aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZDivMath.v
blob: dfc9ee4bc73c965fb2a5243832e9c0ab406bd90e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Euclidean Division for integers

    We use here the "mathematical" convention, i.e. Round-Toward-Bottom : 
    [a = bq+r /\ 0 < r < |b| ]
 *)

Require Import ZAxioms ZProperties NZDiv.

Open Scope NumScope.

Module Type ZDiv (Import Z : ZAxiomsSig).

 Parameter Inline div : t -> t -> t.
 Parameter Inline modulo : t -> t -> t.

 Infix "/" := div : NumScope.
 Infix "mod" := modulo (at level 40, no associativity) : NumScope.

 Instance div_wd : Proper (eq==>eq==>eq) div.
 Instance mod_wd : Proper (eq==>eq==>eq) modulo.

 Definition abs z := max z (-z).

 Axiom div_mod : forall a b, b ~= 0 -> a == b*(a/b) + (a mod b).
 Axiom mod_always_pos : forall a b, 0 <= a mod b < abs b.

End ZDiv.

Module Type ZDivSig := ZAxiomsSig <+ ZDiv.

Module ZDivPropFunct (Import Z : ZDivSig).
 (* TODO: en faire un arg du foncteur + comprendre le bug de SearchAbout *)
 Module Import ZP := ZPropFunct Z.

(** We benefit from what already exists for NZ *)

 Module Z' <: NZDivSig.
  Include Z.
  Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
  Proof.
  intros. rewrite <- (max_l b (-b)) at 3.
  apply mod_always_pos. 
  apply le_trans with 0; [ rewrite opp_nonpos_nonneg |]; order.
  Qed.
 End Z'.
 Module Import NZDivP := NZDivPropFunct Z'.

(** Another formulation of the main equation *)

Lemma mod_eq :
 forall a b, b~=0 -> a mod b == a - b*(a/b).
Proof.
intros.
rewrite <- add_move_l.
symmetry. apply div_mod; auto.
Qed.

(* STILL TODO ...

(** A few sign rules (simple ones) *)

Lemma div_mod_opp_opp : forall a b, b~=0 ->
 (-a/-b) == a/b /\ (-a) mod (-b) == -(a mod b).
Proof.
intros a b Hb.
assert (-b ~= 0).
 contradict Hb. rewrite eq_opp_l, opp_0 in Hb; auto.
assert (EQ := opp_involutive a).
rewrite (div_mod a b) in EQ at 2; auto.
rewrite (div_mod (-a) (-b)) in EQ; auto.

destruct (lt_ge_cases 0 b).
rewrite opp_add_distr in EQ.
rewrite <- mul_opp_l, opp_involutive in EQ.
destruct (div_mod_unique b (-a/-b) (a/b) (-(-a mod -b)) (a mod b)); auto.
rewrite <- (opp_involutive b) at 3.
rewrite <- opp_lt_mono.
rewrite opp_nonneg_nonpos.
destruct (mod_neg_bound (-a) (-b)); auto.
rewrite opp_neg_pos; auto.
apply mod_pos_bound; auto.
split; auto.
rewrite eq_opp_r; auto.

rewrite eq_opp_l in EQ.
rewrite opp_add_distr in EQ.
rewrite <- mul_opp_l in EQ.
destruct (div_mod_unique (-b) (-a/-b) (a/b) (-a mod -b) (-(a mod b))); auto.
apply mod_pos_bound; auto.
rewrite opp_pos_neg; order.
rewrite <- opp_lt_mono.
rewrite opp_nonneg_nonpos.
destruct (mod_neg_bound a b); intuition; order.
Qed.

Lemma div_opp_opp : forall a b, b~=0 -> -a/-b == a/b.
Proof.
intros; destruct (div_mod_opp_opp a b); auto.
Qed.

Lemma mod_opp_opp : forall a b, b~=0 -> (-a) mod (-b) == - (a mod b).
Proof.
intros; destruct (div_mod_opp_opp a b); auto.
Qed.


(** Uniqueness theorems *)


Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
  (0<=r1<b \/ b<r1<=0) -> (0<=r2<b \/ b<r2<=0) ->
  b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
destruct Hr1; destruct Hr2; try (intuition; order).
apply div_mod_unique with b; auto.
rewrite <- opp_inj_wd in EQ.
rewrite 2 opp_add_distr in EQ. rewrite <- 2 mul_opp_l in EQ.
rewrite <- (opp_inj_wd r1 r2).
apply div_mod_unique with (-b); auto.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition.
Qed.

Theorem div_unique:
 forall a b q r, (0<=r<b \/ b<r<=0) -> a == b*q + r -> q == a/b.
Proof.
intros a b q r Hr EQ.
assert (Hb : b~=0) by (destruct Hr; intuition; order).
rewrite (div_mod a b Hb) in EQ.
destruct (div_mod_unique b (a/b) q (a mod b) r); auto.
destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound];
 intuition order.
Qed.

Theorem div_unique_pos:
 forall a b q r, 0<=r<b -> a == b*q + r -> q == a/b.
Proof. intros; apply div_unique with r; auto. Qed.

Theorem div_unique_neg:
 forall a b q r, 0<=r<b -> a == b*q + r -> q == a/b.
Proof. intros; apply div_unique with r; auto. Qed.

Theorem mod_unique:
 forall a b q r, (0<=r<b \/ b<r<=0) -> a == b*q + r -> r == a mod b.
Proof.
intros a b q r Hr EQ.
assert (Hb : b~=0) by (destruct Hr; intuition; order).
rewrite (div_mod a b Hb) in EQ.
destruct (div_mod_unique b (a/b) q (a mod b) r); auto.
destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound];
 intuition order.
Qed.

Theorem mod_unique_pos:
 forall a b q r, 0<=r<b -> a == b*q + r -> r == a mod b.
Proof. intros; apply mod_unique with q; auto. Qed.

Theorem mod_unique_neg:
 forall a b q r, b<r<=0 -> a == b*q + r -> r == a mod b.
Proof. intros; apply mod_unique with q; auto. Qed.


(** A division by itself returns 1 *)

Ltac pos_or_neg a :=
 destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT].

Lemma div_same : forall a, a~=0 -> a/a == 1.
Proof.
intros. pos_or_neg a. apply div_same; order.
rewrite <- div_opp_opp; auto. apply div_same; auto.
Qed.

Lemma mod_same : forall a, a~=0 -> a mod a == 0.
Proof.
intros. rewrite mod_eq, div_same; auto. nzsimpl. apply sub_diag.
Qed.

(** A division of a small number by a bigger one yields zero. *)

Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
Proof. exact div_small. Qed.

(** Same situation, in term of modulo: *)

Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
Proof. exact mod_small. Qed.

(** * Basic values of divisions and modulo. *)

Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
Proof.
intros. pos_or_neg a. apply div_0_l; order.
rewrite <- div_opp_opp, opp_0; auto. apply div_0_l; auto.
Qed.

Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
Proof.
intros; rewrite mod_eq, div_0_l; nzsimpl; auto.
Qed.

Lemma div_1_r: forall a, a/1 == a.
Proof.
intros. symmetry. apply div_unique with 0. left. split; order || apply lt_0_1.
nzsimpl; auto.
Qed.

Lemma mod_1_r: forall a, a mod 1 == 0.
Proof.
intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq; apply lt_0_1.
Qed.

Lemma div_1_l: forall a, 1<a -> 1/a == 0.
Proof. exact div_1_l. Qed.

Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
Proof. exact mod_1_l. Qed.

Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
Proof.
intros. symmetry. apply div_unique with 0.
destruct (lt_ge_cases 0 b); [left|right]; split; order.
nzsimpl; apply mul_comm.
Qed.

Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
Proof.
intros. rewrite mod_eq, div_mul; auto. rewrite mul_comm; apply sub_diag.
Qed.

(** * Order results about mod and div *)

(** A modulo cannot grow beyond its starting point. *)

Theorem mod_le: forall a b, 0<=a -> 0<b -> a mod b <= a.
Proof. exact mod_le. Qed.

Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b.
Proof. exact div_pos. Qed.

Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
Proof. exact div_str_pos. Qed.

(* A REVOIR APRES LA REGLE DES SIGNES
Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a<b \/ b<a<=0).
intros. apply div_small_iff; auto'. Qed.

Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> a<b).
Proof. intros. apply mod_small_iff; auto'. Qed.

Lemma div_str_pos_iff : forall a b, b~=0 -> (0<a/b <-> b<=a).
Proof. intros. apply div_str_pos_iff; auto'. Qed.
*)

(** As soon as the divisor is strictly greater than 1,
    the division is strictly decreasing. *)

Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
Proof. exact div_lt. Qed.

(* STILL TODO !!

(** [le] is compatible with a positive division. *)

Lemma div_le_mono: forall a b c, 0<c -> a<=b -> a/c <= b/c.
Proof.
intros. destruct (le_gt_cases 0 a).
apply div_le_mono; auto.
destruct (lt_ge_cases 0 b).
apply le_trans with 0.
 admit. (* !!! *)
apply div_pos; order.
Admitted. (* !!! *)

Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a.
Proof. intros. apply mul_div_le; auto'. Qed.

Lemma mul_succ_div_gt: forall a b, b~=0 -> a < b*(S (a/b)).
Proof. intros; apply mul_succ_div_gt; auto'. Qed.

(** The previous inequality is exact iff the modulo is zero. *)

Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0).
Proof. intros. apply div_exact; auto'. Qed.

(** Some additionnal inequalities about div. *)

Theorem div_lt_upper_bound:
  forall a b q, b~=0 -> a < b*q -> a/b < q.
Proof. intros. apply div_lt_upper_bound; auto'. Qed.

Theorem div_le_upper_bound:
  forall a b q, b~=0 -> a <= b*q -> a/b <= q.
Proof. intros; apply div_le_upper_bound; auto'. Qed.

Theorem div_le_lower_bound:
  forall a b q, b~=0 -> b*q <= a -> q <= a/b.
Proof. intros; apply div_le_lower_bound; auto'. Qed.

(** A division respects opposite monotonicity for the divisor *)

Lemma div_le_compat_l: forall p q r, 0<q<r -> p/r <= p/q.
Proof. intros. apply div_le_compat_l. auto'. auto. Qed.

(** * Relations between usual operations and mod and div *)

Lemma mod_add : forall a b c, c~=0 ->
 (a + b * c) mod c == a mod c.
Proof. intros. apply mod_add; auto'. Qed.

Lemma div_add : forall a b c, c~=0 ->
 (a + b * c) / c == a / c + b.
Proof. intros. apply div_add; auto'. Qed.

Lemma div_add_l: forall a b c, b~=0 ->
 (a * b + c) / b == a + c / b.
Proof. intros. apply div_add_l; auto'. Qed.

(** Cancellations. *)

Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
 (a*c)/(b*c) == a/b.
Proof. intros. apply div_mul_cancel_r; auto'. Qed.

Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
 (c*a)/(c*b) == a/b.
Proof. intros. apply div_mul_cancel_l; auto'. Qed.

Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 ->
  (c*a) mod (c*b) == c * (a mod b).
Proof. intros. apply mul_mod_distr_l; auto'. Qed.

Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 ->
  (a*c) mod (b*c) == (a mod b) * c.
Proof. intros. apply mul_mod_distr_r; auto'. Qed.

(** Operations modulo. *)

Theorem mod_mod: forall a n, n~=0 ->
 (a mod n) mod n == a mod n.
Proof. intros. apply mod_mod; auto'. Qed.

Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
 ((a mod n)*b) mod n == (a*b) mod n.
Proof. intros. apply mul_mod_idemp_l; auto'. Qed.

Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
 (a*(b mod n)) mod n == (a*b) mod n.
Proof. intros. apply mul_mod_idemp_r; auto'. Qed.

Theorem mul_mod: forall a b n, n~=0 ->
 (a * b) mod n == ((a mod n) * (b mod n)) mod n.
Proof. intros. apply mul_mod; auto'. Qed.

Lemma add_mod_idemp_l : forall a b n, n~=0 ->
 ((a mod n)+b) mod n == (a+b) mod n.
Proof. intros. apply add_mod_idemp_l; auto'. Qed.

Lemma add_mod_idemp_r : forall a b n, n~=0 ->
 (a+(b mod n)) mod n == (a+b) mod n.
Proof. intros. apply add_mod_idemp_r; auto'. Qed.

Theorem add_mod: forall a b n, n~=0 ->
 (a+b) mod n == (a mod n + b mod n) mod n.
Proof. intros. apply add_mod; auto'. Qed.

Lemma div_div : forall a b c, b~=0 -> c~=0 ->
 (a/b)/c == a/(b*c).
Proof. intros. apply div_div; auto'. Qed.

(** A last inequality: *)

Theorem div_mul_le:
 forall a b c, b~=0 -> c*(a/b) <= (c*a)/b.
Proof. intros. apply div_mul_le; auto'. Qed.

(** mod is related to divisibility *)

Lemma mod_divides : forall a b, b~=0 ->
 (a mod b == 0 <-> exists c, a == b*c).
Proof. intros. apply mod_divides; auto'. Qed.
*)
*)

End ZDivPropFunct.