aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/DecimalPos.v
blob: 40c8f5a5acef6d5a948b483f1474eb46297109f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** * DecimalPos

    Proofs that conversions between decimal numbers and [positive]
    are bijections. *)

Require Import Decimal DecimalFacts PArith NArith.

Module Unsigned.

Local Open Scope N.

(** A direct version of [of_little_uint] *)
Fixpoint of_lu (d:uint) : N :=
  match d with
  | Nil => 0
  | D0 d => 10 * of_lu d
  | D1 d => 1 + 10 * of_lu d
  | D2 d => 2 + 10 * of_lu d
  | D3 d => 3 + 10 * of_lu d
  | D4 d => 4 + 10 * of_lu d
  | D5 d => 5 + 10 * of_lu d
  | D6 d => 6 + 10 * of_lu d
  | D7 d => 7 + 10 * of_lu d
  | D8 d => 8 + 10 * of_lu d
  | D9 d => 9 + 10 * of_lu d
  end.

Definition hd d :=
match d with
 | Nil => 0
 | D0 _ => 0
 | D1 _ => 1
 | D2 _ => 2
 | D3 _ => 3
 | D4 _ => 4
 | D5 _ => 5
 | D6 _ => 6
 | D7 _ => 7
 | D8 _ => 8
 | D9 _ => 9
end.

Definition tl d :=
 match d with
 | Nil => d
 | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => d
end.

Lemma of_lu_eqn d :
 of_lu d = hd d + 10 * (of_lu (tl d)).
Proof.
 induction d; simpl; trivial.
Qed.

Ltac simpl_of_lu :=
 match goal with
 | |- context [ of_lu (?f ?x) ] =>
   rewrite (of_lu_eqn (f x)); simpl hd; simpl tl
 end.

Fixpoint usize (d:uint) : N :=
  match d with
  | Nil => 0
  | D0 d => N.succ (usize d)
  | D1 d => N.succ (usize d)
  | D2 d => N.succ (usize d)
  | D3 d => N.succ (usize d)
  | D4 d => N.succ (usize d)
  | D5 d => N.succ (usize d)
  | D6 d => N.succ (usize d)
  | D7 d => N.succ (usize d)
  | D8 d => N.succ (usize d)
  | D9 d => N.succ (usize d)
  end.

Lemma of_lu_revapp d d' :
 of_lu (revapp d d') =
  of_lu (rev d) + of_lu d' * 10^usize d.
Proof.
 revert d'.
 induction d; simpl; intro d'; [ now rewrite N.mul_1_r | .. ];
 unfold rev; simpl revapp; rewrite 2 IHd;
 rewrite <- N.add_assoc; f_equal; simpl_of_lu; simpl of_lu;
 rewrite N.pow_succ_r'; ring.
Qed.

Definition Nadd n p :=
 match n with
 | N0 => p
 | Npos p0 => (p0+p)%positive
 end.

Lemma Nadd_simpl n p q : Npos (Nadd n (p * q)) = n + Npos p * Npos q.
Proof.
 now destruct n.
Qed.

Lemma of_uint_acc_eqn d acc : d<>Nil ->
 Pos.of_uint_acc d acc = Pos.of_uint_acc (tl d) (Nadd (hd d) (10*acc)).
Proof.
 destruct d; simpl; trivial. now destruct 1.
Qed.

Lemma of_uint_acc_rev d acc :
 Npos (Pos.of_uint_acc d acc) =
  of_lu (rev d) + (Npos acc) * 10^usize d.
Proof.
 revert acc.
 induction d; intros; simpl usize;
 [ simpl; now rewrite Pos.mul_1_r | .. ];
 rewrite N.pow_succ_r';
 unfold rev; simpl revapp; try rewrite of_lu_revapp; simpl of_lu;
 rewrite of_uint_acc_eqn by easy; simpl tl; simpl hd;
 rewrite IHd, Nadd_simpl; ring.
Qed.

Lemma of_uint_alt d : Pos.of_uint d = of_lu (rev d).
Proof.
 induction d; simpl; trivial; unfold rev; simpl revapp;
 rewrite of_lu_revapp; simpl of_lu; try apply of_uint_acc_rev.
 rewrite IHd. ring.
Qed.

Lemma of_lu_rev d : Pos.of_uint (rev d) = of_lu d.
Proof.
 rewrite of_uint_alt. now rewrite rev_rev.
Qed.

Lemma of_lu_double_gen d :
  of_lu (Little.double d) = N.double (of_lu d) /\
  of_lu (Little.succ_double d) = N.succ_double (of_lu d).
Proof.
 rewrite N.double_spec, N.succ_double_spec.
 induction d; try destruct IHd as (IH1,IH2);
 simpl Little.double; simpl Little.succ_double;
 repeat (simpl_of_lu; rewrite ?IH1, ?IH2); split; reflexivity || ring.
Qed.

Lemma of_lu_double d :
  of_lu (Little.double d) = N.double (of_lu d).
Proof.
 apply of_lu_double_gen.
Qed.

Lemma of_lu_succ_double d :
  of_lu (Little.succ_double d) = N.succ_double (of_lu d).
Proof.
 apply of_lu_double_gen.
Qed.

(** First bijection result *)

Lemma of_to (p:positive) : Pos.of_uint (Pos.to_uint p) = Npos p.
Proof.
 unfold Pos.to_uint.
 rewrite of_lu_rev.
 induction p; simpl; trivial.
 - now rewrite of_lu_succ_double, IHp.
 - now rewrite of_lu_double, IHp.
Qed.

(** The other direction *)

Definition to_lu n :=
  match n with
  | N0 => Decimal.zero
  | Npos p => Pos.to_little_uint p
  end.

Lemma succ_double_alt d :
  Little.succ_double d = Little.succ (Little.double d).
Proof.
 now induction d.
Qed.

Lemma double_succ d :
  Little.double (Little.succ d) =
  Little.succ (Little.succ_double d).
Proof.
 induction d; simpl; f_equal; auto using succ_double_alt.
Qed.

Lemma to_lu_succ n :
 to_lu (N.succ n) = Little.succ (to_lu n).
Proof.
 destruct n; simpl; trivial.
 induction p; simpl; rewrite ?IHp;
  auto using succ_double_alt, double_succ.
Qed.

Lemma nat_iter_S n {A} (f:A->A) i :
 Nat.iter (S n) f i = f (Nat.iter n f i).
Proof.
 reflexivity.
Qed.

Lemma nat_iter_0 {A} (f:A->A) i : Nat.iter 0 f i = i.
Proof.
 reflexivity.
Qed.

Lemma to_ldec_tenfold p :
 to_lu (10 * Npos p) = D0 (to_lu (Npos p)).
Proof.
 induction p using Pos.peano_rect.
 - trivial.
 - change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
   rewrite N.mul_succ_r.
   change 10 at 2 with (Nat.iter 10%nat N.succ 0).
   rewrite ?nat_iter_S, nat_iter_0.
   rewrite !N.add_succ_r, N.add_0_r, !to_lu_succ, IHp.
   destruct (to_lu (N.pos p)); simpl; auto.
Qed.

Lemma of_lu_0 d : of_lu d = 0 <-> nztail d = Nil.
Proof.
 induction d; try simpl_of_lu; split; trivial; try discriminate;
 try (intros H; now apply N.eq_add_0 in H).
 - rewrite N.add_0_l. intros H.
   apply N.eq_mul_0_r in H; [|easy]. rewrite IHd in H.
   simpl. now rewrite H.
 - simpl. destruct (nztail d); try discriminate.
   now destruct IHd as [_ ->].
Qed.

Lemma to_of_lu_tenfold d :
 to_lu (of_lu d) = lnorm d ->
 to_lu (10 * of_lu d) = lnorm (D0 d).
Proof.
 intro IH.
 destruct (N.eq_dec (of_lu d) 0) as [H|H].
 - rewrite H. simpl. rewrite of_lu_0 in H.
   unfold lnorm. simpl. now rewrite H.
 - destruct (of_lu d) eqn:Eq; [easy| ].
   rewrite to_ldec_tenfold; auto. rewrite IH.
   rewrite <- Eq in H. rewrite of_lu_0 in H.
   unfold lnorm. simpl. now destruct (nztail d).
Qed.

Lemma Nadd_alt n m : n + m = Nat.iter (N.to_nat n) N.succ m.
Proof.
 destruct n. trivial.
 induction p using Pos.peano_rect.
 - now rewrite N.add_1_l.
 - change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
   now rewrite N.add_succ_l, IHp, N2Nat.inj_succ.
Qed.

Ltac simpl_to_nat := simpl N.to_nat; unfold Pos.to_nat; simpl Pos.iter_op.

Lemma to_of_lu d : to_lu (of_lu d) = lnorm d.
Proof.
 induction d; [reflexivity|..];
 simpl_of_lu; rewrite Nadd_alt; simpl_to_nat;
 rewrite ?nat_iter_S, nat_iter_0, ?to_lu_succ, to_of_lu_tenfold by assumption;
 unfold lnorm; simpl; destruct nztail; auto.
Qed.

(** Second bijection result *)

Lemma to_of (d:uint) : N.to_uint (Pos.of_uint d) = unorm d.
Proof.
 rewrite of_uint_alt.
 unfold N.to_uint, Pos.to_uint.
 destruct (of_lu (rev d)) eqn:H.
 - rewrite of_lu_0 in H. rewrite <- rev_lnorm_rev.
   unfold lnorm. now rewrite H.
 - change (Pos.to_little_uint p) with (to_lu (N.pos p)).
   rewrite <- H. rewrite to_of_lu. apply rev_lnorm_rev.
Qed.

(** Some consequences *)

Lemma to_uint_nonzero p : Pos.to_uint p <> zero.
Proof.
 intro E. generalize (of_to p). now rewrite E.
Qed.

Lemma to_uint_nonnil p : Pos.to_uint p <> Nil.
Proof.
 intros E. generalize (of_to p). now rewrite E.
Qed.

Lemma to_uint_inj p p' : Pos.to_uint p = Pos.to_uint p' -> p = p'.
Proof.
 intro E.
 assert (E' : N.pos p = N.pos p').
 { now rewrite <- (of_to p), <- (of_to p'), E. }
 now injection E'.
Qed.

Lemma to_uint_pos_surj d :
 unorm d<>zero -> exists p, Pos.to_uint p = unorm d.
Proof.
 intros.
 destruct (Pos.of_uint d) eqn:E.
 - destruct H. generalize (to_of d). now rewrite E.
 - exists p. generalize (to_of d). now rewrite E.
Qed.

Lemma of_uint_norm d : Pos.of_uint (unorm d) = Pos.of_uint d.
Proof.
 now induction d.
Qed.

Lemma of_inj d d' :
 Pos.of_uint d = Pos.of_uint d' -> unorm d = unorm d'.
Proof.
 intros. rewrite <- !to_of. now f_equal.
Qed.

Lemma of_iff d d' : Pos.of_uint d = Pos.of_uint d' <-> unorm d = unorm d'.
Proof.
 split. apply of_inj. intros E. rewrite <- of_uint_norm, E.
 apply of_uint_norm.
Qed.

End Unsigned.

(** Conversion from/to signed decimal numbers *)

Module Signed.

Lemma of_to (p:positive) : Pos.of_int (Pos.to_int p) = Some p.
Proof.
 unfold Pos.to_int, Pos.of_int, norm.
 now rewrite Unsigned.of_to.
Qed.

Lemma to_of (d:int)(p:positive) :
 Pos.of_int d = Some p -> Pos.to_int p = norm d.
Proof.
 unfold Pos.of_int.
 destruct d; [ | intros [=]].
 simpl norm. rewrite <- Unsigned.to_of.
 destruct (Pos.of_uint d); now intros [= <-].
Qed.

Lemma to_int_inj p p' : Pos.to_int p = Pos.to_int p' -> p = p'.
Proof.
 intro E.
 assert (E' : Some p = Some p').
 { now rewrite <- (of_to p), <- (of_to p'), E. }
 now injection E'.
Qed.

Lemma to_int_pos_surj d :
 unorm d <> zero -> exists p, Pos.to_int p = norm (Pos d).
Proof.
 simpl. unfold Pos.to_int. intros H.
 destruct (Unsigned.to_uint_pos_surj d H) as (p,Hp).
 exists p. now f_equal.
Qed.

Lemma of_int_norm d : Pos.of_int (norm d) = Pos.of_int d.
Proof.
 unfold Pos.of_int.
 destruct d.
 - simpl. now rewrite Unsigned.of_uint_norm.
 - simpl. now destruct (nzhead d) eqn:H.
Qed.

Lemma of_inj_pos d d' :
 Pos.of_int (Pos d) = Pos.of_int (Pos d') -> unorm d = unorm d'.
Proof.
 unfold Pos.of_int.
 destruct (Pos.of_uint d) eqn:Hd, (Pos.of_uint d') eqn:Hd';
  intros [=].
 - apply Unsigned.of_inj; now rewrite Hd, Hd'.
 - apply Unsigned.of_inj; rewrite Hd, Hd'; now f_equal.
Qed.

End Signed.