aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZPlus.v
blob: 2520d62e19c0e3e120d0e7d2519ba41979fed5ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id$ i*)

Require Export ZBase.

Module ZPlusPropFunct (Import ZAxiomsMod : ZAxiomsSig).
Module Export ZBasePropMod := ZBasePropFunct ZAxiomsMod.
Open Local Scope IntScope.

Theorem Zplus_wd :
  forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> n1 + m1 == n2 + m2.
Proof NZplus_wd.

Theorem Zplus_0_l : forall n : Z, 0 + n == n.
Proof NZplus_0_l.

Theorem Zplus_succ_l : forall n m : Z, (S n) + m == S (n + m).
Proof NZplus_succ_l.

Theorem Zminus_0_r : forall n : Z, n - 0 == n.
Proof NZminus_0_r.

Theorem Zminus_succ_r : forall n m : Z, n - (S m) == P (n - m).
Proof NZminus_succ_r.

Theorem Zopp_0 : - 0 == 0.
Proof Zopp_0.

Theorem Zopp_succ : forall n : Z, - (S n) == P (- n).
Proof Zopp_succ.

(* Theorems that are valid for both natural numbers and integers *)

Theorem Zplus_0_r : forall n : Z, n + 0 == n.
Proof NZplus_0_r.

Theorem Zplus_succ_r : forall n m : Z, n + S m == S (n + m).
Proof NZplus_succ_r.

Theorem Zplus_comm : forall n m : Z, n + m == m + n.
Proof NZplus_comm.

Theorem Zplus_assoc : forall n m p : Z, n + (m + p) == (n + m) + p.
Proof NZplus_assoc.

Theorem Zplus_shuffle1 : forall n m p q : Z, (n + m) + (p + q) == (n + p) + (m + q).
Proof NZplus_shuffle1.

Theorem Zplus_shuffle2 : forall n m p q : Z, (n + m) + (p + q) == (n + q) + (m + p).
Proof NZplus_shuffle2.

Theorem Zplus_1_l : forall n : Z, 1 + n == S n.
Proof NZplus_1_l.

Theorem Zplus_1_r : forall n : Z, n + 1 == S n.
Proof NZplus_1_r.

Theorem Zplus_cancel_l : forall n m p : Z, p + n == p + m <-> n == m.
Proof NZplus_cancel_l.

Theorem Zplus_cancel_r : forall n m p : Z, n + p == m + p <-> n == m.
Proof NZplus_cancel_r.

(* Theorems that are either not valid on N or have different proofs on N and Z *)

Theorem Zplus_pred_l : forall n m : Z, P n + m == P (n + m).
Proof.
intros n m.
rewrite <- (Zsucc_pred n) at 2.
rewrite Zplus_succ_l. now rewrite Zpred_succ.
Qed.

Theorem Zplus_pred_r : forall n m : Z, n + P m == P (n + m).
Proof.
intros n m; rewrite (Zplus_comm n (P m)), (Zplus_comm n m);
apply Zplus_pred_l.
Qed.

Theorem Zplus_opp_r : forall n m : Z, n + (- m) == n - m.
Proof.
NZinduct m.
rewrite Zopp_0; rewrite Zminus_0_r; now rewrite Zplus_0_r.
intro m. rewrite Zopp_succ, Zminus_succ_r, Zplus_pred_r; now rewrite Zpred_inj_wd.
Qed.

Theorem Zminus_0_l : forall n : Z, 0 - n == - n.
Proof.
intro n; rewrite <- Zplus_opp_r; now rewrite Zplus_0_l.
Qed.

Theorem Zminus_succ_l : forall n m : Z, S n - m == S (n - m).
Proof.
intros n m; do 2 rewrite <- Zplus_opp_r; now rewrite Zplus_succ_l.
Qed.

Theorem Zminus_pred_l : forall n m : Z, P n - m == P (n - m).
Proof.
intros n m. rewrite <- (Zsucc_pred n) at 2.
rewrite Zminus_succ_l; now rewrite Zpred_succ.
Qed.

Theorem Zminus_pred_r : forall n m : Z, n - (P m) == S (n - m).
Proof.
intros n m. rewrite <- (Zsucc_pred m) at 2.
rewrite Zminus_succ_r; now rewrite Zsucc_pred.
Qed.

Theorem Zopp_pred : forall n : Z, - (P n) == S (- n).
Proof.
intro n. rewrite <- (Zsucc_pred n) at 2.
rewrite Zopp_succ. now rewrite Zsucc_pred.
Qed.

Theorem Zminus_diag : forall n : Z, n - n == 0.
Proof.
NZinduct n.
now rewrite Zminus_0_r.
intro n. rewrite Zminus_succ_r, Zminus_succ_l; now rewrite Zpred_succ.
Qed.

Theorem Zplus_opp_diag_l : forall n : Z, - n + n == 0.
Proof.
intro n; now rewrite Zplus_comm, Zplus_opp_r, Zminus_diag.
Qed.

Theorem Zplus_opp_diag_r : forall n : Z, n + (- n) == 0.
Proof.
intro n; rewrite Zplus_comm; apply Zplus_opp_diag_l.
Qed.

Theorem Zplus_opp_l : forall n m : Z, - m + n == n - m.
Proof.
intros n m; rewrite <- Zplus_opp_r; now rewrite Zplus_comm.
Qed.

Theorem Zplus_minus_assoc : forall n m p : Z, n + (m - p) == (n + m) - p.
Proof.
intros n m p; do 2 rewrite <- Zplus_opp_r; now rewrite Zplus_assoc.
Qed.

Theorem Zopp_involutive : forall n : Z, - (- n) == n.
Proof.
NZinduct n.
now do 2 rewrite Zopp_0.
intro n. rewrite Zopp_succ, Zopp_pred; now rewrite Zsucc_inj_wd.
Qed.

Theorem Zopp_plus_distr : forall n m : Z, - (n + m) == - n + (- m).
Proof.
intros n m; NZinduct n.
rewrite Zopp_0; now do 2 rewrite Zplus_0_l.
intro n. rewrite Zplus_succ_l; do 2 rewrite Zopp_succ; rewrite Zplus_pred_l.
now rewrite Zpred_inj_wd.
Qed.

Theorem Zopp_minus_distr : forall n m : Z, - (n - m) == - n + m.
Proof.
intros n m; rewrite <- Zplus_opp_r, Zopp_plus_distr.
now rewrite Zopp_involutive.
Qed.

Theorem Zopp_inj : forall n m : Z, - n == - m -> n == m.
Proof.
intros n m H. apply Zopp_wd in H. now do 2 rewrite Zopp_involutive in H.
Qed.

Theorem Zopp_inj_wd : forall n m : Z, - n == - m <-> n == m.
Proof.
intros n m; split; [apply Zopp_inj | apply Zopp_wd].
Qed.

Theorem Zeq_opp_l : forall n m : Z, - n == m <-> n == - m.
Proof.
intros n m. now rewrite <- (Zopp_inj_wd (- n) m), Zopp_involutive.
Qed.

Theorem Zeq_opp_r : forall n m : Z, n == - m <-> - n == m.
Proof.
symmetry; apply Zeq_opp_l.
Qed.

Theorem Zminus_plus_distr : forall n m p : Z, n - (m + p) == (n - m) - p.
Proof.
intros n m p; rewrite <- Zplus_opp_r, Zopp_plus_distr, Zplus_assoc.
now do 2 rewrite Zplus_opp_r.
Qed.

Theorem Zminus_minus_distr : forall n m p : Z, n - (m - p) == (n - m) + p.
Proof.
intros n m p; rewrite <- Zplus_opp_r, Zopp_minus_distr, Zplus_assoc.
now rewrite Zplus_opp_r.
Qed.

Theorem minus_opp_l : forall n m : Z, - n - m == - m - n.
Proof.
intros n m. do 2 rewrite <- Zplus_opp_r. now rewrite Zplus_comm.
Qed.

Theorem Zminus_opp_r : forall n m : Z, n - (- m) == n + m.
Proof.
intros n m; rewrite <- Zplus_opp_r; now rewrite Zopp_involutive.
Qed.

Theorem Zplus_minus_swap : forall n m p : Z, n + m - p == n - p + m.
Proof.
intros n m p. rewrite <- Zplus_minus_assoc, <- (Zplus_opp_r n p), <- Zplus_assoc.
now rewrite Zplus_opp_l.
Qed.

Theorem Zminus_cancel_l : forall n m p : Z, n - m == n - p <-> m == p.
Proof.
intros n m p. rewrite <- (Zplus_cancel_l (n - m) (n - p) (- n)).
do 2 rewrite Zplus_minus_assoc. rewrite Zplus_opp_diag_l; do 2 rewrite Zminus_0_l.
apply Zopp_inj_wd.
Qed.

Theorem Zminus_cancel_r : forall n m p : Z, n - p == m - p <-> n == m.
Proof.
intros n m p.
stepl (n - p + p == m - p + p) by apply Zplus_cancel_r.
now do 2 rewrite <- Zminus_minus_distr, Zminus_diag, Zminus_0_r.
Qed.

(* The next several theorems are devoted to moving terms from one side of
an equation to the other. The name contains the operation in the original
equation (plus or minus) and the indication whether the left or right term
is moved. *)

Theorem Zplus_move_l : forall n m p : Z, n + m == p <-> m == p - n.
Proof.
intros n m p.
stepl (n + m - n == p - n) by apply Zminus_cancel_r.
now rewrite Zplus_comm, <- Zplus_minus_assoc, Zminus_diag, Zplus_0_r.
Qed.

Theorem Zplus_move_r : forall n m p : Z, n + m == p <-> n == p - m.
Proof.
intros n m p; rewrite Zplus_comm; now apply Zplus_move_l.
Qed.

(* The two theorems above do not allow rewriting subformulas of the form
n - m == p to n == p + m since subtraction is in the right-hand side of
the equation. Hence the following two theorems. *)

Theorem Zminus_move_l : forall n m p : Z, n - m == p <-> - m == p - n.
Proof.
intros n m p; rewrite <- (Zplus_opp_r n m); apply Zplus_move_l.
Qed.

Theorem Zminus_move_r : forall n m p : Z, n - m == p <-> n == p + m.
Proof.
intros n m p; rewrite <- (Zplus_opp_r n m). now rewrite Zplus_move_r, Zminus_opp_r.
Qed.

Theorem Zplus_move_0_l : forall n m : Z, n + m == 0 <-> m == - n.
Proof.
intros n m; now rewrite Zplus_move_l, Zminus_0_l.
Qed.

Theorem Zplus_move_0_r : forall n m : Z, n + m == 0 <-> n == - m.
Proof.
intros n m; now rewrite Zplus_move_r, Zminus_0_l.
Qed.

Theorem Zminus_move_0_l : forall n m : Z, n - m == 0 <-> - m == - n.
Proof.
intros n m. now rewrite Zminus_move_l, Zminus_0_l.
Qed.

Theorem Zminus_move_0_r : forall n m : Z, n - m == 0 <-> n == m.
Proof.
intros n m. now rewrite Zminus_move_r, Zplus_0_l.
Qed.

(* The following section is devoted to cancellation of like terms. The name
includes the first operator and the position of the term being canceled. *)

Theorem Zplus_simpl_l : forall n m : Z, n + m - n == m.
Proof.
intros; now rewrite Zplus_minus_swap, Zminus_diag, Zplus_0_l.
Qed.

Theorem Zplus_simpl_r : forall n m : Z, n + m - m == n.
Proof.
intros; now rewrite <- Zplus_minus_assoc, Zminus_diag, Zplus_0_r.
Qed.

Theorem Zminus_simpl_l : forall n m : Z, - n - m + n == - m.
Proof.
intros; now rewrite <- Zplus_minus_swap, Zplus_opp_diag_l, Zminus_0_l.
Qed.

Theorem Zminus_simpl_r : forall n m : Z, n - m + m == n.
Proof.
intros; now rewrite <- Zminus_minus_distr, Zminus_diag, Zminus_0_r.
Qed.

(* Now we have two sums or differences; the name includes the two operators
and the position of the terms being canceled *)

Theorem Zplus_plus_simpl_l_l : forall n m p : Z, (n + m) - (n + p) == m - p.
Proof.
intros n m p. now rewrite (Zplus_comm n m), <- Zplus_minus_assoc,
Zminus_plus_distr, Zminus_diag, Zminus_0_l, Zplus_opp_r.
Qed.

Theorem Zplus_plus_simpl_l_r : forall n m p : Z, (n + m) - (p + n) == m - p.
Proof.
intros n m p. rewrite (Zplus_comm p n); apply Zplus_plus_simpl_l_l.
Qed.

Theorem Zplus_plus_simpl_r_l : forall n m p : Z, (n + m) - (m + p) == n - p.
Proof.
intros n m p. rewrite (Zplus_comm n m); apply Zplus_plus_simpl_l_l.
Qed.

Theorem Zplus_plus_simpl_r_r : forall n m p : Z, (n + m) - (p + m) == n - p.
Proof.
intros n m p. rewrite (Zplus_comm p m); apply Zplus_plus_simpl_r_l.
Qed.

Theorem Zminus_plus_simpl_r_l : forall n m p : Z, (n - m) + (m + p) == n + p.
Proof.
intros n m p. now rewrite <- Zminus_minus_distr, Zminus_plus_distr, Zminus_diag,
Zminus_0_l, Zminus_opp_r.
Qed.

Theorem Zminus_plus_simpl_r_r : forall n m p : Z, (n - m) + (p + m) == n + p.
Proof.
intros n m p. rewrite (Zplus_comm p m); apply Zminus_plus_simpl_r_l.
Qed.

(* Of course, there are many other variants *)

End ZPlusPropFunct.