aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZPlusOrder.v
blob: 01226b121886e93bc292b05d19855c545c52445e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i i*)

Require Export ZOrder.

Module ZPlusOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
Module Export ZOrderPropMod := ZOrderPropFunct ZAxiomsMod.
Open Local Scope IntScope.

(** Theorems that are true on both natural numbers and integers *)

Theorem Zplus_lt_mono_l : forall n m p : Z, n < m <-> p + n < p + m.
Proof NZplus_lt_mono_l.

Theorem Zplus_lt_mono_r : forall n m p : Z, n < m <-> n + p < m + p.
Proof NZplus_lt_mono_r.

Theorem Zplus_lt_mono : forall n m p q : Z, n < m -> p < q -> n + p < m + q.
Proof NZplus_lt_mono.

Theorem Zplus_le_mono_l : forall n m p : Z, n <= m <-> p + n <= p + m.
Proof NZplus_le_mono_l.

Theorem Zplus_le_mono_r : forall n m p : Z, n <= m <-> n + p <= m + p.
Proof NZplus_le_mono_r.

Theorem Zplus_le_mono : forall n m p q : Z, n <= m -> p <= q -> n + p <= m + q.
Proof NZplus_le_mono.

Theorem Zplus_lt_le_mono : forall n m p q : Z, n < m -> p <= q -> n + p < m + q.
Proof NZplus_lt_le_mono.

Theorem Zplus_le_lt_mono : forall n m p q : Z, n <= m -> p < q -> n + p < m + q.
Proof NZplus_le_lt_mono.

Theorem Zplus_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n + m.
Proof NZplus_pos_pos.

Theorem Zplus_pos_nonneg : forall n m : Z, 0 < n -> 0 <= m -> 0 < n + m.
Proof NZplus_pos_nonneg.

Theorem Zplus_nonneg_pos : forall n m : Z, 0 <= n -> 0 < m -> 0 < n + m.
Proof NZplus_nonneg_pos.

Theorem Zplus_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n + m.
Proof NZplus_nonneg_nonneg.

Theorem Zlt_plus_pos_l : forall n m : Z, 0 < n -> m < n + m.
Proof NZlt_plus_pos_l.

Theorem Zlt_plus_pos_r : forall n m : Z, 0 < n -> m < m + n.
Proof NZlt_plus_pos_r.

Theorem Zle_lt_plus_lt : forall n m p q : Z, n <= m -> p + m < q + n -> p < q.
Proof NZle_lt_plus_lt.

Theorem Zlt_le_plus_lt : forall n m p q : Z, n < m -> p + m <= q + n -> p < q.
Proof NZlt_le_plus_lt.

Theorem Zle_le_plus_le : forall n m p q : Z, n <= m -> p + m <= q + n -> p <= q.
Proof NZle_le_plus_le.

Theorem Zplus_lt_cases : forall n m p q : Z, n + m < p + q -> n < p \/ m < q.
Proof NZplus_lt_cases.

Theorem Zplus_le_cases : forall n m p q : Z, n + m <= p + q -> n <= p \/ m <= q.
Proof NZplus_le_cases.

Theorem Zplus_neg_cases : forall n m : Z, n + m < 0 -> n < 0 \/ m < 0.
Proof NZplus_neg_cases.

Theorem Zplus_pos_cases : forall n m : Z, 0 < n + m -> 0 < n \/ 0 < m.
Proof NZplus_pos_cases.

Theorem Zplus_nonpos_cases : forall n m : Z, n + m <= 0 -> n <= 0 \/ m <= 0.
Proof NZplus_nonpos_cases.

Theorem Zplus_nonneg_cases : forall n m : Z, 0 <= n + m -> 0 <= n \/ 0 <= m.
Proof NZplus_nonneg_cases.

(** Theorems that are either not valid on N or have different proofs on N and Z *)

(** Minus and order *)

Theorem Zlt_lt_minus : forall n m : Z, n < m <-> 0 < m - n.
Proof.
intros n m. stepr (0 + n < m - n + n) by symmetry; apply Zplus_lt_mono_r.
rewrite Zplus_0_l; now rewrite Zminus_plus_diag.
Qed.

Theorem Zle_le_minus : forall n m : Z, n <= m <-> 0 <= m - n.
Proof.
intros n m; stepr (0 + n <= m - n + n) by symmetry; apply Zplus_le_mono_r.
rewrite Zplus_0_l; now rewrite Zminus_plus_diag.
Qed.

Theorem Zopp_lt_mono : forall n m : Z, n < m <-> - m < - n.
Proof.
intros n m. stepr (m + - m < m + - n) by symmetry; apply Zplus_lt_mono_l.
do 2 rewrite Zplus_opp_minus. rewrite Zminus_diag. apply Zlt_lt_minus.
Qed.

Theorem Zopp_le_mono : forall n m : Z, n <= m <-> - m <= - n.
Proof.
intros n m. stepr (m + - m <= m + - n) by symmetry; apply Zplus_le_mono_l.
do 2 rewrite Zplus_opp_minus. rewrite Zminus_diag. apply Zle_le_minus.
Qed.

Theorem Zopp_pos_neg : forall n : Z, 0 < - n <-> n < 0.
Proof.
intro n; rewrite (Zopp_lt_mono n 0); now rewrite Zopp_0.
Qed.

Theorem Zopp_neg_pos : forall n : Z, - n < 0 <-> 0 < n.
Proof.
intro n. rewrite (Zopp_lt_mono 0 n). now rewrite Zopp_0.
Qed.

Theorem Zopp_nonneg_nonpos : forall n : Z, 0 <= - n <-> n <= 0.
Proof.
intro n; rewrite (Zopp_le_mono n 0); now rewrite Zopp_0.
Qed.

Theorem Zopp_nonpos_nonneg : forall n : Z, - n <= 0 <-> 0 <= n.
Proof.
intro n. rewrite (Zopp_le_mono 0 n). now rewrite Zopp_0.
Qed.

Theorem Zminus_lt_mono_l : forall n m p : Z, n < m <-> p - m < p - n.
Proof.
intros n m p. do 2 rewrite <- Zplus_opp_minus. rewrite <- Zplus_lt_mono_l.
apply Zopp_lt_mono.
Qed.

Theorem Zminus_lt_mono_r : forall n m p : Z, n < m <-> n - p < m - p.
Proof.
intros n m p; do 2 rewrite <- Zplus_opp_minus; apply Zplus_lt_mono_r.
Qed.

Theorem Zminus_lt_mono : forall n m p q : Z, n < m -> q < p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply NZlt_trans with (m - p);
[now apply -> Zminus_lt_mono_r | now apply -> Zminus_lt_mono_l].
Qed.

Theorem Zminus_le_mono_l : forall n m p : Z, n <= m <-> p - m <= p - n.
Proof.
intros n m p; do 2 rewrite <- Zplus_opp_minus; rewrite <- Zplus_le_mono_l;
apply Zopp_le_mono.
Qed.

Theorem Zminus_le_mono_r : forall n m p : Z, n <= m <-> n - p <= m - p.
Proof.
intros n m p; do 2 rewrite <- Zplus_opp_minus; apply Zplus_le_mono_r.
Qed.

Theorem Zminus_le_mono : forall n m p q : Z, n <= m -> q <= p -> n - p <= m - q.
Proof.
intros n m p q H1 H2.
apply NZle_trans with (m - p);
[now apply -> Zminus_le_mono_r | now apply -> Zminus_le_mono_l].
Qed.

Theorem Zminus_lt_le_mono : forall n m p q : Z, n < m -> q <= p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply NZlt_le_trans with (m - p);
[now apply -> Zminus_lt_mono_r | now apply -> Zminus_le_mono_l].
Qed.

Theorem Zminus_le_lt_mono : forall n m p q : Z, n <= m -> q < p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply NZle_lt_trans with (m - p);
[now apply -> Zminus_le_mono_r | now apply -> Zminus_lt_mono_l].
Qed.

Theorem Zle_lt_minus_lt : forall n m p q : Z, n <= m -> p - n < q - m -> p < q.
Proof.
intros n m p q H1 H2. apply (Zle_lt_plus_lt (- m) (- n));
[now apply -> Zopp_le_mono | now do 2 rewrite Zplus_opp_minus].
Qed.

Theorem Zlt_le_minus_lt : forall n m p q : Z, n < m -> p - n <= q - m -> p < q.
Proof.
intros n m p q H1 H2. apply (Zlt_le_plus_lt (- m) (- n));
[now apply -> Zopp_lt_mono | now do 2 rewrite Zplus_opp_minus].
Qed.

Theorem Zle_le_minus_lt : forall n m p q : Z, n <= m -> p - n <= q - m -> p <= q.
Proof.
intros n m p q H1 H2. apply (Zle_le_plus_le (- m) (- n));
[now apply -> Zopp_le_mono | now do 2 rewrite Zplus_opp_minus].
Qed.

Theorem Zlt_plus_lt_minus_r : forall n m p : Z, n + p < m <-> n < m - p.
Proof.
intros n m p. stepl (n + p - p < m - p) by symmetry; apply Zminus_lt_mono_r.
now rewrite Zplus_minus_diag.
Qed.

Theorem Zle_plus_le_minus_r : forall n m p : Z, n + p <= m <-> n <= m - p.
Proof.
intros n m p. stepl (n + p - p <= m - p) by symmetry; apply Zminus_le_mono_r.
now rewrite Zplus_minus_diag.
Qed.

Theorem Zlt_plus_lt_minus_l : forall n m p : Z, n + p < m <-> p < m - n.
Proof.
intros n m p. rewrite Zplus_comm; apply Zlt_plus_lt_minus_r.
Qed.

Theorem Zle_plus_le_minus_l : forall n m p : Z, n + p <= m <-> p <= m - n.
Proof.
intros n m p. rewrite Zplus_comm; apply Zle_plus_le_minus_r.
Qed.

Theorem Zlt_minus_lt_plus_r : forall n m p : Z, n - p < m <-> n < m + p.
Proof.
intros n m p. stepl (n - p + p < m + p) by symmetry; apply Zplus_lt_mono_r.
now rewrite Zminus_plus_diag.
Qed.

Theorem Zle_minus_le_plus_r : forall n m p : Z, n - p <= m <-> n <= m + p.
Proof.
intros n m p. stepl (n - p + p <= m + p) by symmetry; apply Zplus_le_mono_r.
now rewrite Zminus_plus_diag.
Qed.

Theorem Zlt_minus_lt_plus_l : forall n m p : Z, n - m < p <-> n < m + p.
Proof.
intros n m p. rewrite Zplus_comm; apply Zlt_minus_lt_plus_r.
Qed.

Theorem Zle_minus_le_plus_l : forall n m p : Z, n - m <= p <-> n <= m + p.
Proof.
intros n m p. rewrite Zplus_comm; apply Zle_minus_le_plus_r.
Qed.

Theorem Zlt_minus_lt_plus : forall n m p q : Z, n - m < p - q <-> n + q < m + p.
Proof.
intros n m p q. rewrite Zlt_minus_lt_plus_l. rewrite Zplus_minus_assoc.
now rewrite <- Zlt_plus_lt_minus_r.
Qed.

Theorem Zle_minus_le_plus : forall n m p q : Z, n - m <= p - q <-> n + q <= m + p.
Proof.
intros n m p q. rewrite Zle_minus_le_plus_l. rewrite Zplus_minus_assoc.
now rewrite <- Zle_plus_le_minus_r.
Qed.

Theorem Zlt_minus_pos : forall n m : Z, 0 < m <-> n - m < n.
Proof.
intros n m. stepr (n - m < n - 0) by now rewrite Zminus_0_r. apply Zminus_lt_mono_l.
Qed.

Theorem Zle_minus_nonneg : forall n m : Z, 0 <= m <-> n - m <= n.
Proof.
intros n m. stepr (n - m <= n - 0) by now rewrite Zminus_0_r. apply Zminus_le_mono_l.
Qed.

Theorem Zminus_lt_cases : forall n m p q : Z, n - m < p - q -> n < m \/ q < p.
Proof.
intros n m p q H. rewrite Zlt_minus_lt_plus in H. now apply Zplus_lt_cases.
Qed.

Theorem Zminus_le_cases : forall n m p q : Z, n - m <= p - q -> n <= m \/ q <= p.
Proof.
intros n m p q H. rewrite Zle_minus_le_plus in H. now apply Zplus_le_cases.
Qed.

Theorem Zminus_neg_cases : forall n m : Z, n - m < 0 -> n < 0 \/ 0 < m.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (0 < m) with (- m < 0) using relation iff by (symmetry; apply Zopp_neg_pos).
now apply Zplus_neg_cases.
Qed.

Theorem Zminus_pos_cases : forall n m : Z, 0 < n - m -> 0 < n \/ m < 0.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (m < 0) with (0 < - m) using relation iff by (symmetry; apply Zopp_pos_neg).
now apply Zplus_pos_cases.
Qed.

Theorem Zminus_nonpos_cases : forall n m : Z, n - m <= 0 -> n <= 0 \/ 0 <= m.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (0 <= m) with (- m <= 0) using relation iff by (symmetry; apply Zopp_nonpos_nonneg).
now apply Zplus_nonpos_cases.
Qed.

Theorem Zminus_nonneg_cases : forall n m : Z, 0 <= n - m -> 0 <= n \/ m <= 0.
Proof.
intros n m H; rewrite <- Zplus_opp_minus in H.
setoid_replace (m <= 0) with (0 <= - m) using relation iff by (symmetry; apply Zopp_nonneg_nonpos).
now apply Zplus_nonneg_cases.
Qed.

End ZPlusOrderPropFunct.