1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
(** * Euclidean Division for integers (Trunc convention)
We use here the convention known as Trunc, or Round-Toward-Zero,
where [a/b] is the integer with the largest absolute value to
be between zero and the exact fraction. It can be summarized by:
[a = bq+r /\ 0 <= |r| < |b| /\ Sign(r) = Sign(a)]
This is the convention of Ocaml and many other systems (C, ASM, ...).
This convention is named "T" in the following paper:
R. Boute, "The Euclidean definition of the functions div and mod",
ACM Transactions on Programming Languages and Systems,
Vol. 14, No.2, pp. 127-144, April 1992.
See files [ZDivFloor] and [ZDivEucl] for others conventions.
*)
Module Type ZQuotProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
(Import C : ZSgnAbsProp A B).
(** We benefit from what already exists for NZ *)
Module Import Private_Div.
Module Quot2Div <: NZDiv A.
Definition div := quot.
Definition modulo := A.rem.
Definition div_wd := quot_wd.
Definition mod_wd := rem_wd.
Definition div_mod := quot_rem.
Definition mod_bound_pos := rem_bound_pos.
End Quot2Div.
Module NZQuot := Nop <+ NZDivProp A Quot2Div B.
End Private_Div.
Ltac pos_or_neg a :=
let LT := fresh "LT" in
let LE := fresh "LE" in
destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT].
(** Another formulation of the main equation *)
Lemma rem_eq :
forall a b, b~=0 -> a rem b == a - b*(a÷b).
Proof.
intros.
rewrite <- add_move_l.
symmetry. now apply quot_rem.
Qed.
(** A few sign rules (simple ones) *)
Lemma rem_opp_opp : forall a b, b ~= 0 -> (-a) rem (-b) == - (a rem b).
Proof. intros. now rewrite rem_opp_r, rem_opp_l. Qed.
Lemma quot_opp_l : forall a b, b ~= 0 -> (-a)÷b == -(a÷b).
Proof.
intros.
rewrite <- (mul_cancel_l _ _ b) by trivial.
rewrite <- (add_cancel_r _ _ ((-a) rem b)).
now rewrite <- quot_rem, rem_opp_l, mul_opp_r, <- opp_add_distr, <- quot_rem.
Qed.
Lemma quot_opp_r : forall a b, b ~= 0 -> a÷(-b) == -(a÷b).
Proof.
intros.
assert (-b ~= 0) by (now rewrite eq_opp_l, opp_0).
rewrite <- (mul_cancel_l _ _ (-b)) by trivial.
rewrite <- (add_cancel_r _ _ (a rem (-b))).
now rewrite <- quot_rem, rem_opp_r, mul_opp_opp, <- quot_rem.
Qed.
Lemma quot_opp_opp : forall a b, b ~= 0 -> (-a)÷(-b) == a÷b.
Proof. intros. now rewrite quot_opp_r, quot_opp_l, opp_involutive. Qed.
(** Uniqueness theorems *)
Theorem quot_rem_unique : forall b q1 q2 r1 r2 : t,
(0<=r1<b \/ b<r1<=0) -> (0<=r2<b \/ b<r2<=0) ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
destruct Hr1; destruct Hr2; try (intuition; order).
apply NZQuot.div_mod_unique with b; trivial.
rewrite <- (opp_inj_wd r1 r2).
apply NZQuot.div_mod_unique with (-b); trivial.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
now rewrite 2 mul_opp_l, <- 2 opp_add_distr, opp_inj_wd.
Qed.
Theorem quot_unique:
forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a÷b.
Proof. intros; now apply NZQuot.div_unique with r. Qed.
Theorem rem_unique:
forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a rem b.
Proof. intros; now apply NZQuot.mod_unique with q. Qed.
(** A division by itself returns 1 *)
Lemma quot_same : forall a, a~=0 -> a÷a == 1.
Proof.
intros. pos_or_neg a. apply NZQuot.div_same; order.
rewrite <- quot_opp_opp by trivial. now apply NZQuot.div_same.
Qed.
Lemma rem_same : forall a, a~=0 -> a rem a == 0.
Proof.
intros. rewrite rem_eq, quot_same by trivial. nzsimpl. apply sub_diag.
Qed.
(** A division of a small number by a bigger one yields zero. *)
Theorem quot_small: forall a b, 0<=a<b -> a÷b == 0.
Proof. exact NZQuot.div_small. Qed.
(** Same situation, in term of remulo: *)
Theorem rem_small: forall a b, 0<=a<b -> a rem b == a.
Proof. exact NZQuot.mod_small. Qed.
(** * Basic values of divisions and modulo. *)
Lemma quot_0_l: forall a, a~=0 -> 0÷a == 0.
Proof.
intros. pos_or_neg a. apply NZQuot.div_0_l; order.
rewrite <- quot_opp_opp, opp_0 by trivial. now apply NZQuot.div_0_l.
Qed.
Lemma rem_0_l: forall a, a~=0 -> 0 rem a == 0.
Proof.
intros; rewrite rem_eq, quot_0_l; now nzsimpl.
Qed.
Lemma quot_1_r: forall a, a÷1 == a.
Proof.
intros. pos_or_neg a. now apply NZQuot.div_1_r.
apply opp_inj. rewrite <- quot_opp_l. apply NZQuot.div_1_r; order.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq, lt_0_1.
Qed.
Lemma rem_1_r: forall a, a rem 1 == 0.
Proof.
intros. rewrite rem_eq, quot_1_r; nzsimpl; auto using sub_diag.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq; apply lt_0_1.
Qed.
Lemma quot_1_l: forall a, 1<a -> 1÷a == 0.
Proof. exact NZQuot.div_1_l. Qed.
Lemma rem_1_l: forall a, 1<a -> 1 rem a == 1.
Proof. exact NZQuot.mod_1_l. Qed.
Lemma quot_mul : forall a b, b~=0 -> (a*b)÷b == a.
Proof.
intros. pos_or_neg a; pos_or_neg b. apply NZQuot.div_mul; order.
rewrite <- quot_opp_opp, <- mul_opp_r by order. apply NZQuot.div_mul; order.
rewrite <- opp_inj_wd, <- quot_opp_l, <- mul_opp_l by order.
apply NZQuot.div_mul; order.
rewrite <- opp_inj_wd, <- quot_opp_r, <- mul_opp_opp by order.
apply NZQuot.div_mul; order.
Qed.
Lemma rem_mul : forall a b, b~=0 -> (a*b) rem b == 0.
Proof.
intros. rewrite rem_eq, quot_mul by trivial. rewrite mul_comm; apply sub_diag.
Qed.
Theorem quot_unique_exact a b q: b~=0 -> a == b*q -> q == a÷b.
Proof.
intros Hb H. rewrite H, mul_comm. symmetry. now apply quot_mul.
Qed.
(** The sign of [a rem b] is the one of [a] (when it's not null) *)
Lemma rem_nonneg : forall a b, b~=0 -> 0 <= a -> 0 <= a rem b.
Proof.
intros. pos_or_neg b. destruct (rem_bound_pos a b); order.
rewrite <- rem_opp_r; trivial.
destruct (rem_bound_pos a (-b)); trivial.
Qed.
Lemma rem_nonpos : forall a b, b~=0 -> a <= 0 -> a rem b <= 0.
Proof.
intros a b Hb Ha.
apply opp_nonneg_nonpos. apply opp_nonneg_nonpos in Ha.
rewrite <- rem_opp_l by trivial. now apply rem_nonneg.
Qed.
Lemma rem_sign_mul : forall a b, b~=0 -> 0 <= (a rem b) * a.
Proof.
intros a b Hb. destruct (le_ge_cases 0 a).
apply mul_nonneg_nonneg; trivial. now apply rem_nonneg.
apply mul_nonpos_nonpos; trivial. now apply rem_nonpos.
Qed.
Lemma rem_sign_nz : forall a b, b~=0 -> a rem b ~= 0 ->
sgn (a rem b) == sgn a.
Proof.
intros a b Hb H. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
rewrite 2 sgn_pos; try easy.
generalize (rem_nonneg a b Hb (lt_le_incl _ _ LT)). order.
now rewrite <- EQ, rem_0_l, sgn_0.
rewrite 2 sgn_neg; try easy.
generalize (rem_nonpos a b Hb (lt_le_incl _ _ LT)). order.
Qed.
Lemma rem_sign : forall a b, a~=0 -> b~=0 -> sgn (a rem b) ~= -sgn a.
Proof.
intros a b Ha Hb H.
destruct (eq_decidable (a rem b) 0) as [EQ|NEQ].
apply Ha, sgn_null_iff, opp_inj. now rewrite <- H, opp_0, EQ, sgn_0.
apply Ha, sgn_null_iff. apply eq_mul_0_l with 2; try order'. nzsimpl'.
apply add_move_0_l. rewrite <- H. symmetry. now apply rem_sign_nz.
Qed.
(** Operations and absolute value *)
Lemma rem_abs_l : forall a b, b ~= 0 -> (abs a) rem b == abs (a rem b).
Proof.
intros a b Hb. destruct (le_ge_cases 0 a) as [LE|LE].
rewrite 2 abs_eq; try easy. now apply rem_nonneg.
rewrite 2 abs_neq, rem_opp_l; try easy. now apply rem_nonpos.
Qed.
Lemma rem_abs_r : forall a b, b ~= 0 -> a rem (abs b) == a rem b.
Proof.
intros a b Hb. destruct (le_ge_cases 0 b).
now rewrite abs_eq. now rewrite abs_neq, ?rem_opp_r.
Qed.
Lemma rem_abs : forall a b, b ~= 0 -> (abs a) rem (abs b) == abs (a rem b).
Proof.
intros. now rewrite rem_abs_r, rem_abs_l.
Qed.
Lemma quot_abs_l : forall a b, b ~= 0 -> (abs a)÷b == (sgn a)*(a÷b).
Proof.
intros a b Hb. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
rewrite abs_eq, sgn_pos by order. now nzsimpl.
rewrite <- EQ, abs_0, quot_0_l; trivial. now nzsimpl.
rewrite abs_neq, quot_opp_l, sgn_neg by order.
rewrite mul_opp_l. now nzsimpl.
Qed.
Lemma quot_abs_r : forall a b, b ~= 0 -> a÷(abs b) == (sgn b)*(a÷b).
Proof.
intros a b Hb. destruct (lt_trichotomy 0 b) as [LT|[EQ|LT]].
rewrite abs_eq, sgn_pos by order. now nzsimpl.
order.
rewrite abs_neq, quot_opp_r, sgn_neg by order.
rewrite mul_opp_l. now nzsimpl.
Qed.
Lemma quot_abs : forall a b, b ~= 0 -> (abs a)÷(abs b) == abs (a÷b).
Proof.
intros a b Hb.
pos_or_neg a; [rewrite (abs_eq a)|rewrite (abs_neq a)];
try apply opp_nonneg_nonpos; try order.
pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
try apply opp_nonneg_nonpos; try order.
rewrite abs_eq; try easy. apply NZQuot.div_pos; order.
rewrite <- abs_opp, <- quot_opp_r, abs_eq; try easy.
apply NZQuot.div_pos; order.
pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
try apply opp_nonneg_nonpos; try order.
rewrite <- (abs_opp (_÷_)), <- quot_opp_l, abs_eq; try easy.
apply NZQuot.div_pos; order.
rewrite <- (quot_opp_opp a b), abs_eq; try easy.
apply NZQuot.div_pos; order.
Qed.
(** We have a general bound for absolute values *)
Lemma rem_bound_abs :
forall a b, b~=0 -> abs (a rem b) < abs b.
Proof.
intros. rewrite <- rem_abs; trivial.
apply rem_bound_pos. apply abs_nonneg. now apply abs_pos.
Qed.
(** * Order results about rem and quot *)
(** A modulo cannot grow beyond its starting point. *)
Theorem rem_le: forall a b, 0<=a -> 0<b -> a rem b <= a.
Proof. exact NZQuot.mod_le. Qed.
Theorem quot_pos : forall a b, 0<=a -> 0<b -> 0<= a÷b.
Proof. exact NZQuot.div_pos. Qed.
Lemma quot_str_pos : forall a b, 0<b<=a -> 0 < a÷b.
Proof. exact NZQuot.div_str_pos. Qed.
Lemma quot_small_iff : forall a b, b~=0 -> (a÷b==0 <-> abs a < abs b).
Proof.
intros. pos_or_neg a; pos_or_neg b.
rewrite NZQuot.div_small_iff; try order. rewrite 2 abs_eq; intuition; order.
rewrite <- opp_inj_wd, opp_0, <- quot_opp_r, NZQuot.div_small_iff by order.
rewrite (abs_eq a), (abs_neq' b); intuition; order.
rewrite <- opp_inj_wd, opp_0, <- quot_opp_l, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_eq b); intuition; order.
rewrite <- quot_opp_opp, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_neq' b); intuition; order.
Qed.
Lemma rem_small_iff : forall a b, b~=0 -> (a rem b == a <-> abs a < abs b).
Proof.
intros. rewrite rem_eq, <- quot_small_iff by order.
rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l.
rewrite eq_sym_iff, eq_mul_0. tauto.
Qed.
(** As soon as the divisor is strictly greater than 1,
the division is strictly decreasing. *)
Lemma quot_lt : forall a b, 0<a -> 1<b -> a÷b < a.
Proof. exact NZQuot.div_lt. Qed.
(** [le] is compatible with a positive division. *)
Lemma quot_le_mono : forall a b c, 0<c -> a<=b -> a÷c <= b÷c.
Proof.
intros. pos_or_neg a. apply NZQuot.div_le_mono; auto.
pos_or_neg b. apply le_trans with 0.
rewrite <- opp_nonneg_nonpos, <- quot_opp_l by order.
apply quot_pos; order.
apply quot_pos; order.
rewrite opp_le_mono in *. rewrite <- 2 quot_opp_l by order.
apply NZQuot.div_le_mono; intuition; order.
Qed.
(** With this choice of division,
rounding of quot is always done toward zero: *)
Lemma mul_quot_le : forall a b, 0<=a -> b~=0 -> 0 <= b*(a÷b) <= a.
Proof.
intros. pos_or_neg b.
split.
apply mul_nonneg_nonneg; [|apply quot_pos]; order.
apply NZQuot.mul_div_le; order.
rewrite <- mul_opp_opp, <- quot_opp_r by order.
split.
apply mul_nonneg_nonneg; [|apply quot_pos]; order.
apply NZQuot.mul_div_le; order.
Qed.
Lemma mul_quot_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a÷b) <= 0.
Proof.
intros.
rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
destruct (mul_quot_le (-a) b); tauto.
Qed.
(** For positive numbers, considering [S (a÷b)] leads to an upper bound for [a] *)
Lemma mul_succ_quot_gt: forall a b, 0<=a -> 0<b -> a < b*(S (a÷b)).
Proof. exact NZQuot.mul_succ_div_gt. Qed.
(** Similar results with negative numbers *)
Lemma mul_pred_quot_lt: forall a b, a<=0 -> 0<b -> b*(P (a÷b)) < a.
Proof.
intros.
rewrite opp_lt_mono, <- mul_opp_r, opp_pred, <- quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
now apply mul_succ_quot_gt.
Qed.
Lemma mul_pred_quot_gt: forall a b, 0<=a -> b<0 -> a < b*(P (a÷b)).
Proof.
intros.
rewrite <- mul_opp_opp, opp_pred, <- quot_opp_r by order.
rewrite <- opp_pos_neg in *.
now apply mul_succ_quot_gt.
Qed.
Lemma mul_succ_quot_lt: forall a b, a<=0 -> b<0 -> b*(S (a÷b)) < a.
Proof.
intros.
rewrite opp_lt_mono, <- mul_opp_l, <- quot_opp_opp by order.
rewrite <- opp_nonneg_nonpos, <- opp_pos_neg in *.
now apply mul_succ_quot_gt.
Qed.
(** Inequality [mul_quot_le] is exact iff the modulo is zero. *)
Lemma quot_exact : forall a b, b~=0 -> (a == b*(a÷b) <-> a rem b == 0).
Proof.
intros. rewrite rem_eq by order. rewrite sub_move_r; nzsimpl; tauto.
Qed.
(** Some additional inequalities about quot. *)
Theorem quot_lt_upper_bound:
forall a b q, 0<=a -> 0<b -> a < b*q -> a÷b < q.
Proof. exact NZQuot.div_lt_upper_bound. Qed.
Theorem quot_le_upper_bound:
forall a b q, 0<b -> a <= b*q -> a÷b <= q.
Proof.
intros.
rewrite <- (quot_mul q b) by order.
apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
Theorem quot_le_lower_bound:
forall a b q, 0<b -> b*q <= a -> q <= a÷b.
Proof.
intros.
rewrite <- (quot_mul q b) by order.
apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
(** A division respects opposite monotonicity for the divisor *)
Lemma quot_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p÷r <= p÷q.
Proof. exact NZQuot.div_le_compat_l. Qed.
(** * Relations between usual operations and rem and quot *)
(** Unlike with other division conventions, some results here aren't
always valid, and need to be restricted. For instance
[(a+b*c) rem c <> a rem c] for [a=9,b=-5,c=2] *)
Lemma rem_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
(a + b * c) rem c == a rem c.
Proof.
assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) rem c == a rem c).
intros. pos_or_neg c. apply NZQuot.mod_add; order.
rewrite <- (rem_opp_r a), <- (rem_opp_r (a+b*c)) by order.
rewrite <- mul_opp_opp in *.
apply NZQuot.mod_add; order.
intros a b c Hc Habc.
destruct (le_0_mul _ _ Habc) as [(Habc',Ha)|(Habc',Ha)]. auto.
apply opp_inj. revert Ha Habc'.
rewrite <- 2 opp_nonneg_nonpos.
rewrite <- 2 rem_opp_l, opp_add_distr, <- mul_opp_l by order. auto.
Qed.
Lemma quot_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
(a + b * c) ÷ c == a ÷ c + b.
Proof.
intros.
rewrite <- (mul_cancel_l _ _ c) by trivial.
rewrite <- (add_cancel_r _ _ ((a+b*c) rem c)).
rewrite <- quot_rem, rem_add by trivial.
now rewrite mul_add_distr_l, add_shuffle0, <-quot_rem, mul_comm.
Qed.
Lemma quot_add_l: forall a b c, b~=0 -> 0 <= (a*b+c)*c ->
(a * b + c) ÷ b == a + c ÷ b.
Proof.
intros a b c. rewrite add_comm, (add_comm a). now apply quot_add.
Qed.
(** Cancellations. *)
Lemma quot_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
(a*c)÷(b*c) == a÷b.
Proof.
assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a*c)÷(b*c) == a÷b).
intros. pos_or_neg c. apply NZQuot.div_mul_cancel_r; order.
rewrite <- quot_opp_opp, <- 2 mul_opp_r. apply NZQuot.div_mul_cancel_r; order.
rewrite <- neq_mul_0; intuition order.
assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a*c)÷(b*c) == a÷b).
intros. pos_or_neg b. apply Aux1; order.
apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_l; try order. apply Aux1; order.
rewrite <- neq_mul_0; intuition order.
intros. pos_or_neg a. apply Aux2; order.
apply opp_inj. rewrite <- 2 quot_opp_l, <- mul_opp_l; try order. apply Aux2; order.
rewrite <- neq_mul_0; intuition order.
Qed.
Lemma quot_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
(c*a)÷(c*b) == a÷b.
Proof.
intros. rewrite !(mul_comm c); now apply quot_mul_cancel_r.
Qed.
Lemma mul_rem_distr_r: forall a b c, b~=0 -> c~=0 ->
(a*c) rem (b*c) == (a rem b) * c.
Proof.
intros.
assert (b*c ~= 0) by (rewrite <- neq_mul_0; tauto).
rewrite ! rem_eq by trivial.
rewrite quot_mul_cancel_r by order.
now rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a÷b) c).
Qed.
Lemma mul_rem_distr_l: forall a b c, b~=0 -> c~=0 ->
(c*a) rem (c*b) == c * (a rem b).
Proof.
intros; rewrite !(mul_comm c); now apply mul_rem_distr_r.
Qed.
(** Operations modulo. *)
Theorem rem_rem: forall a n, n~=0 ->
(a rem n) rem n == a rem n.
Proof.
intros. pos_or_neg a; pos_or_neg n. apply NZQuot.mod_mod; order.
rewrite <- ! (rem_opp_r _ n) by trivial. apply NZQuot.mod_mod; order.
apply opp_inj. rewrite <- !rem_opp_l by order. apply NZQuot.mod_mod; order.
apply opp_inj. rewrite <- !rem_opp_opp by order. apply NZQuot.mod_mod; order.
Qed.
Lemma mul_rem_idemp_l : forall a b n, n~=0 ->
((a rem n)*b) rem n == (a*b) rem n.
Proof.
assert (Aux1 : forall a b n, 0<=a -> 0<=b -> n~=0 ->
((a rem n)*b) rem n == (a*b) rem n).
intros. pos_or_neg n. apply NZQuot.mul_mod_idemp_l; order.
rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.mul_mod_idemp_l; order.
assert (Aux2 : forall a b n, 0<=a -> n~=0 ->
((a rem n)*b) rem n == (a*b) rem n).
intros. pos_or_neg b. now apply Aux1.
apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_r by order.
apply Aux1; order.
intros a b n Hn. pos_or_neg a. now apply Aux2.
apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_l, <-rem_opp_l by order.
apply Aux2; order.
Qed.
Lemma mul_rem_idemp_r : forall a b n, n~=0 ->
(a*(b rem n)) rem n == (a*b) rem n.
Proof.
intros. rewrite !(mul_comm a). now apply mul_rem_idemp_l.
Qed.
Theorem mul_rem: forall a b n, n~=0 ->
(a * b) rem n == ((a rem n) * (b rem n)) rem n.
Proof.
intros. now rewrite mul_rem_idemp_l, mul_rem_idemp_r.
Qed.
(** addition and modulo
Generally speaking, unlike with other conventions, we don't have
[(a+b) rem n = (a rem n + b rem n) rem n]
for any a and b.
For instance, take (8 + (-10)) rem 3 = -2 whereas
(8 rem 3 + (-10 rem 3)) rem 3 = 1.
*)
Lemma add_rem_idemp_l : forall a b n, n~=0 -> 0 <= a*b ->
((a rem n)+b) rem n == (a+b) rem n.
Proof.
assert (Aux : forall a b n, 0<=a -> 0<=b -> n~=0 ->
((a rem n)+b) rem n == (a+b) rem n).
intros. pos_or_neg n. apply NZQuot.add_mod_idemp_l; order.
rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.add_mod_idemp_l; order.
intros a b n Hn Hab. destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)].
now apply Aux.
apply opp_inj. rewrite <-2 rem_opp_l, 2 opp_add_distr, <-rem_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
now apply Aux.
Qed.
Lemma add_rem_idemp_r : forall a b n, n~=0 -> 0 <= a*b ->
(a+(b rem n)) rem n == (a+b) rem n.
Proof.
intros. rewrite !(add_comm a). apply add_rem_idemp_l; trivial.
now rewrite mul_comm.
Qed.
Theorem add_rem: forall a b n, n~=0 -> 0 <= a*b ->
(a+b) rem n == (a rem n + b rem n) rem n.
Proof.
intros a b n Hn Hab. rewrite add_rem_idemp_l, add_rem_idemp_r; trivial.
reflexivity.
destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)];
destruct (le_0_mul _ _ (rem_sign_mul b n Hn)) as [(Hb',Hm)|(Hb',Hm)];
auto using mul_nonneg_nonneg, mul_nonpos_nonpos.
setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
Qed.
(** Conversely, the following results need less restrictions here. *)
Lemma quot_quot : forall a b c, b~=0 -> c~=0 ->
(a÷b)÷c == a÷(b*c).
Proof.
assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a÷b)÷c == a÷(b*c)).
intros. pos_or_neg c. apply NZQuot.div_div; order.
apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_r; trivial.
apply NZQuot.div_div; order.
rewrite <- neq_mul_0; intuition order.
assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a÷b)÷c == a÷(b*c)).
intros. pos_or_neg b. apply Aux1; order.
apply opp_inj. rewrite <- quot_opp_l, <- 2 quot_opp_r, <- mul_opp_l; trivial.
apply Aux1; trivial.
rewrite <- neq_mul_0; intuition order.
intros. pos_or_neg a. apply Aux2; order.
apply opp_inj. rewrite <- 3 quot_opp_l; try order. apply Aux2; order.
rewrite <- neq_mul_0. tauto.
Qed.
Lemma mod_mul_r : forall a b c, b~=0 -> c~=0 ->
a rem (b*c) == a rem b + b*((a÷b) rem c).
Proof.
intros a b c Hb Hc.
apply add_cancel_l with (b*c*(a÷(b*c))).
rewrite <- quot_rem by (apply neq_mul_0; split; order).
rewrite <- quot_quot by trivial.
rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l.
rewrite <- quot_rem by order.
apply quot_rem; order.
Qed.
Lemma rem_quot: forall a b, b~=0 ->
a rem b ÷ b == 0.
Proof.
intros a b Hb.
rewrite quot_small_iff by assumption.
auto using rem_bound_abs.
Qed.
(** A last inequality: *)
Theorem quot_mul_le:
forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a÷b) <= (c*a)÷b.
Proof. exact NZQuot.div_mul_le. Qed.
End ZQuotProp.
|