nonneg_nonpos : forall n : Z, 0 <= - n <-> n <= 0.
Proof.
intro n; rewrite (Zopp_le_mono n 0); now rewrite Zopp_0.
Qed.

Theorem Zopp_nonpos_nonneg : forall n : Z, - n <= 0 <-> 0 <= n.
Proof.
intro n. rewrite (Zopp_le_mono 0 n). now rewrite Zopp_0.
Qed.

Theorem Zminus_lt_mono_l : forall n m p : Z, n < m <-> p - m < p - n.
Proof.
intros n m p. do 2 rewrite <- Zplus_opp_minus. rewrite <- Zplus_lt_mono_l.
apply Zopp_lt_mono.
Qed.

Theorem Zminus_lt_mono_r : forall n m p : Z, n < m <-> n - p < m - p.
Proof.
intros n m p; do 2 rewrite <- Zplus_opp_minus; apply Zplus_lt_mono_r.
Qed.

Theorem Zminus_lt_mono : forall n m p q : Z, n < m -> q < p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply NZlt_trans with (m - p);
[now apply -> Zminus_lt_mono_r | now apply -> Zminus_lt_mono_l].
Qed.

Theorem Zminus_le_mono_l : forall n m p : Z, n <= m <-> p - m <= p - n.
Proof.
intros n m p; do 2 rewrite <- Zplus_opp_minus; rewrite <- Zplus_le_mono_l;
apply Zopp_le_mono.
Qed.

Theorem Zminus_le_mono_r : forall n m p : Z, n <= m <-> n - p <= m - p.
Proof.
intros n m p; do 2 rewrite <- Zplus_opp_minus; apply Zplus_le_mono_r.
Qed.

Theorem Zminus_le_mono : forall n m p q : Z, n <= m -> q <= p -> n - p <= m - q.
Proof.
intros n m p q H1 H2.
apply NZle_trans with (m - p);
[now apply -> Zminus_le_mono_r | now apply -> Zminus_le_mono_l].
Qed.

Theorem Zminus_lt_le_mono : forall n m p q : Z, n < m -> q <= p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply NZlt_le_trans with (m - p);
[now apply -> Zminus_lt_mono_r | now apply -> Zminus_le_mono_l].
Qed.

Theorem Zminus_le_lt_mono : forall n m p q : Z, n <= m -> q < p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply NZle_lt_trans with (m - p);
[now apply -> Zminus_le_mono_r | now apply -> Zminus_lt_mono_l].
Qed.

Theorem Zle_lt_minus_lt : forall n m p q : Z, n <= m -> p - n < q - m -> p < q.
Proof.
intros n m p q H1 H2. apply (Zle_lt_plus_lt (- m) (- n));
[now apply -> Zopp_le_mono | now do 2 rewrite Zplus_opp_minus].
Qed.

Theorem Zlt_le_minus_lt : forall n m p q : Z, n < m -> p - n <= q - m -> p < q.
Proof.
intros n m p q H1 H2. apply (Zlt_le_plus_lt (- m) (- n));
[now apply -> Zopp_lt_mono | now do 2 rewrite Zplus_opp_minus].
Qed.

Theorem Zle_le_minus_lt : forall n m p q : Z, n <= m -> p - n <= q - m -> p <= q.
Proof.
intros n m p q H1 H2. apply (Zle_le_plus_lt (- m) (- n));
[now apply -> Zopp_le_mono | now do 2 rewrite Zplus_opp_minus].
Qed.

Theorem Zlt_plus_lt_minus_r : forall n m p : Z, n + p < m <-> n < m - p.
Proof.
intros n m p. stepl (n + p - p < m - p) by symmetry; apply Zminus_lt_mono_r.
now rewrite Zplus_minus_diag.
Qed.

Theorem Zle_plus_le_minus_r : forall n m p : Z, n + p <= m <-> n <= m - p.
Proof.
intros n m p. stepl (n + p - p <= m - p) by symmetry; apply Zminus_le_mono_r.
now rewrite Zplus_minus_diag.
Qed.

Theorem Zlt_plus_lt_minus_l : forall n m p : Z, n + p < m <-> p < m - n.
Proof.
intros n m p. rewrite Zplus_comm; apply Zlt_plus_lt_minus_r.
Qed.

Theorem Zle_plus_le_minus_l : forall n m p : Z, n + p <= m <-> p <= m - n.
Proof.
intros n m p. rewrite Zplus_comm; apply Zle_plus_le_minus_r.
Qed.

Theorem Zlt_minus_lt_plus_r : forall n m p : Z, n - p < m <-> n < m + p.
Proof.
intros n m p. stepl (n - p + p < m + p) by symmetry; apply Zplus_lt_mono_r.
now rewrite Zminus_plus_diag.
Qed.

Theorem Zle_minus_le_plus_r : forall n m p : Z, n - p <= m <-> n <= m + p.
Proof.
intros n m p. stepl (n - p + p <= m + p) by symmetry; apply Zplus_le_mono_r.
now rewrite Zminus_plus_diag.
Qed.

Theorem Zlt_minus_lt_plus_l : forall n m p : Z, n - m < p <-> n < m + p.
Proof.
intros n m p. rewrite Zplus_comm; apply Zlt_minus_lt_plus_r.
Qed.

Theorem Zle_minus_le_plus_l : forall n m p : Z, n - m <= p <-> n <= m + p.
Proof.
intros n m p. rewrite Zplus_comm; apply Zle_minus_le_plus_r.
Qed.

Theorem Zlt_minus_lt_plus : forall n m p q : Z, n - m < p - q <-> n + q < m + p.
Proof.
intros n m p q. rewrite Zlt_minus_lt_plus_l. rewrite Zplus_minus_assoc.
now rewrite <- Zlt_plus_lt_minus_r.
Qed.

Theorem Zle_minus_le_plus : forall n m p q : Z, n - m <= p - q <-> n + q <= m + p.
Proof.
intros n m p q. rewrite Zle_minus_le_plus_l. rewrite Zplus_minus_assoc.
now rewrite <- Zle_plus_le_minus_r.
Qed.

Theorem Zlt_minus_pos : forall n m : Z, 0 < m <-> n - m < n.
Proof.
intros n m. stepr (n - m < n - 0) by now rewrite Zminus_0_r. apply Zminus_lt_mono_l.
Qed.

Theorem Zle_minus_nonneg : forall n m : Z, 0 <= m <-> n - m <= n.
Proof.
intros n m. stepr (n - m <= n - 0) by now rewrite Zminus_0_r. apply Zminus_le_mono_l.
Qed.

Theorem Zminus_lt_cases : forall n m p q : Z, n - m < p - q -> n < m \/ q < p.
Proof.
intros n m p q H. rewrite Zlt_minus_lt_plus in H. now apply Zplus_lt_cases.
Qed.

Theorem Zminus_le_cases : forall n m p q : Z, n - m <= p - q -> n <= m \/ q <= p.
Proof.
intros n m p q H. rewrite Zle_minus_le_plus in H. now apply Zplus_le_cases.
Qed.

Theorem Zminus_neg_cases : forall n m : Z, n - m < 0 -> n < 0 \/ 0 < m.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (0 < m) with (- m < 0) using relation iff by (symmetry; apply Zopp_neg_pos).
now apply Zplus_neg_cases.
Qed.

Theorem Zminus_pos_cases : forall n m : Z, 0 < n - m -> 0 < n \/ m < 0.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (m < 0) with (0 < - m) using relation iff by (symmetry; apply Zopp_pos_neg).
now apply Zplus_pos_cases.
Qed.

Theorem Zminus_nonpos_cases : forall n m : Z, n - m <= 0 -> n <= 0 \/ 0 <= m.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (0 <= m) with (- m <= 0) using relation iff by (symmetry; apply Zopp_nonpos_nonneg).
now apply Zplus_nonpos_cases.
Qed.

Theorem Zminus_nonneg_cases : forall n m : Z, 0 <= n - m -> 0 <= n \/ m <= 0.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (m <= 0) with (0 <= - m) using relation iff by (symmetry; apply Zopp_nonneg_nonpos).
now apply Zplus_nonneg_cases.
Qed.

End ZPlusOrderPropFunct.