1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * Type [Z] viewed modulo a particular constant corresponds to [Z/nZ]
as defined abstractly in CyclicAxioms. *)
(** Even if the construction provided here is not reused for building
the efficient arbitrary precision numbers, it provides a simple
implementation of CyclicAxioms, hence ensuring its coherence. *)
Set Implicit Arguments.
Require Import Bool.
Require Import ZArith.
Require Import Znumtheory.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import CyclicAxioms.
Local Open Scope Z_scope.
Section ZModulo.
Variable digits : positive.
Hypothesis digits_ne_1 : digits <> 1%positive.
Definition wB := base digits.
Definition t := Z.
Definition zdigits := Zpos digits.
Definition to_Z x := x mod wB.
Notation "[| x |]" := (to_Z x) (at level 0, x at level 99).
Notation "[+| c |]" :=
(interp_carry 1 wB to_Z c) (at level 0, c at level 99).
Notation "[-| c |]" :=
(interp_carry (-1) wB to_Z c) (at level 0, c at level 99).
Notation "[|| x ||]" :=
(zn2z_to_Z wB to_Z x) (at level 0, x at level 99).
Lemma spec_more_than_1_digit: 1 < Zpos digits.
Proof.
generalize digits_ne_1; destruct digits; auto.
destruct 1; auto.
Qed.
Let digits_gt_1 := spec_more_than_1_digit.
Lemma wB_pos : wB > 0.
Proof.
unfold wB, base; auto with zarith.
Qed.
Hint Resolve wB_pos.
Lemma spec_to_Z_1 : forall x, 0 <= [|x|].
Proof.
unfold to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
Qed.
Lemma spec_to_Z_2 : forall x, [|x|] < wB.
Proof.
unfold to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
Qed.
Hint Resolve spec_to_Z_1 spec_to_Z_2.
Lemma spec_to_Z : forall x, 0 <= [|x|] < wB.
Proof.
auto.
Qed.
Definition of_pos x :=
let (q,r) := Z.pos_div_eucl x wB in (N_of_Z q, r).
Lemma spec_of_pos : forall p,
Zpos p = (Z.of_N (fst (of_pos p)))*wB + [|(snd (of_pos p))|].
Proof.
intros; unfold of_pos; simpl.
generalize (Z_div_mod_POS wB wB_pos p).
destruct (Z.pos_div_eucl p wB); simpl; destruct 1.
unfold to_Z; rewrite Zmod_small; auto.
assert (0 <= z).
replace z with (Zpos p / wB) by
(symmetry; apply Zdiv_unique with z0; auto).
apply Z_div_pos; auto with zarith.
replace (Z.of_N (N_of_Z z)) with z by
(destruct z; simpl; auto; elim H1; auto).
rewrite Z.mul_comm; auto.
Qed.
Lemma spec_zdigits : [|zdigits|] = Zpos digits.
Proof.
unfold to_Z, zdigits.
apply Zmod_small.
unfold wB, base.
split; auto with zarith.
apply Zpower2_lt_lin; auto with zarith.
Qed.
Definition zero := 0.
Definition one := 1.
Definition minus_one := wB - 1.
Lemma spec_0 : [|zero|] = 0.
Proof.
unfold to_Z, zero.
apply Zmod_small; generalize wB_pos; auto with zarith.
Qed.
Lemma spec_1 : [|one|] = 1.
Proof.
unfold to_Z, one.
apply Zmod_small; split; auto with zarith.
unfold wB, base.
apply Z.lt_trans with (Zpos digits); auto.
apply Zpower2_lt_lin; auto with zarith.
Qed.
Lemma spec_Bm1 : [|minus_one|] = wB - 1.
Proof.
unfold to_Z, minus_one.
apply Zmod_small; split; auto with zarith.
unfold wB, base.
cut (1 <= 2 ^ Zpos digits); auto with zarith.
apply Z.le_trans with (Zpos digits); auto with zarith.
apply Zpower2_le_lin; auto with zarith.
Qed.
Definition compare x y := Z.compare [|x|] [|y|].
Lemma spec_compare : forall x y,
compare x y = Z.compare [|x|] [|y|].
Proof. reflexivity. Qed.
Definition eq0 x :=
match [|x|] with Z0 => true | _ => false end.
Lemma spec_eq0 : forall x, eq0 x = true -> [|x|] = 0.
Proof.
unfold eq0; intros; now destruct [|x|].
Qed.
Definition opp_c x :=
if eq0 x then C0 0 else C1 (- x).
Definition opp x := - x.
Definition opp_carry x := - x - 1.
Lemma spec_opp_c : forall x, [-|opp_c x|] = -[|x|].
Proof.
intros; unfold opp_c, to_Z; auto.
case_eq (eq0 x); intros; unfold interp_carry.
fold [|x|]; rewrite (spec_eq0 x H); auto.
assert (x mod wB <> 0).
unfold eq0, to_Z in H.
intro H0; rewrite H0 in H; discriminate.
rewrite Z_mod_nz_opp_full; auto with zarith.
Qed.
Lemma spec_opp : forall x, [|opp x|] = (-[|x|]) mod wB.
Proof.
intros; unfold opp, to_Z; auto.
change ((- x) mod wB = (0 - (x mod wB)) mod wB).
rewrite Zminus_mod_idemp_r; simpl; auto.
Qed.
Lemma spec_opp_carry : forall x, [|opp_carry x|] = wB - [|x|] - 1.
Proof.
intros; unfold opp_carry, to_Z; auto.
replace (- x - 1) with (- 1 - x) by omega.
rewrite <- Zminus_mod_idemp_r.
replace ( -1 - x mod wB) with (0 + ( -1 - x mod wB)) by omega.
rewrite <- (Z_mod_same_full wB).
rewrite Zplus_mod_idemp_l.
replace (wB + (-1 - x mod wB)) with (wB - x mod wB -1) by omega.
apply Zmod_small.
generalize (Z_mod_lt x wB wB_pos); omega.
Qed.
Definition succ_c x :=
let y := Z.succ x in
if eq0 y then C1 0 else C0 y.
Definition add_c x y :=
let z := [|x|] + [|y|] in
if Z_lt_le_dec z wB then C0 z else C1 (z-wB).
Definition add_carry_c x y :=
let z := [|x|]+[|y|]+1 in
if Z_lt_le_dec z wB then C0 z else C1 (z-wB).
Definition succ := Z.succ.
Definition add := Z.add.
Definition add_carry x y := x + y + 1.
Lemma Zmod_equal :
forall x y z, z>0 -> (x-y) mod z = 0 -> x mod z = y mod z.
Proof.
intros.
generalize (Z_div_mod_eq (x-y) z H); rewrite H0, Z.add_0_r.
remember ((x-y)/z) as k.
rewrite Z.sub_move_r, Z.add_comm, Z.mul_comm. intros ->.
now apply Z_mod_plus.
Qed.
Lemma spec_succ_c : forall x, [+|succ_c x|] = [|x|] + 1.
Proof.
intros; unfold succ_c, to_Z, Z.succ.
case_eq (eq0 (x+1)); intros; unfold interp_carry.
rewrite Z.mul_1_l.
replace (wB + 0 mod wB) with wB by auto with zarith.
symmetry. rewrite Z.add_move_r.
assert ((x+1) mod wB = 0) by (apply spec_eq0; auto).
replace (wB-1) with ((wB-1) mod wB) by
(apply Zmod_small; generalize wB_pos; omega).
rewrite <- Zminus_mod_idemp_l; rewrite Z_mod_same; simpl; auto.
apply Zmod_equal; auto.
assert ((x+1) mod wB <> 0).
unfold eq0, to_Z in *; now destruct ((x+1) mod wB).
assert (x mod wB + 1 <> wB).
contradict H0.
rewrite Z.add_move_r in H0; simpl in H0.
rewrite <- Zplus_mod_idemp_l; rewrite H0.
replace (wB-1+1) with wB; auto with zarith; apply Z_mod_same; auto.
rewrite <- Zplus_mod_idemp_l.
apply Zmod_small.
generalize (Z_mod_lt x wB wB_pos); omega.
Qed.
Lemma spec_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|].
Proof.
intros; unfold add_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
apply Zmod_small;
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
rewrite Z.mul_1_l, Z.add_comm, Z.add_move_r.
apply Zmod_small;
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
Lemma spec_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|] + [|y|] + 1.
Proof.
intros; unfold add_carry_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
apply Zmod_small;
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
rewrite Z.mul_1_l, Z.add_comm, Z.add_move_r.
apply Zmod_small;
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
Lemma spec_succ : forall x, [|succ x|] = ([|x|] + 1) mod wB.
Proof.
intros; unfold succ, to_Z, Z.succ.
symmetry; apply Zplus_mod_idemp_l.
Qed.
Lemma spec_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wB.
Proof.
intros; unfold add, to_Z; apply Zplus_mod.
Qed.
Lemma spec_add_carry :
forall x y, [|add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
Proof.
intros; unfold add_carry, to_Z.
rewrite <- Zplus_mod_idemp_l.
rewrite (Zplus_mod x y).
rewrite Zplus_mod_idemp_l; auto.
Qed.
Definition pred_c x :=
if eq0 x then C1 (wB-1) else C0 (x-1).
Definition sub_c x y :=
let z := [|x|]-[|y|] in
if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z.
Definition sub_carry_c x y :=
let z := [|x|]-[|y|]-1 in
if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z.
Definition pred := Z.pred.
Definition sub := Z.sub.
Definition sub_carry x y := x - y - 1.
Lemma spec_pred_c : forall x, [-|pred_c x|] = [|x|] - 1.
Proof.
intros; unfold pred_c, to_Z, interp_carry.
case_eq (eq0 x); intros.
fold [|x|]; rewrite spec_eq0; auto.
replace ((wB-1) mod wB) with (wB-1); auto with zarith.
symmetry; apply Zmod_small; generalize wB_pos; omega.
assert (x mod wB <> 0).
unfold eq0, to_Z in *; now destruct (x mod wB).
rewrite <- Zminus_mod_idemp_l.
apply Zmod_small.
generalize (Z_mod_lt x wB wB_pos); omega.
Qed.
Lemma spec_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|].
Proof.
intros; unfold sub_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
replace ((wB + (x mod wB - y mod wB)) mod wB) with
(wB + (x mod wB - y mod wB)).
omega.
symmetry; apply Zmod_small.
generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
apply Zmod_small.
generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
Lemma spec_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|] - [|y|] - 1.
Proof.
intros; unfold sub_carry_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
replace ((wB + (x mod wB - y mod wB - 1)) mod wB) with
(wB + (x mod wB - y mod wB -1)).
omega.
symmetry; apply Zmod_small.
generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
apply Zmod_small.
generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
Lemma spec_pred : forall x, [|pred x|] = ([|x|] - 1) mod wB.
Proof.
intros; unfold pred, to_Z, Z.pred.
rewrite <- Zplus_mod_idemp_l; auto.
Qed.
Lemma spec_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wB.
Proof.
intros; unfold sub, to_Z; apply Zminus_mod.
Qed.
Lemma spec_sub_carry :
forall x y, [|sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB.
Proof.
intros; unfold sub_carry, to_Z.
rewrite <- Zminus_mod_idemp_l.
rewrite (Zminus_mod x y).
rewrite Zminus_mod_idemp_l.
auto.
Qed.
Definition mul_c x y :=
let (h,l) := Z.div_eucl ([|x|]*[|y|]) wB in
if eq0 h then if eq0 l then W0 else WW h l else WW h l.
Definition mul := Z.mul.
Definition square_c x := mul_c x x.
Lemma spec_mul_c : forall x y, [|| mul_c x y ||] = [|x|] * [|y|].
Proof.
intros; unfold mul_c, zn2z_to_Z.
assert (Z.div_eucl ([|x|]*[|y|]) wB = (([|x|]*[|y|])/wB,([|x|]*[|y|]) mod wB)).
unfold Z.modulo, Z.div; destruct Z.div_eucl; auto.
generalize (Z_div_mod ([|x|]*[|y|]) wB wB_pos); destruct Z.div_eucl as (h,l).
destruct 1; injection H as ? ?.
rewrite H0.
assert ([|l|] = l).
apply Zmod_small; auto.
assert ([|h|] = h).
apply Zmod_small.
subst h.
split.
apply Z_div_pos; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
apply Z.mul_lt_mono_nonneg; auto with zarith.
clear H H0 H1 H2.
case_eq (eq0 h); simpl; intros.
case_eq (eq0 l); simpl; intros.
rewrite <- H3, <- H4, (spec_eq0 h), (spec_eq0 l); auto with zarith.
rewrite H3, H4; auto with zarith.
rewrite H3, H4; auto with zarith.
Qed.
Lemma spec_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wB.
Proof.
intros; unfold mul, to_Z; apply Zmult_mod.
Qed.
Lemma spec_square_c : forall x, [|| square_c x||] = [|x|] * [|x|].
Proof.
intros x; exact (spec_mul_c x x).
Qed.
Definition div x y := Z.div_eucl [|x|] [|y|].
Lemma spec_div : forall a b, 0 < [|b|] ->
let (q,r) := div a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
intros; unfold div.
assert ([|b|]>0) by auto with zarith.
assert (Z.div_eucl [|a|] [|b|] = ([|a|]/[|b|], [|a|] mod [|b|])).
unfold Z.modulo, Z.div; destruct Z.div_eucl; auto.
generalize (Z_div_mod [|a|] [|b|] H0).
destruct Z.div_eucl as (q,r); destruct 1; intros.
injection H1 as ? ?.
assert ([|r|]=r).
apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|];
auto with zarith.
assert ([|q|]=q).
apply Zmod_small.
subst q.
split.
apply Z_div_pos; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
apply Z.lt_le_trans with (wB*1).
rewrite Z.mul_1_r; auto with zarith.
apply Z.mul_le_mono_nonneg; generalize wB_pos; auto with zarith.
rewrite H5, H6; rewrite Z.mul_comm; auto with zarith.
Qed.
Definition div_gt := div.
Lemma spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
let (q,r) := div_gt a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
intros.
apply spec_div; auto.
Qed.
Definition modulo x y := [|x|] mod [|y|].
Definition modulo_gt x y := [|x|] mod [|y|].
Lemma spec_modulo : forall a b, 0 < [|b|] ->
[|modulo a b|] = [|a|] mod [|b|].
Proof.
intros; unfold modulo.
apply Zmod_small.
assert ([|b|]>0) by auto with zarith.
generalize (Z_mod_lt [|a|] [|b|] H0) (Z_mod_lt b wB wB_pos).
fold [|b|]; omega.
Qed.
Lemma spec_modulo_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
[|modulo_gt a b|] = [|a|] mod [|b|].
Proof.
intros; apply spec_modulo; auto.
Qed.
Definition gcd x y := Z.gcd [|x|] [|y|].
Definition gcd_gt x y := Z.gcd [|x|] [|y|].
Lemma Zgcd_bound : forall a b, 0<=a -> 0<=b -> Z.gcd a b <= Z.max a b.
Proof.
intros.
generalize (Zgcd_is_gcd a b); inversion_clear 1.
destruct H2 as (q,H2); destruct H3 as (q',H3); clear H4.
assert (H4:=Z.gcd_nonneg a b).
destruct (Z.eq_dec (Z.gcd a b) 0) as [->|Hneq].
generalize (Zmax_spec a b); omega.
assert (0 <= q).
apply Z.mul_le_mono_pos_r with (Z.gcd a b); auto with zarith.
destruct (Z.eq_dec q 0).
subst q; simpl in *; subst a; simpl; auto.
generalize (Zmax_spec 0 b) (Zabs_spec b); omega.
apply Z.le_trans with a.
rewrite H2 at 2.
rewrite <- (Z.mul_1_l (Z.gcd a b)) at 1.
apply Z.mul_le_mono_nonneg; auto with zarith.
generalize (Zmax_spec a b); omega.
Qed.
Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|].
Proof.
intros; unfold gcd.
generalize (Z_mod_lt a wB wB_pos)(Z_mod_lt b wB wB_pos); intros.
fold [|a|] in *; fold [|b|] in *.
replace ([|Z.gcd [|a|] [|b|]|]) with (Z.gcd [|a|] [|b|]).
apply Zgcd_is_gcd.
symmetry; apply Zmod_small.
split.
apply Z.gcd_nonneg.
apply Z.le_lt_trans with (Z.max [|a|] [|b|]).
apply Zgcd_bound; auto with zarith.
generalize (Zmax_spec [|a|] [|b|]); omega.
Qed.
Lemma spec_gcd_gt : forall a b, [|a|] > [|b|] ->
Zis_gcd [|a|] [|b|] [|gcd_gt a b|].
Proof.
intros. apply spec_gcd; auto.
Qed.
Definition div21 a1 a2 b :=
Z.div_eucl ([|a1|]*wB+[|a2|]) [|b|].
Lemma spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := div21 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
intros; unfold div21.
generalize (Z_mod_lt a1 wB wB_pos); fold [|a1|]; intros.
generalize (Z_mod_lt a2 wB wB_pos); fold [|a2|]; intros.
assert ([|b|]>0) by auto with zarith.
remember ([|a1|]*wB+[|a2|]) as a.
assert (Z.div_eucl a [|b|] = (a/[|b|], a mod [|b|])).
unfold Z.modulo, Z.div; destruct Z.div_eucl; auto.
generalize (Z_div_mod a [|b|] H3).
destruct Z.div_eucl as (q,r); destruct 1; intros.
injection H4 as ? ?.
assert ([|r|]=r).
apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|];
auto with zarith.
assert ([|q|]=q).
apply Zmod_small.
subst q.
split.
apply Z_div_pos; auto with zarith.
subst a; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
subst a.
replace (wB*[|b|]) with (([|b|]-1)*wB + wB) by ring.
apply Z.lt_le_trans with ([|a1|]*wB+wB); auto with zarith.
rewrite H8, H9; rewrite Z.mul_comm; auto with zarith.
Qed.
Definition add_mul_div p x y :=
([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos digits) - [|p|]))).
Lemma spec_add_mul_div : forall x y p,
[|p|] <= Zpos digits ->
[| add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos digits) - [|p|]))) mod wB.
Proof.
intros; unfold add_mul_div; auto.
Qed.
Definition pos_mod p w := [|w|] mod (2 ^ [|p|]).
Lemma spec_pos_mod : forall w p,
[|pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
Proof.
intros; unfold pos_mod.
apply Zmod_small.
generalize (Z_mod_lt [|w|] (2 ^ [|p|])); intros.
split.
destruct H; auto with zarith.
apply Z.le_lt_trans with [|w|]; auto with zarith.
apply Zmod_le; auto with zarith.
Qed.
Definition is_even x :=
if Z.eq_dec ([|x|] mod 2) 0 then true else false.
Lemma spec_is_even : forall x,
if is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
Proof.
intros; unfold is_even; destruct Z.eq_dec; auto.
generalize (Z_mod_lt [|x|] 2); omega.
Qed.
Definition sqrt x := Z.sqrt [|x|].
Lemma spec_sqrt : forall x,
[|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2.
Proof.
intros.
unfold sqrt.
repeat rewrite Z.pow_2_r.
replace [|Z.sqrt [|x|]|] with (Z.sqrt [|x|]).
apply Z.sqrt_spec; auto with zarith.
symmetry; apply Zmod_small.
split. apply Z.sqrt_nonneg; auto.
apply Z.le_lt_trans with [|x|]; auto.
apply Z.sqrt_le_lin; auto.
Qed.
Definition sqrt2 x y :=
let z := [|x|]*wB+[|y|] in
match z with
| Z0 => (0, C0 0)
| Zpos p =>
let (s,r) := Z.sqrtrem (Zpos p) in
(s, if Z_lt_le_dec r wB then C0 r else C1 (r-wB))
| Zneg _ => (0, C0 0)
end.
Lemma spec_sqrt2 : forall x y,
wB/ 4 <= [|x|] ->
let (s,r) := sqrt2 x y in
[||WW x y||] = [|s|] ^ 2 + [+|r|] /\
[+|r|] <= 2 * [|s|].
Proof.
intros; unfold sqrt2.
simpl zn2z_to_Z.
remember ([|x|]*wB+[|y|]) as z.
destruct z.
auto with zarith.
generalize (Z.sqrtrem_spec (Zpos p)).
destruct Z.sqrtrem as (s,r); intros [U V]; auto with zarith.
assert (s < wB).
destruct (Z_lt_le_dec s wB); auto.
assert (wB * wB <= Zpos p).
rewrite U.
apply Z.le_trans with (s*s); try omega.
apply Z.mul_le_mono_nonneg; generalize wB_pos; auto with zarith.
assert (Zpos p < wB*wB).
rewrite Heqz.
replace (wB*wB) with ((wB-1)*wB+wB) by ring.
apply Z.add_le_lt_mono; auto with zarith.
apply Z.mul_le_mono_nonneg; auto with zarith.
generalize (spec_to_Z x); auto with zarith.
generalize wB_pos; auto with zarith.
omega.
replace [|s|] with s by (symmetry; apply Zmod_small; auto with zarith).
destruct Z_lt_le_dec; unfold interp_carry.
replace [|r|] with r by (symmetry; apply Zmod_small; auto with zarith).
rewrite Z.pow_2_r; auto with zarith.
replace [|r-wB|] with (r-wB) by (symmetry; apply Zmod_small; auto with zarith).
rewrite Z.pow_2_r; omega.
assert (0<=Zneg p).
rewrite Heqz; generalize wB_pos; auto with zarith.
compute in H0; elim H0; auto.
Qed.
Lemma two_p_power2 : forall x, x>=0 -> two_p x = 2 ^ x.
Proof.
intros.
unfold two_p.
destruct x; simpl; auto.
apply two_power_pos_correct.
Qed.
Definition head0 x := match [|x|] with
| Z0 => zdigits
| Zpos p => zdigits - log_inf p - 1
| _ => 0
end.
Lemma spec_head00: forall x, [|x|] = 0 -> [|head0 x|] = Zpos digits.
Proof.
unfold head0; intros.
rewrite H; simpl.
apply spec_zdigits.
Qed.
Lemma log_inf_bounded : forall x p, Zpos x < 2^p -> log_inf x < p.
Proof.
induction x; simpl; intros.
assert (0 < p) by (destruct p; compute; auto with zarith; discriminate).
cut (log_inf x < p - 1); [omega| ].
apply IHx.
change (Zpos x~1) with (2*(Zpos x)+1) in H.
replace p with (Z.succ (p-1)) in H; auto with zarith.
rewrite Z.pow_succ_r in H; auto with zarith.
assert (0 < p) by (destruct p; compute; auto with zarith; discriminate).
cut (log_inf x < p - 1); [omega| ].
apply IHx.
change (Zpos x~0) with (2*(Zpos x)) in H.
replace p with (Z.succ (p-1)) in H; auto with zarith.
rewrite Z.pow_succ_r in H; auto with zarith.
simpl; intros; destruct p; compute; auto with zarith.
Qed.
Lemma spec_head0 : forall x, 0 < [|x|] ->
wB/ 2 <= 2 ^ ([|head0 x|]) * [|x|] < wB.
Proof.
intros; unfold head0.
generalize (spec_to_Z x).
destruct [|x|]; try discriminate.
intros.
destruct (log_inf_correct p).
rewrite 2 two_p_power2 in H2; auto with zarith.
assert (0 <= zdigits - log_inf p - 1 < wB).
split.
cut (log_inf p < zdigits); try omega.
unfold zdigits.
unfold wB, base in *.
apply log_inf_bounded; auto with zarith.
apply Z.lt_trans with zdigits.
omega.
unfold zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith.
unfold to_Z; rewrite (Zmod_small _ _ H3).
destruct H2.
split.
apply Z.le_trans with (2^(zdigits - log_inf p - 1)*(2^log_inf p)).
apply Zdiv_le_upper_bound; auto with zarith.
rewrite <- Zpower_exp; auto with zarith.
rewrite Z.mul_comm; rewrite <- Z.pow_succ_r; auto with zarith.
replace (Z.succ (zdigits - log_inf p -1 +log_inf p)) with zdigits
by ring.
unfold wB, base, zdigits; auto with zarith.
apply Z.mul_le_mono_nonneg; auto with zarith.
apply Z.lt_le_trans
with (2^(zdigits - log_inf p - 1)*(2^(Z.succ (log_inf p)))).
apply Z.mul_lt_mono_pos_l; auto with zarith.
rewrite <- Zpower_exp; auto with zarith.
replace (zdigits - log_inf p -1 +Z.succ (log_inf p)) with zdigits
by ring.
unfold wB, base, zdigits; auto with zarith.
Qed.
Fixpoint Ptail p := match p with
| xO p => (Ptail p)+1
| _ => 0
end.
Lemma Ptail_pos : forall p, 0 <= Ptail p.
Proof.
induction p; simpl; auto with zarith.
Qed.
Hint Resolve Ptail_pos.
Lemma Ptail_bounded : forall p d, Zpos p < 2^(Zpos d) -> Ptail p < Zpos d.
Proof.
induction p; try (compute; auto; fail).
intros; simpl.
assert (d <> xH).
intro; subst.
compute in H; destruct p; discriminate.
assert (Z.succ (Zpos (Pos.pred d)) = Zpos d).
simpl; f_equal.
rewrite Pos.add_1_r.
destruct (Pos.succ_pred_or d); auto.
rewrite H1 in H0; elim H0; auto.
assert (Ptail p < Zpos (Pos.pred d)).
apply IHp.
apply Z.mul_lt_mono_pos_r with 2; auto with zarith.
rewrite (Z.mul_comm (Zpos p)).
change (2 * Zpos p) with (Zpos p~0).
rewrite Z.mul_comm.
rewrite <- Z.pow_succ_r; auto with zarith.
rewrite H1; auto.
rewrite <- H1; omega.
Qed.
Definition tail0 x :=
match [|x|] with
| Z0 => zdigits
| Zpos p => Ptail p
| Zneg _ => 0
end.
Lemma spec_tail00: forall x, [|x|] = 0 -> [|tail0 x|] = Zpos digits.
Proof.
unfold tail0; intros.
rewrite H; simpl.
apply spec_zdigits.
Qed.
Lemma spec_tail0 : forall x, 0 < [|x|] ->
exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail0 x|]).
Proof.
intros; unfold tail0.
generalize (spec_to_Z x).
destruct [|x|]; try discriminate; intros.
assert ([|Ptail p|] = Ptail p).
apply Zmod_small.
split; auto.
unfold wB, base in *.
apply Z.lt_trans with (Zpos digits).
apply Ptail_bounded; auto with zarith.
apply Zpower2_lt_lin; auto with zarith.
rewrite H1.
clear; induction p.
exists (Zpos p); simpl; rewrite Pos.mul_1_r; auto with zarith.
destruct IHp as (y & Yp & Ye).
exists y.
split; auto.
change (Zpos p~0) with (2*Zpos p).
rewrite Ye.
change (Ptail p~0) with (Z.succ (Ptail p)).
rewrite Z.pow_succ_r; auto; ring.
exists 0; simpl; auto with zarith.
Qed.
Definition lor := Z.lor.
Definition land := Z.land.
Definition lxor := Z.lxor.
Lemma spec_lor x y : [|lor x y|] = Z.lor [|x|] [|y|].
Proof.
unfold lor, to_Z.
apply Z.bits_inj'; intros n Hn. rewrite Z.lor_spec.
unfold wB, base.
destruct (Z.le_gt_cases (Z.pos digits) n).
- rewrite !Z.mod_pow2_bits_high; auto with zarith.
- rewrite !Z.mod_pow2_bits_low, Z.lor_spec; auto with zarith.
Qed.
Lemma spec_land x y : [|land x y|] = Z.land [|x|] [|y|].
Proof.
unfold land, to_Z.
apply Z.bits_inj'; intros n Hn. rewrite Z.land_spec.
unfold wB, base.
destruct (Z.le_gt_cases (Z.pos digits) n).
- rewrite !Z.mod_pow2_bits_high; auto with zarith.
- rewrite !Z.mod_pow2_bits_low, Z.land_spec; auto with zarith.
Qed.
Lemma spec_lxor x y : [|lxor x y|] = Z.lxor [|x|] [|y|].
Proof.
unfold lxor, to_Z.
apply Z.bits_inj'; intros n Hn. rewrite Z.lxor_spec.
unfold wB, base.
destruct (Z.le_gt_cases (Z.pos digits) n).
- rewrite !Z.mod_pow2_bits_high; auto with zarith.
- rewrite !Z.mod_pow2_bits_low, Z.lxor_spec; auto with zarith.
Qed.
(** Let's now group everything in two records *)
Instance zmod_ops : ZnZ.Ops Z := ZnZ.MkOps
(digits : positive)
(zdigits: t)
(to_Z : t -> Z)
(of_pos : positive -> N * t)
(head0 : t -> t)
(tail0 : t -> t)
(zero : t)
(one : t)
(minus_one : t)
(compare : t -> t -> comparison)
(eq0 : t -> bool)
(opp_c : t -> carry t)
(opp : t -> t)
(opp_carry : t -> t)
(succ_c : t -> carry t)
(add_c : t -> t -> carry t)
(add_carry_c : t -> t -> carry t)
(succ : t -> t)
(add : t -> t -> t)
(add_carry : t -> t -> t)
(pred_c : t -> carry t)
(sub_c : t -> t -> carry t)
(sub_carry_c : t -> t -> carry t)
(pred : t -> t)
(sub : t -> t -> t)
(sub_carry : t -> t -> t)
(mul_c : t -> t -> zn2z t)
(mul : t -> t -> t)
(square_c : t -> zn2z t)
(div21 : t -> t -> t -> t*t)
(div_gt : t -> t -> t * t)
(div : t -> t -> t * t)
(modulo_gt : t -> t -> t)
(modulo : t -> t -> t)
(gcd_gt : t -> t -> t)
(gcd : t -> t -> t)
(add_mul_div : t -> t -> t -> t)
(pos_mod : t -> t -> t)
(is_even : t -> bool)
(sqrt2 : t -> t -> t * carry t)
(sqrt : t -> t)
(lor : t -> t -> t)
(land : t -> t -> t)
(lxor : t -> t -> t).
Instance zmod_specs : ZnZ.Specs zmod_ops := ZnZ.MkSpecs
spec_to_Z
spec_of_pos
spec_zdigits
spec_more_than_1_digit
spec_0
spec_1
spec_Bm1
spec_compare
spec_eq0
spec_opp_c
spec_opp
spec_opp_carry
spec_succ_c
spec_add_c
spec_add_carry_c
spec_succ
spec_add
spec_add_carry
spec_pred_c
spec_sub_c
spec_sub_carry_c
spec_pred
spec_sub
spec_sub_carry
spec_mul_c
spec_mul
spec_square_c
spec_div21
spec_div_gt
spec_div
spec_modulo_gt
spec_modulo
spec_gcd_gt
spec_gcd
spec_head00
spec_head0
spec_tail00
spec_tail0
spec_add_mul_div
spec_pos_mod
spec_is_even
spec_sqrt2
spec_sqrt
spec_lor
spec_land
spec_lxor.
End ZModulo.
(** A modular version of the previous construction. *)
Module Type PositiveNotOne.
Parameter p : positive.
Axiom not_one : p <> 1%positive.
End PositiveNotOne.
Module ZModuloCyclicType (P:PositiveNotOne) <: CyclicType.
Definition t := Z.
Instance ops : ZnZ.Ops t := zmod_ops P.p.
Instance specs : ZnZ.Specs ops := zmod_specs P.not_one.
End ZModuloCyclicType.
|