1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
(** * Euclidean Division for integers, Euclid convention
We use here the "usual" formulation of the Euclid Theorem
[forall a b, b<>0 -> exists b q, a = b*q+r /\ 0 < r < |b| ]
The outcome of the modulo function is hence always positive.
This corresponds to convention "E" in the following paper:
R. Boute, "The Euclidean definition of the functions div and mod",
ACM Transactions on Programming Languages and Systems,
Vol. 14, No.2, pp. 127-144, April 1992.
See files [ZDivTrunc] and [ZDivFloor] for others conventions.
We simply extend NZDiv with a bound for modulo that holds
regardless of the sign of a and b. This new specification
subsume mod_bound_pos, which nonetheless stays there for
subtyping. Note also that ZAxiomSig now already contain
a div and a modulo (that follow the Floor convention).
We just ignore them here.
*)
Module Type EuclidSpec (Import A : ZAxiomsSig')(Import B : DivMod' A).
Axiom mod_always_pos : forall a b, b ~= 0 -> 0 <= a mod b < abs b.
End EuclidSpec.
Module Type ZEuclid (Z:ZAxiomsSig) := NZDiv.NZDiv Z <+ EuclidSpec Z.
Module Type ZEuclid' (Z:ZAxiomsSig) := NZDiv.NZDiv' Z <+ EuclidSpec Z.
Module ZEuclidProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
(Import C : ZSgnAbsProp A B)
(Import D : ZEuclid' A).
Module Import Private_NZDiv := Nop <+ NZDivProp A D B.
(** Another formulation of the main equation *)
Lemma mod_eq :
forall a b, b~=0 -> a mod b == a - b*(a/b).
Proof.
intros.
rewrite <- add_move_l.
symmetry. now apply div_mod.
Qed.
Ltac pos_or_neg a :=
let LT := fresh "LT" in
let LE := fresh "LE" in
destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT].
(** Uniqueness theorems *)
Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
0<=r1<abs b -> 0<=r2<abs b ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
pos_or_neg b.
rewrite abs_eq in * by trivial.
apply div_mod_unique with b; trivial.
rewrite abs_neq' in * by auto using lt_le_incl.
rewrite eq_sym_iff. apply div_mod_unique with (-b); trivial.
rewrite 2 mul_opp_l.
rewrite add_move_l, sub_opp_r.
rewrite <-add_assoc.
symmetry. rewrite add_move_l, sub_opp_r.
now rewrite (add_comm r2), (add_comm r1).
Qed.
Theorem div_unique:
forall a b q r, 0<=r<abs b -> a == b*q + r -> q == a/b.
Proof.
intros a b q r Hr EQ.
assert (Hb : b~=0).
pos_or_neg b.
rewrite abs_eq in Hr; intuition; order.
rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order.
destruct (div_mod_unique b q (a/b) r (a mod b)); trivial.
now apply mod_always_pos.
now rewrite <- div_mod.
Qed.
Theorem mod_unique:
forall a b q r, 0<=r<abs b -> a == b*q + r -> r == a mod b.
Proof.
intros a b q r Hr EQ.
assert (Hb : b~=0).
pos_or_neg b.
rewrite abs_eq in Hr; intuition; order.
rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order.
destruct (div_mod_unique b q (a/b) r (a mod b)); trivial.
now apply mod_always_pos.
now rewrite <- div_mod.
Qed.
(** Sign rules *)
Lemma div_opp_r : forall a b, b~=0 -> a/(-b) == -(a/b).
Proof.
intros. symmetry.
apply div_unique with (a mod b).
rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.
Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b.
Proof.
intros. symmetry.
apply mod_unique with (-(a/b)).
rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.
Lemma div_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
(-a)/b == -(a/b).
Proof.
intros a b Hb Hab. symmetry.
apply div_unique with (-(a mod b)).
rewrite Hab, opp_0. split; [order|].
pos_or_neg b; [rewrite abs_eq | rewrite abs_neq']; order.
now rewrite mul_opp_r, <-opp_add_distr, <-div_mod.
Qed.
Lemma div_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a)/b == -(a/b)-sgn b.
Proof.
intros a b Hb Hab. symmetry.
apply div_unique with (abs b -(a mod b)).
rewrite lt_sub_lt_add_l.
rewrite <- le_add_le_sub_l. nzsimpl.
rewrite <- (add_0_l (abs b)) at 2.
rewrite <- add_lt_mono_r.
destruct (mod_always_pos a b); intuition order.
rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r.
rewrite sgn_abs.
rewrite add_shuffle2, add_opp_diag_l; nzsimpl.
rewrite <-opp_add_distr, <-div_mod; order.
Qed.
Lemma mod_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
(-a) mod b == 0.
Proof.
intros a b Hb Hab. symmetry.
apply mod_unique with (-(a/b)).
split; [order|now rewrite abs_pos].
now rewrite <-opp_0, <-Hab, mul_opp_r, <-opp_add_distr, <-div_mod.
Qed.
Lemma mod_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a) mod b == abs b - (a mod b).
Proof.
intros a b Hb Hab. symmetry.
apply mod_unique with (-(a/b)-sgn b).
rewrite lt_sub_lt_add_l.
rewrite <- le_add_le_sub_l. nzsimpl.
rewrite <- (add_0_l (abs b)) at 2.
rewrite <- add_lt_mono_r.
destruct (mod_always_pos a b); intuition order.
rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r.
rewrite sgn_abs.
rewrite add_shuffle2, add_opp_diag_l; nzsimpl.
rewrite <-opp_add_distr, <-div_mod; order.
Qed.
Lemma div_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
(-a)/(-b) == a/b.
Proof.
intros. now rewrite div_opp_r, div_opp_l_z, opp_involutive.
Qed.
Lemma div_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a)/(-b) == a/b + sgn(b).
Proof.
intros. rewrite div_opp_r, div_opp_l_nz by trivial.
now rewrite opp_sub_distr, opp_involutive.
Qed.
Lemma mod_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
(-a) mod (-b) == 0.
Proof.
intros. now rewrite mod_opp_r, mod_opp_l_z.
Qed.
Lemma mod_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a) mod (-b) == abs b - a mod b.
Proof.
intros. now rewrite mod_opp_r, mod_opp_l_nz.
Qed.
(** A division by itself returns 1 *)
Lemma div_same : forall a, a~=0 -> a/a == 1.
Proof.
intros. symmetry. apply div_unique with 0.
split; [order|now rewrite abs_pos].
now nzsimpl.
Qed.
Lemma mod_same : forall a, a~=0 -> a mod a == 0.
Proof.
intros.
rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag.
Qed.
(** A division of a small number by a bigger one yields zero. *)
Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
Proof. exact div_small. Qed.
(** Same situation, in term of modulo: *)
Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
Proof. exact mod_small. Qed.
(** * Basic values of divisions and modulo. *)
Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
Proof.
intros. pos_or_neg a. apply div_0_l; order.
apply opp_inj. rewrite <- div_opp_r, opp_0 by trivial. now apply div_0_l.
Qed.
Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
Proof.
intros; rewrite mod_eq, div_0_l; now nzsimpl.
Qed.
Lemma div_1_r: forall a, a/1 == a.
Proof.
intros. symmetry. apply div_unique with 0.
assert (H:=lt_0_1); rewrite abs_pos; intuition; order.
now nzsimpl.
Qed.
Lemma mod_1_r: forall a, a mod 1 == 0.
Proof.
intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag.
apply neq_sym, lt_neq; apply lt_0_1.
Qed.
Lemma div_1_l: forall a, 1<a -> 1/a == 0.
Proof. exact div_1_l. Qed.
Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
Proof. exact mod_1_l. Qed.
Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
Proof.
intros. symmetry. apply div_unique with 0.
split; [order|now rewrite abs_pos].
nzsimpl; apply mul_comm.
Qed.
Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
Proof.
intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag.
Qed.
Theorem div_unique_exact a b q: b~=0 -> a == b*q -> q == a/b.
Proof.
intros Hb H. rewrite H, mul_comm. symmetry. now apply div_mul.
Qed.
(** * Order results about mod and div *)
(** A modulo cannot grow beyond its starting point. *)
Theorem mod_le: forall a b, 0<=a -> b~=0 -> a mod b <= a.
Proof.
intros. pos_or_neg b. apply mod_le; order.
rewrite <- mod_opp_r by trivial. apply mod_le; order.
Qed.
Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b.
Proof. exact div_pos. Qed.
Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
Proof. exact div_str_pos. Qed.
Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a<abs b).
Proof.
intros a b Hb.
split.
intros EQ.
rewrite (div_mod a b Hb), EQ; nzsimpl.
now apply mod_always_pos.
intros. pos_or_neg b.
apply div_small.
now rewrite <- (abs_eq b).
apply opp_inj; rewrite opp_0, <- div_opp_r by trivial.
apply div_small.
rewrite <- (abs_neq' b) by order. trivial.
Qed.
Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<abs b).
Proof.
intros.
rewrite <- div_small_iff, mod_eq by trivial.
rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l.
rewrite eq_sym_iff, eq_mul_0. tauto.
Qed.
(** As soon as the divisor is strictly greater than 1,
the division is strictly decreasing. *)
Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
Proof. exact div_lt. Qed.
(** [le] is compatible with a positive division. *)
Lemma div_le_mono : forall a b c, 0<c -> a<=b -> a/c <= b/c.
Proof.
intros a b c Hc Hab.
rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ];
[|rewrite EQ; order].
rewrite <- lt_succ_r.
rewrite (mul_lt_mono_pos_l c) by order.
nzsimpl.
rewrite (add_lt_mono_r _ _ (a mod c)).
rewrite <- div_mod by order.
apply lt_le_trans with b; trivial.
rewrite (div_mod b c) at 1 by order.
rewrite <- add_assoc, <- add_le_mono_l.
apply le_trans with (c+0).
nzsimpl; destruct (mod_always_pos b c); try order.
rewrite abs_eq in *; order.
rewrite <- add_le_mono_l. destruct (mod_always_pos a c); order.
Qed.
(** In this convention, [div] performs Rounding-Toward-Bottom
when divisor is positive, and Rounding-Toward-Top otherwise.
Since we cannot speak of rational values here, we express this
fact by multiplying back by [b], and this leads to a nice
unique statement.
*)
Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a.
Proof.
intros.
rewrite (div_mod a b) at 2; trivial.
rewrite <- (add_0_r (b*(a/b))) at 1.
rewrite <- add_le_mono_l.
now destruct (mod_always_pos a b).
Qed.
(** Giving a reversed bound is slightly more complex *)
Lemma mul_succ_div_gt: forall a b, 0<b -> a < b*(S (a/b)).
Proof.
intros.
nzsimpl.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
destruct (mod_always_pos a b). order.
rewrite abs_eq in *; order.
Qed.
Lemma mul_pred_div_gt: forall a b, b<0 -> a < b*(P (a/b)).
Proof.
intros a b Hb.
rewrite mul_pred_r, <- add_opp_r.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
destruct (mod_always_pos a b). order.
rewrite <- opp_pos_neg in Hb. rewrite abs_neq' in *; order.
Qed.
(** NB: The three previous properties could be used as
specifications for [div]. *)
(** Inequality [mul_div_le] is exact iff the modulo is zero. *)
Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0).
Proof.
intros.
rewrite (div_mod a b) at 1; try order.
rewrite <- (add_0_r (b*(a/b))) at 2.
apply add_cancel_l.
Qed.
(** Some additionnal inequalities about div. *)
Theorem div_lt_upper_bound:
forall a b q, 0<b -> a < b*q -> a/b < q.
Proof.
intros.
rewrite (mul_lt_mono_pos_l b) by trivial.
apply le_lt_trans with a; trivial.
apply mul_div_le; order.
Qed.
Theorem div_le_upper_bound:
forall a b q, 0<b -> a <= b*q -> a/b <= q.
Proof.
intros.
rewrite <- (div_mul q b) by order.
apply div_le_mono; trivial. now rewrite mul_comm.
Qed.
Theorem div_le_lower_bound:
forall a b q, 0<b -> b*q <= a -> q <= a/b.
Proof.
intros.
rewrite <- (div_mul q b) by order.
apply div_le_mono; trivial. now rewrite mul_comm.
Qed.
(** A division respects opposite monotonicity for the divisor *)
Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p/r <= p/q.
Proof. exact div_le_compat_l. Qed.
(** * Relations between usual operations and mod and div *)
Lemma mod_add : forall a b c, c~=0 ->
(a + b * c) mod c == a mod c.
Proof.
intros.
symmetry.
apply mod_unique with (a/c+b); trivial.
now apply mod_always_pos.
rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
now rewrite mul_comm.
Qed.
Lemma div_add : forall a b c, c~=0 ->
(a + b * c) / c == a / c + b.
Proof.
intros.
apply (mul_cancel_l _ _ c); try order.
apply (add_cancel_r _ _ ((a+b*c) mod c)).
rewrite <- div_mod, mod_add by order.
rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
now rewrite mul_comm.
Qed.
Lemma div_add_l: forall a b c, b~=0 ->
(a * b + c) / b == a + c / b.
Proof.
intros a b c. rewrite (add_comm _ c), (add_comm a).
now apply div_add.
Qed.
(** Cancellations. *)
(** With the current convention, the following isn't always true
when [c<0]: [-3*-1 / -2*-1 = 3/2 = 1] while [-3/-2 = 2] *)
Lemma div_mul_cancel_r : forall a b c, b~=0 -> 0<c ->
(a*c)/(b*c) == a/b.
Proof.
intros.
symmetry.
apply div_unique with ((a mod b)*c).
(* ineqs *)
rewrite abs_mul, (abs_eq c) by order.
rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r by trivial.
now apply mod_always_pos.
(* equation *)
rewrite (div_mod a b) at 1 by order.
rewrite mul_add_distr_r.
rewrite add_cancel_r.
rewrite <- 2 mul_assoc. now rewrite (mul_comm c).
Qed.
Lemma div_mul_cancel_l : forall a b c, b~=0 -> 0<c ->
(c*a)/(c*b) == a/b.
Proof.
intros. rewrite !(mul_comm c); now apply div_mul_cancel_r.
Qed.
Lemma mul_mod_distr_l: forall a b c, b~=0 -> 0<c ->
(c*a) mod (c*b) == c * (a mod b).
Proof.
intros.
rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))).
rewrite <- div_mod.
rewrite div_mul_cancel_l by trivial.
rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
apply div_mod; order.
rewrite <- neq_mul_0; intuition; order.
Qed.
Lemma mul_mod_distr_r: forall a b c, b~=0 -> 0<c ->
(a*c) mod (b*c) == (a mod b) * c.
Proof.
intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l.
Qed.
(** Operations modulo. *)
Theorem mod_mod: forall a n, n~=0 ->
(a mod n) mod n == a mod n.
Proof.
intros. rewrite mod_small_iff by trivial.
now apply mod_always_pos.
Qed.
Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
((a mod n)*b) mod n == (a*b) mod n.
Proof.
intros a b n Hn. symmetry.
rewrite (div_mod a n) at 1 by order.
rewrite add_comm, (mul_comm n), (mul_comm _ b).
rewrite mul_add_distr_l, mul_assoc.
rewrite mod_add by trivial.
now rewrite mul_comm.
Qed.
Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
(a*(b mod n)) mod n == (a*b) mod n.
Proof.
intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l.
Qed.
Theorem mul_mod: forall a b n, n~=0 ->
(a * b) mod n == ((a mod n) * (b mod n)) mod n.
Proof.
intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r.
Qed.
Lemma add_mod_idemp_l : forall a b n, n~=0 ->
((a mod n)+b) mod n == (a+b) mod n.
Proof.
intros a b n Hn. symmetry.
rewrite (div_mod a n) at 1 by order.
rewrite <- add_assoc, add_comm, mul_comm.
now rewrite mod_add.
Qed.
Lemma add_mod_idemp_r : forall a b n, n~=0 ->
(a+(b mod n)) mod n == (a+b) mod n.
Proof.
intros. rewrite !(add_comm a). now apply add_mod_idemp_l.
Qed.
Theorem add_mod: forall a b n, n~=0 ->
(a+b) mod n == (a mod n + b mod n) mod n.
Proof.
intros. now rewrite add_mod_idemp_l, add_mod_idemp_r.
Qed.
(** With the current convention, the following result isn't always
true with a negative intermediate divisor. For instance
[ 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) ] and
[ 3/(-2)/2 = -1 <> 0 = 3 / (-2*2) ]. *)
Lemma div_div : forall a b c, 0<b -> c~=0 ->
(a/b)/c == a/(b*c).
Proof.
intros a b c Hb Hc.
apply div_unique with (b*((a/b) mod c) + a mod b).
(* begin 0<= ... <abs(b*c) *)
rewrite abs_mul.
destruct (mod_always_pos (a/b) c), (mod_always_pos a b); try order.
split.
apply add_nonneg_nonneg; trivial.
apply mul_nonneg_nonneg; order.
apply lt_le_trans with (b*((a/b) mod c) + abs b).
now rewrite <- add_lt_mono_l.
rewrite (abs_eq b) by order.
now rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l.
(* end 0<= ... < abs(b*c) *)
rewrite (div_mod a b) at 1 by order.
rewrite add_assoc, add_cancel_r.
rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
apply div_mod; order.
Qed.
(** Similarly, the following result doesn't always hold when [b<0].
For instance [3 mod (-2*-2)) = 3] while
[3 mod (-2) + (-2)*((3/-2) mod -2) = -1]. *)
Lemma mod_mul_r : forall a b c, 0<b -> c~=0 ->
a mod (b*c) == a mod b + b*((a/b) mod c).
Proof.
intros a b c Hb Hc.
apply add_cancel_l with (b*c*(a/(b*c))).
rewrite <- div_mod by (apply neq_mul_0; split; order).
rewrite <- div_div by trivial.
rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l.
rewrite <- div_mod by order.
apply div_mod; order.
Qed.
(** A last inequality: *)
Theorem div_mul_le:
forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
Proof. exact div_mul_le. Qed.
(** mod is related to divisibility *)
Lemma mod_divides : forall a b, b~=0 ->
(a mod b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
intros Hab. exists (a/b). rewrite mul_comm.
rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl.
intros (c,Hc). rewrite Hc. now apply mod_mul.
Qed.
End ZEuclidProp.
|